博碩士論文 108322034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.137.198.37
姓名 黃清修(Qing-Xiu Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 邊界條件對不同斜交角之岩坡崩塌行為影響
(Influence of Boundary Conditions on Collapse Behavior of Rock Slopes with Different Oblique Angles)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 岩體因微觀組構優選方位或不連續面在力學、水力傳導等性質受方向所控制,稱之為岩體之異向性(anisotropy)。順向坡(dip slope)與逆向坡(anti-dip slope)穩定性分析中,常以極限平衡法或二維數值方法,忽略坡面走向邊界之邊界效應(end effect)進行二向度分析,然而斜交坡(oblique slope)穩定性分析實屬三維問題,坡面走向之邊界條件將顯著影響岩坡崩塌行為。
本文利用PFC3D生成BPM配合DFN建構具有一組不連續面之合成岩坡模型,探討在不同邊界條件下,不同斜交角(|α_j-α_s |)之岩坡崩塌行為。本文以坡高50公尺,坡角60˚,坡長200公尺之三維岩坡模型為例,採用的邊界條件包括:fixed、periodic、roller及free並給定不同的斜交角(0˚、10˚、15˚、20˚),透過數值模擬的結果,探討各種變因下岩坡之崩塌過程,並透過波及範圍、位移方向及崩塌能量等量化指標描述岩坡崩塌規模,藉由模擬結果統整如何降低邊界效應,並決定臨界斜交角,以及歸納各邊界條件的適用情境。
數值分析結果顯示:(1)PFC3D可合理地模擬岩坡於不同斜交角及邊界條件下之崩塌行為,崩塌過程中會出現幾個巨觀滑動面(failure surface),初始的滑動面於坡頂附近產生,深度較淺,後繼的滑動面逐漸遠離坡頂,深度較深,形成漸進式破壞(progressive failure),先前掉落的崩塌體堆積於坡趾附近,使得坡度變緩,後方不連續面不再見光,岩坡逐漸趨於穩定。(2)PFC3D模型係由不同大小的球顆粒組成,為了合理地反映球顆粒尺寸的影響,在處理球顆粒位移向量的數據時,本文提出重量加權位移法(weighted displacement),將每一顆粒的位移向量乘以該球顆粒的重量加總,再除以所有顆粒總重量。重量加權位移法可有效降低微小位移(trivial displacement)及微小球顆粒之影響,可更合理地呈現岩坡整體位移狀況。本文以重量加權位移法為基礎,探討不同斜交角下崩塌體之水平位移方向(δ)。分析結果表明,崩塌體之位移和向量方向皆介於坡面傾向α_s與不連續面傾向α_j之間,且與坡面傾向α_s較為一致。此外,若將每一顆粒的位移垂直分量乘以該球顆粒的重量加總,即為崩塌能量。(3)本文將不同斜交角及不同邊界條件下之岩坡模型分段(left, middle, right,長度比為1:2:1),數據表明,不同斜交角岩坡中段,其位移方向、崩塌能量、崩塌體積等崩塌行為均相當接近且與週期性邊界的崩塌行為接近。可印證透過去除左、右分段,保留中段可降低邊界效應的影響。此外,週期性邊界受邊界效應的影響最小,是最適合用於探討斜交角對岩坡崩塌行為影響的邊界條件。(4)隨著斜交角的增加,崩塌體積及崩塌能量亦急遽下降,當岩坡趨於穩定(或只有零星崩塌量體)所對應的斜交角本文稱為臨界斜交角(critical oblique angle)。以岩坡於週期性邊界為例,其臨界斜交角為20˚,此結果與一般工程經驗或技術規範相符。(5)週期性邊界可有效降低邊界效應、球顆粒數及運算時間,提供一個適合模擬無限邊坡(infinite slope)行為的方法。當坡長比L/H>6時,可視為無限邊坡,邊界效應的影響已不明顯,但球顆粒數會過多,造成運算時程過長,建議採用週期性邊界條件,以週期性地延伸模型,提升運算效率。當坡長比L/H≦6時,可視為有限邊坡(finite slope),根據現場岩坡兩側面(side surface)完全無支撐、有擋土牆且牆面粗糙及有擋土牆且牆面光滑的情境,分別對應free、fixed、roller三種邊界條件。
摘要(英) The properties of rock mass such as mechanical behavior and hydraulic conductivity are controlled by the direction because of the orientation of discontinuities. In the stability analyses of the dip slope and the anti-dip slope, the limit equilibrium method and two-dimensional numerical methods ignoring the end effect of the slope strike boundary are often used. However, the stability analyses of oblique slope are three-dimensional problems. The boundary condition of the slope strike plays an important role of the collapse behavior of the rock slope.
