博碩士論文 110623002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.147.61.142
姓名 曾怡翔(Yi-Shiang Tzeng)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 源自近日塵埃帶與掠日彗星的奈米塵埃粒子動力學
(Dynamics of the Nanodust from the Near Solar Dust Zone and Sungrazing Comets)
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 日冕物質拋射速度與緯度和太陽活動週期的關係
★ 隨季節變化之灶神星冰極模擬★ 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計
★ 土星環鄰近地區之帶電塵埃粒子動力學★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用
★ 克普勒任務觀測G型星超級閃焰的資料分析★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini
★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測★ 土衛六泰坦大氣的甲烷在土星系統的分佈
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,關於近日塵埃雲的資訊不僅是透過遙測觀測而取得,也藉由太空船探測到的高速奈米塵埃粒子撞擊訊號所獲得,例如尤利西斯號、SOHO以及近年發射的帕克太陽探測器 (PSP)。這些奈米塵埃撞擊量測結果通常被認為是由所謂的雙曲線β流星體造成的,這些奈米級的流星體在近太陽區域通過較大的塵埃粒子間相互碰撞或太陽高溫引起的昇華而生成,或可能從掠過近太陽區域的掠日彗星中分裂彈射出來。這些微小顆粒會在太陽輻射壓力的作用下,在徑向上朝遠離太陽方向前進。此外,當它們碎裂的足夠小時,它們也會因受到電磁力作用加速。值得注意的是,儘管從傳統上對F-日冕的光度分布的描述來看,近太陽塵埃帶的在緯向上的延伸上限不超過40°,但尤利西斯號在其航行經太陽極區的期間卻檢測到了β流星體的撞擊訊號。一些研究表明,來自太陽的電磁力是造成這些高太陽緯度β流星體的主要原因。意即,奈米塵埃粒子的電動力學對於揭示從近太陽塵埃雲中向外彈射出的奈米塵埃三維運動軌跡至關重要。

隨著PSP的近日探測任務和太陽軌道器 (SolO) 計畫在未來逐年增高傾角的高傾角軌道持續進行探測,我們認為現在正是對近日區域的奈米塵埃電動力學進行更深入的研究的時機,以便更詳細的分析由PSP和SolO所提供的三維觀測數據。因此我們在此提出了一項關於源自太陽附近的帶電奈米塵埃行為的全面研究,此研究以三維MHD太陽風模型為基礎,並考慮了勞倫茲力以及太陽輻射壓力對塵埃粒子的加速。我們將討論在太陽周期的不同階段,不同尺寸的微小塵埃粒子普遍的三維空間分布及其動力學行為。
摘要(英) For decades, information on the near-solar dust cloud has been acquired through not only remote-sensing observations but also the detections of high-speed nanodust impacts by spacecraft, such as Ulysses, Wind, SOHO, and more recently, the Parker Solar Probe (PSP). These nanodust impact measurements are generally believed to result from the so-called hyperbolic beta-meteoroids, which break apart from larger bodies through collision or sublimation in the near-sun region. These tiny particles can be propelled radially forward by solar radiation pressure. Moreover, when fragmented small enough, they can also be accelerated by electromagnetic forces. Note that while the brightness distribution of the near-solar dust cloud in terms of F-corona has an outer limit on its latitudinal extension to no more than 40°, the Ulysses spacecraft detected β-meteoroid impacts during its polar passage(s). Several studies suggested that the electromagnetic force in the heliosphere is the leading cause of these high heliolatitude β-meteoroids.

In other words, the electrodynamics of nanodust is essential to shape the three-dimensional (3D) trajectories of the nanodust ejected from the near solar dust cloud. With the planned near-sun approach of PSP and the high inclination orbits of the Solar Orbiter (SolO), we believe it is timely to conduct more in-depth studies of the nanodust electrodynamics in the near-sun region in preparation for more detailed analyses of the Parker Solar Probe and Solar Orbiter observations in 3D. Here we present a comprehensive study of the charged nanodust behavior originating from the vicinity of the Sun, based on a 3D MHD solar-wind model by taking into account Lorentz force and solar radiation pressure acceleration. General results on the 3D spatial distributions and dynamical behaviors of tiny grains of different sizes at different phases of the solar cycle will be discussed.
