參考文獻 |
1. 內政部(1997),「建築技術規則 」。
2. 田永銘、黃致維、黃森暉、裴文彬,(2021)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期中進度報告,MOST 109-2221-E-008-015。
3. 任光正(2022),「裂隙岩體之基礎承載力異向性與變異性」,碩士論文,國立中央大學土木工程學系,中壢。
4. 行政院農委會(2010),「水土保持技術規範」。
5. 林邵儒(2019),「逆向斜交坡中不同節理組特性對楔形岩體變形及破壞機制影響之探討影響」,碩士論文,國立臺灣大學工學院土木工程學系,台北。
6. 林怡綾(2017),「弱面位態對岩坡穩定性之影響」,碩士論文,國立中興大學水土保持學系,台中。
7. 林煒僑(2002),「順向坡與斜交坡之降挖機制探討」,碩士論文,國立台灣科技大學營建工程系,台北。
8. 洪如江(2002),「順向坡之破壞與穩定」,地工技術,第94期,第5~18頁,。
9. 柯昱岑(2005),「用LiDAR高精度判釋順、逆向坡與斜交坡-以陳有蘭溪為例」,碩士論文,國立成功大學地球科學研究所,台南。
10. 黃宥傑,蘇仁偉,蘇芳郁,王泰典,鄭富書(2021),「板岩邊坡穩定受不連續面影響探討-以田古爾溪口附近為例」,第 18 屆大地工程學術研究討論會論文集,屏東。
11. 黃致維(2020),「利用合成岩體模擬橫向等向性岩體之基礎承載力」,碩士論文,國立中央大學土木工程學系,中壢。
12. 黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。
13. 劉家豪(2019),「橫向等向性合成岩體之力學行為及其變異性」,碩士論文,國立中央大學土木工程學系,中壢。
14. 潘國樑(2007),「工程地質學導論」,科技圖書,第300頁。
15. 盧育辰(2009),「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程學系,中壢。
16. Arai, N., and Chigira, M. (2019) “Distribution of gravitational slope deformation and deep-seated landslides controlled by thrust faults in the Shimanto accretionary complex,” Engineering Geology, Vol. 260, No. 3, pp. 105236.
17. Azarafza, M., Akgün, H., Feizi-Derakhshi, M.-R., Azarafza, M., Jafar, R., and Derakhshani, R. (2020) “Discontinuous rock slope stability analysis under blocky structural sliding by fuzzy key-block analysis method,” Heliyon, Vol. 6, No. 5, e03907.
18. Basahel, H., and Mitri, H. (2019) “Probabilistic assessment of rock slopes stability using the response surface approach – a case study,” International Journal of Mining Science and Technology, Vol. 29, No. 3, pp. 357–370.
19. Břežný, M., and Pánek, T. (2017) “Deep-seated landslides affecting monoclinal flysch morphostructure: Evaluation of lidar-derived topography of the highest range of the Czech carpathians,” Geomorphology, Vol. 285, No. 15, pp. 44–57.
20. Brideau, M. A., and Stead, D. (2012) “Evaluating kinematic controls on planar translational slope failure mechanisms using three-dimensional distinct element modelling,” Geotechnical and Geological Engineering, Vol. 30, No. 4, pp. 991-1011.
21. Brown, E.T. (1981a) “In Rock Characterization Testing and monitoring: ISRM suggested methods,” Oxford, UK, pp. 211.
22. Bieniawski, Z.T. (1979) “The Geomechanics Classification in Rock Engineering Application,” Proceeding 4th International Congress on Rock Mechanics, Montreux, pp. 41-48.
23. Bieniawski, Z.T. (1984) “The design process in Rock Engineering,” Rock Mechanics and Rock Engineering, Vol. 17, No. 3, pp. 183–190.
24. Chen, C.-H., Ke, C.-C., and Wang, C.-L. (2009) “A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan,” Environmental Geology, Vol. 57, No. 4, pp. 723-733.
25. Chugh, A.K. (2003) “On the boundary conditions in slope stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, No. 11, pp. 905–926.
26. Cundall, P. A., and Strack, O. D. (1979) “A discrete numerical model for granular assemblies,” Géotechnique, Vol. 29, No. 1, pp. 47-65.
27. Damjanac, B., and Cundall, P.A. (2016) “Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs,” Computers and Geotechnics, Vol. 71, pp. 283-294.
28. Deere, D.U., and Miller, R.P. (1966) “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report, No. AFNL-TR-65-116, Albuquerque, NM.