PFC3D is adopted in this study to generate BPM and DFN to be a synthetic rock slope model with a set of discontinuity. Resreach the collapse behavior of rock slope with different |α_j-α_s | by using different boundary conditions. This study takes a 3D slope model with slope height 50 meters, slope angle 60°, and slope length 200 meters as an example. The boundary conditions used include fixed, periodic, roller, and free, and different |α_j-α_s | are 0˚、10˚、15˚、20˚. Based on the results of numerical simulation, we can discuss the collapse process of rock slopes in different variables, and describe the collapse behavior of rock slope by using quantitative indicators such as the impact area, the direction of displacement, and the energy release of landslide. Base on the results, introduce how to reduce the end effect, determine the critical oblique angle, and summarize the applicable scenarios of each boundary condition.
Numerical analysis results show that:(1) PFC3D can reasonably simulate the collapse behavior of rock slopes at different |α_j-α_s |. There will be several macroscopic failure surfaces in the process. The progressive failure happens with the initial failure surface generating near the top of the slope, and the depth of the failure surface is relatively shallow. The subsequent failure surface gradually retrogresses from the top of the slope, and the failure surface is deeper. (2) The synthetic rock slope model is composed of particles of different radius. When dealing with the data of the particle displacement vector, this study proposes the weighted displacement method in order to reasonably reflect the influence of the size of particles. The displacement vector of each particle is multiplied by the weight of the particle and divided by the sum weight of particles. The weighted displacement method can effectively reduce the influence of trivial displacement and tiny particles, and can more reasonably present the overall displacement of rock slopes. Based on the weighted displacement method, this study discusses the horizontal displacement direction of the collapsed body in at different |α_j-α_s |. The results show that the horizontal displacement direction of the collapsed body in each boundary condition is between α_s and α_j, and is relatively consistent with α_s. Besides, the energy release of landslide is sum of the vertical displacement multiplied by the weight of the particles. (3) In this study, the rock slope model at different |α_j-α_s | and in each boundary condition is segmented to left, middle, right, and the length ratio is 1:2:1. The serults show that the collapse behavior such as direction ofdisplacement, energy release of landslide, and collapse volume are quite close to those of periodic boundary condition. It can be confirmed that the influence of end effect can be reduced by removing the left and right segments. In addition, periodic boundary conditions are effected by the minimal end effect, and are the most suitable boundary conditions to research the collapse behavior of rock slope at different oblique angles. (4) As |α_j-α_s | increases, the collapse volume and the energy release of landslide are also decreases sharply.In this study, |α_j-α_s | corresponding to when the rock slope tends to be stable (or only thimbleful collapse volume) is called critical oblique angle. Taking a rock slope in periodic boundary as an example, the critical oblique angle is 20°, which is consistent with general engineering experience or technical regulations. (5) Periodic boundary conditions can effectively reduce the end effect, the number of particles and the calculate time, and provide a method suitable for simulating the behavior of infinite slopes. When the slope length ratio L/H>6, it can be regarded as an infinite slope, but the number of particles will be too many, resulting in a long calculation time. It is recommended to use periodic boundary conditions to periodically extend the model to improve computing efficiency. When the slope length ratio L/H≦6, it can be regarded as a finite slope. According to the site, the side surface of the rock slope is completely unsupported, with a retaining wall and a rough wall, and with a retaining wall and a wall. The situation with a smooth surface corresponds to three boundary conditions: free, fixed, and roller.