關鍵字(中) ★ 流星體
★ 行星際塵埃
★ 黃道雲
關鍵字(英) ★ meteoroids
★ interplanetary dust
★ Zodiacal cloud
論文目次 摘要 i
Abstract ii
致謝 iii
Contents v
List of Figures vii
List of Tables xiii
Chapter 1. Introduction 1
1.1 The Spatial Distribution of Zodiacal Dust Cloud 1
1.2 Near-solar Dust Zone: The Source Region of Hyperbolic β-Meteoroids 5
1.3 β-Meteoroid Measurements and Its Implications 9
1.4 The Prospects for β-Meteoroid Observations 11
1.5 Interpretations of the High Latitude β-Meteoroid Observations 13
Chapter 2. Basic Principle of Nanodust Dynamics 17
2.1 Influence of Radiation Pressure Force 17
2.2 Influence of Lorentz Force 21
Chapter 3. Model Description 27
3.1 Assumptions for Physical Properties of Nanodust Grains 27
3.2 Initial Orbit Distribution 30
3.3 3D MHD Solar Wind Model 31
Chapter 4. Results 34
4.1 Charged Nanodust Behavior During the Focusing Phase of the Solar Cycle 34
4.1.1 General Behavior of Lorentz-dominate Nanodust Particles 34
4.1.2 General Behavior of Radiation-dominate Nanodust Particles 44
4.1.3 Velocity Distribution at Various Heliocentric Distances 54
4.2 Nanodust Ejected from Sungrazing Comets 57
Chapter 5. Discussion 68
5.1 Predicted Nanodust Impacts on the Moon and Mercury 68
5.2 Predicted Flux Observed by Spacecraft 69
5.3 Influence of the Ambient Solar Wind Environment 71
5.3.1 Focusing and Defocusing Phase of the Solar Cycle 71
5.3.2 Effect of Differential Rotation of the Sun 72
5.3.3 Time Steady Assumption and CME’s Effect 73
References 74
參考文獻 [1] Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., Davy, S., Dekkali, M., Hinze, J. J., Manning, R. E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I. H., Cattell, C. A., Cecconi, B., … Zouganelis, I. (2008). S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission. Space Science Reviews, 136(1–4), 487–528. https://doi.org/10.1007/s11214-007-9298-8
[2] Burns, J. A., Lamy, P. L., & Soter, S. (1979). Radiation forces on small particles in the solar system. Icarus, 40(1), 1–48. https://doi.org/10.1016/0019-1035(79)90050-2
[3] Czechowski, A., & Kleimann, J. (2017). Nanodust dynamics during a coronal mass ejection. Annales Geophysicae, 35(5), 1033–1049. https://doi.org/10.5194/angeo-35-1033-2017
[4] Czechowski, A., & Mann, I. (2010). FORMATION AND ACCELERATION OF NANO DUST IN THE INNER HELIOSPHERE. The Astrophysical Journal, 714(1), 89. https://doi.org/10.1088/0004-637X/714/1/89
[5] Czechowski, A., & Mann, I. (2018). Dynamics of nanodust particles emitted from elongated initial orbits. Astronomy & Astrophysics, 617, A43. https://doi.org/10.1051/0004-6361/201832922
[6] Fechtig, H. (1989). Dust in the Solar System. Zeitschrift Für Naturforschung A, 44(10), 877–882. https://doi.org/10.1515/zna-1989-1002
[7] Feng, X., Yang, L., Xiang, C., Jiang, C., Ma, X., Wu, S. T., Zhong, D., & Zhou, Y. (2012). Validation of the 3D AMR SIP–CESE Solar Wind Model for Four Carrington Rotations. Solar Physics, 279(1), 207–229. https://doi.org/10.1007/s11207-012-9969-9
[8] Giese, R. H., Kneissel, B., & Rittich, U. (1986). Three-dimensional models of the zodiacal dust cloud: A comparative study. Icarus, 68(3), 395–411. https://doi.org/10.1016/0019-1035(86)90046-1
[9] Giese, R. H., & Kneiβel, B. (1989). Three-dimensional models of the zodiacal dust cloud: II. Compatibility of proposed infrared models. Icarus, 82(2), 369–378. https://doi.org/10.1016/0019-1035(89)90044-4
[10] Grün, E., Pailer, N., Fechtig, H., & Kissel, J. (1980). Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by Helios 1. Planetary and Space Science, 28(3), 333–349. https://doi.org/10.1016/0032-0633(80)90022-7
[11] Grün, E., Zook, H. A., Fechtig, H., & Giese, R. H. (1985). Collisional balance of the meteoritic complex. Icarus, 62(2), 244–272. https://doi.org/10.1016/0019-1035(85)90121-6
[12] Hamilton, D. P., Grün, E., & Baguhl, M. (1996). Electromagnetic Escape of Dust from the Solar System. International Astronomical Union Colloquium, 150, 31–34. https://doi.org/10.1017/S0252921100501225
[13] Horanyi, M., Turner, N., Balint, T., Alexander, C., Castillo-Rogez, J., Draine, B., Engrand, C., Hillier, J., Ishii, H., Kempf, S., Lugaro, M., Merouane, S., Munsat, T., Nesvorný, D., Nittler, L., Pokorný, P., Postrberg, F., Sarama, R., Stephan, T., … Graps, A. (2021). Interplanetary and interstellar dust as windows into solar system origins and evolution. Bulletin of the AAS, 53(4). https://doi.org/10.3847/25c2cfeb.1845c627
[14] Ip, W.-H., Lai, I.-L., & Shen, F. (2019). Nanodust in the Heliosphere. Journal of Physics: Conference Series, 1332(1), 012007. https://doi.org/10.1088/1742-6596/1332/1/012007
[15] Ip, W.-H., & Yan, T.-H. (2012). Injection and acceleration of charged nano-dust particles from sungrazing comets. AIP Conference Proceedings, 1436(1), 30–35. https://doi.org/10.1063/1.4723586
[16] Ishimoto, H. (2000). Modeling the number density distribution of interplanetary dust on the ecliptic plane within 5AU of the Sun. Astronomy and Astrophysics, 362, 1158–1173.
[17] J, O. (1958). On the vaporization of solid particles near the sun. Proc. Kon. Ned. Akad. v. Wetensch., B, 61, 74–84.
[18] Jorgensen, J. L., Benn, M., Connerney, J. E. P., Denver, T., Jorgensen, P. S., Andersen, A. C., & Bolton, S. J. (2021). Distribution of Interplanetary Dust Detected by the Juno Spacecraft and Its Contribution to the Zodiacal Light. Journal of Geophysical Research: Planets, 126(3), e2020JE006509. https://doi.org/10.1029/2020JE006509
[19] Kimura, H., & Mann, I. (1998a). Brightness of the solar F-corona. Earth, Planets and Space, 50(6), 493–499. https://doi.org/10.1186/BF03352140
[20] Kimura, H., & Mann, I. (1998b). The Electric Charging of Interstellar Dust in the Solar System and Consequences for Its Dynamics. The Astrophysical Journal, 499(1), 454. https://doi.org/10.1086/305613
[21] Kneißel, B., & Mann, I. (1991). Spatial Distribution and Orbital Properties of Zodiacal Dust. International Astronomical Union Colloquium, 126, 139–146. https://doi.org/10.1017/S0252921100066653
[22] Kobayashi, H., Watanabe, S., Kimura, H., & Yamamoto, T. (2009). Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting–Robertson drag: An analytical model. Icarus, 201(1), 395–405. https://doi.org/10.1016/j.icarus.2009.01.002
[23] Koutchmy, S., & Lamy, P. L. (1985). The F-Corona and the Circum-Solar Dust Evidences and Properties [G. Nikolsky Memorial Lecture]. International Astronomical Union Colloquium, 85, 63–74. https://doi.org/10.1017/S0252921100084359
[24] Krivov, A., Kimura, H., & Mann, I. (1998). Dynamics of Dust near the Sun. Icarus, 134(2), 311–327. https://doi.org/10.1006/icar.1998.5949
[25] Krivov, A., Mann, I., & Kimura, H. (1998). The circumsolar dust complex and solar magnetic field. Earth, Planets and Space, 50(6), 551–554. https://doi.org/10.1186/BF03352148
[26] Landgraf, M. (2000). Modeling the motion and distribution of interstellar dust inside the heliosphere. Journal of Geophysical Research: Space Physics, 105(A5), 10303–10316. https://doi.org/10.1029/1999JA900243
[27] Landgraf, M., Baggaley, W. J., Grün, E., Krüger, H., & Linkert, G. (2000). Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. Journal of Geophysical Research: Space Physics, 105(A5), 10343–10352. https://doi.org/10.1029/1999JA900359
[28] Landgraf, M., Krüger, H., Altobelli, N., & Grün, E. (2003). Penetration of the heliosphere by the interstellar dust stream during solar maximum. Journal of Geophysical Research: Space Physics, 108(A10). https://doi.org/10.1029/2003JA009872
[29] Leinert, C., Link, H., Pitz, E., & Giese, R. H. (1976). Interpretation of a rocket photometry of the inner zodiacal light. Astronomy and Astrophysics, Vol. 47, p. 221-230 (1976), 47, 221.
[30] Leinert, C., Richter, I., Pitz, E., & Planck, B. (1981). The zodiacal light from 1.0 to 0.3 A.U. as observed by the HELIOS space probes. Astronomy and Astrophysics, Vol. 103, No. 1, Nov. 1981, p. 177-188. Bundesministerium Für Forschung Und Technologie, 103(1), 177.