關鍵字(中) ★ 邊界條件
★ 位移方向
★ 崩塌能量
★ 臨界斜交角
關鍵字(英) ★ boundary condition
★ direction of displacement
★ energy release of landslide
★ critical oblique angle
論文目次 摘要 i
Abstract iii
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xiv
符號說明 xvi
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法與目的 4
1.3 研究架構 5
第二章 文獻回顧 6
2.1 岩坡岩體評分 6
2.2 岩坡名詞定義 12
2.3 邊界條件 22
2.4 模型尺寸 29
2.5 合成岩體 34
第三章 合成岩坡模型建構 44
3.1 完整岩體擬合 46
3.2 邊界條件設定 51
3.3 岩坡模型建立 53
第四章 岩坡崩塌之模擬結果 59
4.1 崩塌過程 59
4.2 波及範圍 74
4.3 重量加權之位移方向 86
4.4 崩塌能量 93
4.5 邊界效應的降低 96
4.6 臨界斜交角的決定 106
4.7 邊界條件的適用情境 108
第五章 結論與建議 110
5.1 結論 110
5.2 建議 113
參考文獻 114
附錄A 崩塌過程 121
參考文獻 1. 內政部(1997),「建築技術規則 」。
2. 田永銘、黃致維、黃森暉、裴文彬,(2021)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期中進度報告,MOST 109-2221-E-008-015。
3. 任光正(2022),「裂隙岩體之基礎承載力異向性與變異性」,碩士論文,國立中央大學土木工程學系,中壢。
4. 行政院農委會(2010),「水土保持技術規範」。
5. 林邵儒(2019),「逆向斜交坡中不同節理組特性對楔形岩體變形及破壞機制影響之探討影響」,碩士論文,國立臺灣大學工學院土木工程學系,台北。
6. 林怡綾(2017),「弱面位態對岩坡穩定性之影響」,碩士論文,國立中興大學水土保持學系,台中。
7. 林煒僑(2002),「順向坡與斜交坡之降挖機制探討」,碩士論文,國立台灣科技大學營建工程系,台北。
8. 洪如江(2002),「順向坡之破壞與穩定」,地工技術,第94期,第5~18頁,。
9. 柯昱岑(2005),「用LiDAR高精度判釋順、逆向坡與斜交坡-以陳有蘭溪為例」,碩士論文,國立成功大學地球科學研究所,台南。
10. 黃宥傑,蘇仁偉,蘇芳郁,王泰典,鄭富書(2021),「板岩邊坡穩定受不連續面影響探討-以田古爾溪口附近為例」,第 18 屆大地工程學術研究討論會論文集,屏東。
11. 黃致維(2020),「利用合成岩體模擬橫向等向性岩體之基礎承載力」,碩士論文,國立中央大學土木工程學系,中壢。
12. 黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。
13. 劉家豪(2019),「橫向等向性合成岩體之力學行為及其變異性」,碩士論文,國立中央大學土木工程學系,中壢。
14. 潘國樑(2007),「工程地質學導論」,科技圖書,第300頁。
15. 盧育辰(2009),「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程學系,中壢。
16. Arai, N., and Chigira, M. (2019) “Distribution of gravitational slope deformation and deep-seated landslides controlled by thrust faults in the Shimanto accretionary complex,” Engineering Geology, Vol. 260, No. 3, pp. 105236.
17. Azarafza, M., Akgün, H., Feizi-Derakhshi, M.-R., Azarafza, M., Jafar, R., and Derakhshani, R. (2020) “Discontinuous rock slope stability analysis under blocky structural sliding by fuzzy key-block analysis method,” Heliyon, Vol. 6, No. 5, e03907.
18. Basahel, H., and Mitri, H. (2019) “Probabilistic assessment of rock slopes stability using the response surface approach – a case study,” International Journal of Mining Science and Technology, Vol. 29, No. 3, pp. 357–370.
19. Břežný, M., and Pánek, T. (2017) “Deep-seated landslides affecting monoclinal flysch morphostructure: Evaluation of lidar-derived topography of the highest range of the Czech carpathians,” Geomorphology, Vol. 285, No. 15, pp. 44–57.
20. Brideau, M. A., and Stead, D. (2012) “Evaluating kinematic controls on planar translational slope failure mechanisms using three-dimensional distinct element modelling,” Geotechnical and Geological Engineering, Vol. 30, No. 4, pp. 991-1011.
21. Brown, E.T. (1981a) “In Rock Characterization Testing and monitoring: ISRM suggested methods,” Oxford, UK, pp. 211.
22. Bieniawski, Z.T. (1979) “The Geomechanics Classification in Rock Engineering Application,” Proceeding 4th International Congress on Rock Mechanics, Montreux, pp. 41-48.
23. Bieniawski, Z.T. (1984) “The design process in Rock Engineering,” Rock Mechanics and Rock Engineering, Vol. 17, No. 3, pp. 183–190.
24. Chen, C.-H., Ke, C.-C., and Wang, C.-L. (2009) “A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan,” Environmental Geology, Vol. 57, No. 4, pp. 723-733.
25. Chugh, A.K. (2003) “On the boundary conditions in slope stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, No. 11, pp. 905–926.