[31] Levison, H. F., & Duncan, M. J. (1997). From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets. Icarus, 127(1), 13–32. https://doi.org/10.1006/icar.1996.5637
[32] MacQueen, R. M. (1968). Infrared Observations of the Outer Solar Corona. The Astrophysical Journal, 154, 1059. https://doi.org/10.1086/149825
[33] Mann, I. (1998). Zodiacal Cloud Complexes. Earth, Planets and Space, 50(6), 465–471. https://doi.org/10.1186/BF03352135
[34] Mann, I., & Czechowski, A. (2005). Dust Destruction and Ion Formation in the Inner Solar System. The Astrophysical Journal, 621(1), L73. https://doi.org/10.1086/429129
[35] Mann, I., & Czechowski, A. (2021). Dust observations from Parker Solar Probe: Dust ejection from the inner Solar System. Astronomy & Astrophysics, 650, A29. https://doi.org/10.1051/0004-6361/202039362
[36] Mann, I., Kimura, H., Biesecker, D. A., Tsurutani, B. T., Grün, E., McKibben, R. B., Liou, J.-C., MacQueen, R. M., Mukai, T., Guhathakurta, M., & Lamy, P. (2004). Dust Near The Sun. Space Science Reviews, 110(3), 269–305. https://doi.org/10.1023/B:SPAC.0000023440.82735.ba
[37] Mann, I., Krivov, A., & Kimura, H. (2000). Dust Cloud near the Sun. Icarus, 146(2), 568–582. https://doi.org/10.1006/icar.2000.6419
[38] Mann, I., Nouzák, L., Vaverka, J., Antonsen, T., Fredriksen, Å., Issautier, K., Malaspina, D., Meyer-Vernet, N., Pavlů, J., Sternovsky, Z., Stude, J., Ye, S., & Zaslavsky, A. (2019). Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter. Annales Geophysicae, 37(6), 1121–1140. https://doi.org/10.5194/angeo-37-1121-2019
[39] Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M. L., St. Cyr, O. C., Bougeret, J.-L., & Bale, S. D. (2009). Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind? Solar Physics, 256(1), 463–474. https://doi.org/10.1007/s11207-009-9349-2
[40] Mozer, F. S., Agapitov, O. V., Bale, S. D., Bonnell, J. W., Goetz, K., Goodrich, K. A., Gore, R., Harvey, P. R., Kellogg, P. J., Malaspina, D., Pulupa, M., & Schumm, G. (2020). Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations. The Astrophysical Journal Supplement Series, 246(2), 50. https://doi.org/10.3847/1538-4365/ab5e4b
[41] Mukai, T. (1981). On the charge distribution of interplanetary grains. Astronomy and Astrophysics, 99, 1–6.
[42] Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., & Gounelle, M. (2010). COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS. The Astrophysical Journal, 713(2), 816. https://doi.org/10.1088/0004-637X/713/2/816
[43] Page, B., Bale, S. D., Bonnell, J. W., Goetz, K., Goodrich, K., Harvey, P. R., Larsen, R., MacDowall, R. J., Malaspina, D. M., Pokorný, P., Pulupa, M., & Szalay, J. R. (2020). Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument. The Astrophysical Journal Supplement Series, 246(2), 51. https://doi.org/10.3847/1538-4365/ab5f6a
[44] Pantellini, F., Belheouane, S., Meyer-Vernet, N., & Zaslavsky, A. (2012). Nano dust impacts on spacecraft and boom antenna charging. Astrophysics and Space Science, 341(2), 309–314. https://doi.org/10.1007/s10509-012-1108-4
[45] Russell, H. N. (1929). On Meteoric Matter Near the Stars. The Astrophysical Journal, 69, 49.