26. Cundall, P. A., and Strack, O. D. (1979) “A discrete numerical model for granular assemblies,” Géotechnique, Vol. 29, No. 1, pp. 47-65.
27. Damjanac, B., and Cundall, P.A. (2016) “Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs,” Computers and Geotechnics, Vol. 71, pp. 283-294.
28. Deere, D.U., and Miller, R.P. (1966) “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report, No. AFNL-TR-65-116, Albuquerque, NM.
29. Dershowitz, W. and Herda, H. (1992) “Interpretation of fracture spacing and intensity,” in JR Tillerson and Wawersik, Proceedings of the 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, pp. 757–766.
30. Domej, G., Bourdeau, C., Lenti L., Martino, S., and Pluta, K. (2020) “Shape and Dimension Estimations of Landslide Rupture Zones via Correlations of Characteristic Parameters,” Geosciences, Vol. 10, No. 5, pp.198.
31. Eberhardt, E., Stead, D., and Coggan, J.S. (2004) “Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 1, pp. 69-87.
32. Einstein, H.H., and Baecher, G.B. (1983) “Probabilistic and statistical methods in engineering geology,” Rock Mechanics and Rock Engineering, Vol. 16, No. 1, pp. 39-72.
33. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010) “Estimating geometrical and mechanical rev based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 6, pp. 915–926.
34. Evans, S.G., Couture, R., Locat, J., Hadjigeorgiou, J., Antoine, P., and Brugnot, G. (1997) “Two complex cataclinal slope failures in Paleozoic limestones,” Proceedings of the 50th Geotechnical Conference, Alberta, Canada. pp. 102-109.
35. Furuki, H., and Chigira, M. (2019) “Structural features and the evolutionary mechanisms of the basal shear zone of a rockslide,” Environmental Geology, Vol. 260, No. 3, pp. 105214.
36. Gharti, H.N., Komatitsch, D., Oye, V., Martin, R., and Tromp J. (2012) “Application of an elastoplastic spectral-element method to 3D slope stability analysis,” International Journal for Numerical Methods in Engineering, Vol. 91, No. 1, pp. 1–26.
37. Gischig, V.S., Eberhardt, E., Moore, J.R., and Hungr, O. (2015) “On the seismic response of deep-seated rock slope instabilities—insights from numerical modeling,” Engineering Geology, Vol. 193, No. 2, pp. 1–18.
38. Goodman, R. E. (1989) Introduction to Rock Mechanics, 2nd edn, John Wiley, Chichester, pp. 562.
39. Goricki, A., Goodman., R.E. (2003) “Failure Modes of Rock Slopes Demonstrated with Base Friction and Simple Numerical Models,” FELSBAU, Vol. 21, No. 2, pp. 25-30.
40. Griffiths, D.V., and Marquez, R.M. (2007) “Three-dimensional slope stability analysis by elasto-plastic finite elements,” Géotechnique, Vol. 57, No. 6, pp. 537–546.
41. Heim, A. (1989) “Landslides & human lives: bergsturz und menschenleben,” BiTech Publishers Ltd.
42. Hoek, E., and Brown E.T. (1997) “Practical Estimates of Rock Mass Strength,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 8, pp. 171-180.
43. Hu, L., Takahashi, A., and Kasama, K. (2022) “Effect of spatial variability on stability and failure mechanisms of 3D slope using random limit equilibrium method,"Soils and Foundations, Vol. 62, No. 6, pp. 101225.
44. Hungr, O., Corominas, J., and Eberhardt, E. (2005) “Estimating landslide motion mechanism, travel distance and velocity,” Landslide Risk Management,Vancouver, B.C., pp. 99-128.
45. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
46. Kojima, S., Nagata, H., Yamashiroya, S.-I., Iwamoto, N., and Ohtani, T. (2015) “Large deep-seated landslides controlled by geologic structures: Prehistoric and modern examples in a jurassic subduction–accretion complex on the Kii Peninsula, Central Japan,” Engineering Geology, Vol. 186, No. 24, pp. 44–56.
47. Kulatilake, P.H.S.W., Malama, B., and Wang, J. (2001) “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 5, pp. 641–657.
48. Kumsar, H., Aydan, Ö., and Ulusay, R. (2000) “Dynamic and static stability assessment of rock slopes against Wedge Failures,” Rock Mechanics and Rock Engineering, Vol. 33, No. 1, pp. 31–51.