[46] Shen, M. M., Sternovsky, Z., Horányi, M., Hsu, H., & Malaspina, D. M. (2021). Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft. Journal of Geophysical Research: Space Physics, 126(4). https://doi.org/10.1029/2020JA028965
[47] Shen, M. M., Sternovsky, Z., & Malaspina, D. M. (2023). Variability of Antenna Signals From Dust Impacts. Journal of Geophysical Research: Space Physics, 128(4), e2022JA030981. https://doi.org/10.1029/2022JA030981
[48] Stenborg, G., & Howard, R. A. (2017). The Evolution of the Surface of Symmetry of the Interplanetary Dust from 24° to 5° Elongation. The Astrophysical Journal, 848(1), 57. https://doi.org/10.3847/1538-4357/aa8ef0
[49] Stenborg, G., Howard, R. A., Hess, P., & Gallagher, B. (2021). PSP/WISPR observations of dust density depletion near the Sun—I. Remote observations to 8 R⊙ from an observer between 0.13 and 0.35 AU. Astronomy & Astrophysics, 650, A28. https://doi.org/10.1051/0004-6361/202039284
[50] Stenborg, G., Howard, R. A., & Stauffer, J. R. (2018). Characterization of the White-light Brightness of the F-corona between 5° and 24° Elongation. The Astrophysical Journal, 862(2), 168. https://doi.org/10.3847/1538-4357/aacea3
[51] Stenborg, G., Howard, R. A., Vourlidas, A., & Gallagher, B. (2022). PSP/WISPR Observations of Dust Density Depletion near the Sun. II. New Insights from within the Depletion Zone. The Astrophysical Journal, 932(2), 75. https://doi.org/10.3847/1538-4357/ac6b36
[52] Sykes, M. V., & Greenberg, R. (1986). The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids. Icarus, 65(1), 51–69. https://doi.org/10.1016/0019-1035(86)90063-1
[53] Szalay, J. R., Pokorný, P., Bale, S. D., Christian, E. R., Goetz, K., Goodrich, K., Hill, M. E., Kuchner, M., Larsen, R., Malaspina, D., McComas, D. J., Mitchell, D., Page, B., & Schwadron, N. (2020). The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe. The Astrophysical Journal Supplement Series, 246(2), 27. https://doi.org/10.3847/1538-4365/ab50c1
[54] Szalay, J. R., Pokorný, P., & Horányi, M. (2020). Hyperbolic Meteoroids Impacting the Moon. The Astrophysical Journal Letters, 890(1), L11. https://doi.org/10.3847/2041-8213/ab7195
[55] Szalay, J. R., Pokorný, P., Malaspina, D. M., Pusack, A., Bale, S. D., Battams, K., Gasque, L. C., Goetz, K., Krüger, H., McComas, D. J., Schwadron, N. A., & Strub, P. (2021). Collisional Evolution of the Inner Zodiacal Cloud. The Planetary Science Journal, 2(5), 185. https://doi.org/10.3847/PSJ/abf928
[56] Wehry, A., Krüger, H., & Grün, E. (2004). Analysis of Ulysses data: Radiation pressure effects on dust particles. Astronomy & Astrophysics, 419(3), Article 3. https://doi.org/10.1051/0004-6361:20035613
[57] Wehry, A., & Mann, I. (1999). Identification of beta -meteoroids from measurements of the dust detector onboard the ULYSSES spacecraft. Astronomy and Astrophysics, v.341, p.296-303 (1999), 341, 296.
[58] Wilck, M., & Mann, I. (1996). Radiation pressure forces on “typical” interplanetary dust grains. Planetary and Space Science, 44(5), 493–499. https://doi.org/10.1016/0032-0633(95)00151-4
[59] Wyatt, S. P., & Whipple, F. L. (1950). The Poynting-Robertson effect on meteor orbits. The Astrophysical Journal, 111, 134. https://doi.org/10.1086/145244
[60] Ye, S. ‐Y., Vaverka, J., Nouzak, L., Sternovsky, Z., Zaslavsky, A., Pavlu, J., Mann, I., Hsu, H. ‐W., Averkamp, T. F., Sulaiman, A. H., Pisa, D., Hospodarsky, G. B., Kurth, W. S., & Horanyi, M. (2019). Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 46(20), 10941–10950. https://doi.org/10.1029/2019GL084150
[61] Zaslavsky, A., Mann, I., Soucek, J., Czechowski, A., Píša, D., Vaverka, J., Meyer-Vernet, N., Maksimovic, M., Lorfèvre, E., Issautier, K., Babic, K. R., Bale, S. D., Morooka, M., Vecchio, A., Chust, T., Khotyaintsev, Y., Krasnoselskikh, V., Kretzschmar, M., Plettemeier, D., … Vaivads, A. (2021). First dust measurements with the Solar Orbiter Radio and Plasma Wave instrument. Astronomy & Astrophysics, 656, A30. https://doi.org/10.1051/0004-6361/202140969
[62] Zook, H. A. (1975). Hyperbolic cosmic dust: Its origin and its astrophysical significance. Planetary and Space Science, 23(10), 1391–1397. https://doi.org/10.1016/0032-0633(75)90034-3
[63] Zook, H. A., & Berg, O. E. (1975). A source for hyperbolic cosmic dust particles. Planetary and Space Science, 23(1), 183–203. https://doi.org/10.1016/0032-0633(75)90078-1
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2023-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明