49. Li, L.-C., Tang, C.-A., Zhu, W.-C., and Liang, Z.-Z. (2009) “Numerical analysis of slope stability based on the gravity increase method,” Computers and Geotechnics, Vol. 36, No. 7, pp. 1246-1258.
50. Lo, C.-M., and Feng, Z.-Y. (2014) “Deformation characteristics of slate slopes associated with morphology and creep,” Engineering Geology, Vol. 178, No. 21, pp. 132–154.
51. Lo, C.-M., and Weng, M.-C. (2016) “Identification of deformation and failure characteristics in cataclinal slopes using physical modeling,” Landslides, Vol. 14, No. 2, pp. 499–515.
52. Locat, A., Leroueil, S., Bernander, S., Demers, D., Jostad, H.P., and Ouehb, L. (2011) “Progressive failures in eastern Canadian and Scandinavian sensitive clays,” Canadian Geotechnical Journal, Vol. 48, No. 11, pp. 1696–1712.
53. Lorig, L. J., Hart R.D., and Cundall, P.A. (2016) “Slope Stability Analysis of Jointed Rock Using Distinct Element Method,” Engineering Geology.
54. Lu, Y.C., Tien, Y.M. and Juang, C.H. (2017) “Uncertainty of 1-D fracture intensity measurements,” Journal of Geophysical Research: Solid Earth, Vol. 122, No. 11, pp. 9344–9358.
55. Mas Ivars, D., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011) “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 2, pp. 219-244.
56. Mas Ivars, D., Pierce, M., Gagne, D., and Darcel, C. (2008) “Anisotropy and scale dependency in jointed rock mass strength-a synthetic rock mass study,” Proceedings of the First International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239.
57. Mreyen, A.S., Donati, D., Elmo, D., Donze, F.V., and Havenith, H.-B. (2022) “Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method: Insights from the balta rockslide (Romania)”, Engineering Geology, Vol. 307, No. 20, pp. 106774.
58. Nian, T.K., Huang, R.Q, Wan, S.S., and Chen G.O. (2012) “Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects,” Canadian Geotechnical Journal, Vol. 49, No. 5, pp. 574–588.
59. Park, E.S., Martin, C.D., and Christiansson, R. (2004) “Simulation of the mechanical behavior of discontinuous rock masses using a bonded-particle model,” Proceedings of the 6th North American rock mechanics symposium, Houston, USA, ARMA 04–480.
60. Paronuzzi, P., Bolla, A., Pinto, D., Lenaz, D., and Soccal, M. (2021) “The clays involved in the 1963 vajont landslide: Genesis and Geomechanical Implications,” Engineering Geology, Vol. 294, No. 5, pp. 106376.
61. Pierce, M., Mas Ivars, D., and Sainsbury, B. (2009) “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA.
62. Potyondy, D.O., and Cundall, P.A. (2004) “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 8, pp. 1329-1364.
63. Romana M. (1985) “New adjustment ratings for application of Bieniawski classification to slopes,” Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, Zacatecas, pp. 49-53.
64. Romana M. (1993) “A geomechanical classification for slopes: Slope Mass Rating,” Comprehensive Rock Engineering, JA Hudson, ed. Oxford: Pergamon Press.
65. Romer, C., and Ferentinou, M. (2019) “Numerical investigations of Rock Bridge effect on open pit slope stability,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 11, No. 6, pp. 1184–1200.
66. Sainsbury, D., and Sainsbury, B.A. (2013) “Three-dimensional analysis of pit slope stability in anisotropic rock masses,” Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 683-695.
67. Scholtès, L., and Donzé, F.V. (2015) “A DEM analysis of step-path failure in jointed rock slopes,” Comptes Rendus Mécanique, Vol. 343, No. 2, pp. 155–165.
68. Scholtès, L., and Donzé, F.V. (2012) “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 52, pp. 18-30.
69. Shen, J., and Karakus, M. (2014) “Three-dimensional numerical analysis for rock slope stability using shear strength reduction method,” Canadian Geotechnical Journal, Vol. 51, No. 2, pp. 164–172.
70. Snohomish County (2015): The definition of landslide hazard area.
71. Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S. (2016) “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method,” Géotechnique, Vol. 66, No. 3, pp. 248-273.
72. Stead, D., and Wolter, A. (2015) “A critical review of rock slope failure mechanisms: The importance of structural geology,” Journal of Structural Geology, Vol.74, pp. 1–23.
73. Stead, D., Eberhardt, E., and Coggan, J.S. (2006) “Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques,” Engineering Geology, Vol. 83, No. 1-3, pp. 217–235.
74. Tian, W.K., Qi, L.H., Chao, X.J., Liang, J.H., and Fu, M.W. (2019) “Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm,” International Journal of Heat and Mass Transfer, Vol. 134, No. 16, pp. 735–751.
75. Tommasi, P., Pettinelli, E., Ribacchi, R., Campedel, P., Franceschini, A., and Veronese, L. (1999) “Instability phenomena on a high dip slope in layered limestones with marly–clayey interbeds (Lavini di Marco, Italy). IX International Congress on Rock Mechanics, Paris, 1, pp. 139–144.
76. Vazaios, I., Farahmand, K., Vlachopoulos, N., and Diederichs, M.S. (2018) “Effects of confinement on rock mass modulus: A synthetic rock mass (SRM) modelling study,” Journal of Rock Mechanics and Geotechnical Engineering, University of Queen, Kingston, Canada, Vol. 10, No. 3, pp. 436-456.
77. Vyazmensky, A., Stead, D., Elmo, D., and Moss, A. (2010) “Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach,” Rock Mechanics and Rock Engineering, Vol. 43, No. 1, pp. 21-39.
78. Wang, B., Vardon, P.J., and Hicks, M.A., (2016) “Investigation of retrogressive and progressive slope failure mechanisms using the material point method,” Computers and Geotechnics, Vol. 78, No. 3, pp. 88–98.
79. Wang, C., Tannant, D.D., and Lilly, P.A. (2003) “Numerical Analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 3, pp. 415–424.
80. Wang, J., Li, H.B., Jiang, Y.H., Tian, P.H., Cao, A.S., Long, Y.X., and Liu, X.T. (2023) “Slope monitoring optimization considering three-dimensional deformation and failure characteristics using the strength reduction method: A case study,” Scientific Reports, Vol. 13, No. 3, pp. 4049.
81. Wang, L., and Lei, Q. (2023) “Modelling the pre- and post-failure behaviour of faulted rock slopes based on the particle finite element method with a damage mechanics model,” Computers and Geotechnics, Vol. 153, pp. 105057.
82. Wei, W.B., Cheng, Y.M., and Li, L. (2009) “Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods,” Computers and Geotechnics, Vol. 36, No. 1-2, pp. 70–80.
83. Weng, M.-C., Chang, C.-Y., Jeng, F.-S., and Li, H.-H. (2020) “Evaluating the stability of anti-dip slate slope using an innovative failure criterion for foliation,” Engineering Geology, Vol. 275, No. 20, pp. 105737.
84. Wines, D. (2016) “A comparison of slope stability analyses in two and three dimensions,” Journal of the Southern African Institute of Mining and Metallurgy, Vol. 116, No. 5, pp. 399-406.
85. Wu, J.-H., Lin, W.-K., and Hu, H.-T. (2018) “Post-failure simulations of a large slope failure using 3DEC: The hsien-du-shan slope,” Engineering Geology, Vol. 242, No. 14, pp. 92–107.
86. Wyllie, D.C., and Mah, C.W. (2005) “Rock Slope Engineering (4th ed.),” Taylor & Francis e-Library, pp. 130-242.
87. Yeh, P.-T., Chen, I.-H., Lee, K.Z.-Z., Chang, K.-T. (2022) “Graphical comparison of numerical analysis, slope mass rating, and kinematic analysis for the effects of weak plane orientations on rock slope stability,” Engineering Geology, Vol. 311, pp. 106900.
88. Zhang, Y., Chen, G., Zheng, L., Li, Y., and Zhuang, X. (2013) “Effects of geometries on three-dimensional slope stability,” Canadian Geotechnical Journal, Vol. 50, No. 3, pp. 233–249.
89. Zhao, S., Chigira, M., and Wu, X. (2019) “Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau,” Geomorphology, Vol. 338, No. 1, pp. 27–42.
90. Zheng, Y., Chen, C., Liu, T. Xia, K., and Liu, X. (2018) “Stability analysis of rock slopes against sliding or flexural-toppling failure,” Bulletin of Engineering Geology and the Environment, Vol. 77, No. 1, pp. 1383-1403.
91. Zheng, Y., Chen, C., Liu, T., Zhang, H., Xia, K., and Liu, F. (2018) “Study on the mechanisms of flexural toppling failure in anti-inclined rock slopes using numerical and limit equilibrium models,” Engineering Geology, Vol. 237, pp. 116–128.
指導教授 田永銘(Yong-Ming Tien) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明