29. Dershowitz, W. and Herda, H. (1992) “Interpretation of fracture spacing and intensity,” in JR Tillerson and Wawersik, Proceedings of the 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, pp. 757–766.
30. Domej, G., Bourdeau, C., Lenti L., Martino, S., and Pluta, K. (2020) “Shape and Dimension Estimations of Landslide Rupture Zones via Correlations of Characteristic Parameters,” Geosciences, Vol. 10, No. 5, pp.198.
31. Eberhardt, E., Stead, D., and Coggan, J.S. (2004) “Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 1, pp. 69-87.
32. Einstein, H.H., and Baecher, G.B. (1983) “Probabilistic and statistical methods in engineering geology,” Rock Mechanics and Rock Engineering, Vol. 16, No. 1, pp. 39-72.
33. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010) “Estimating geometrical and mechanical rev based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 6, pp. 915–926.
34. Evans, S.G., Couture, R., Locat, J., Hadjigeorgiou, J., Antoine, P., and Brugnot, G. (1997) “Two complex cataclinal slope failures in Paleozoic limestones,” Proceedings of the 50th Geotechnical Conference, Alberta, Canada. pp. 102-109.
35. Furuki, H., and Chigira, M. (2019) “Structural features and the evolutionary mechanisms of the basal shear zone of a rockslide,” Environmental Geology, Vol. 260, No. 3, pp. 105214.
36. Gharti, H.N., Komatitsch, D., Oye, V., Martin, R., and Tromp J. (2012) “Application of an elastoplastic spectral-element method to 3D slope stability analysis,” International Journal for Numerical Methods in Engineering, Vol. 91, No. 1, pp. 1–26.
37. Gischig, V.S., Eberhardt, E., Moore, J.R., and Hungr, O. (2015) “On the seismic response of deep-seated rock slope instabilities—insights from numerical modeling,” Engineering Geology, Vol. 193, No. 2, pp. 1–18.
38. Goodman, R. E. (1989) Introduction to Rock Mechanics, 2nd edn, John Wiley, Chichester, pp. 562.
39. Goricki, A., Goodman., R.E. (2003) “Failure Modes of Rock Slopes Demonstrated with Base Friction and Simple Numerical Models,” FELSBAU, Vol. 21, No. 2, pp. 25-30.
40. Griffiths, D.V., and Marquez, R.M. (2007) “Three-dimensional slope stability analysis by elasto-plastic finite elements,” Géotechnique, Vol. 57, No. 6, pp. 537–546.
41. Heim, A. (1989) “Landslides & human lives: bergsturz und menschenleben,” BiTech Publishers Ltd.
42. Hoek, E., and Brown E.T. (1997) “Practical Estimates of Rock Mass Strength,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 8, pp. 171-180.
43. Hu, L., Takahashi, A., and Kasama, K. (2022) “Effect of spatial variability on stability and failure mechanisms of 3D slope using random limit equilibrium method,"Soils and Foundations, Vol. 62, No. 6, pp. 101225.
44. Hungr, O., Corominas, J., and Eberhardt, E. (2005) “Estimating landslide motion mechanism, travel distance and velocity,” Landslide Risk Management,Vancouver, B.C., pp. 99-128.
45. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
46. Kojima, S., Nagata, H., Yamashiroya, S.-I., Iwamoto, N., and Ohtani, T. (2015) “Large deep-seated landslides controlled by geologic structures: Prehistoric and modern examples in a jurassic subduction–accretion complex on the Kii Peninsula, Central Japan,” Engineering Geology, Vol. 186, No. 24, pp. 44–56.
47. Kulatilake, P.H.S.W., Malama, B., and Wang, J. (2001) “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 5, pp. 641–657.
48. Kumsar, H., Aydan, Ö., and Ulusay, R. (2000) “Dynamic and static stability assessment of rock slopes against Wedge Failures,” Rock Mechanics and Rock Engineering, Vol. 33, No. 1, pp. 31–51.
49. Li, L.-C., Tang, C.-A., Zhu, W.-C., and Liang, Z.-Z. (2009) “Numerical analysis of slope stability based on the gravity increase method,” Computers and Geotechnics, Vol. 36, No. 7, pp. 1246-1258.
50. Lo, C.-M., and Feng, Z.-Y. (2014) “Deformation characteristics of slate slopes associated with morphology and creep,” Engineering Geology, Vol. 178, No. 21, pp. 132–154.
51. Lo, C.-M., and Weng, M.-C. (2016) “Identification of deformation and failure characteristics in cataclinal slopes using physical modeling,” Landslides, Vol. 14, No. 2, pp. 499–515.
52. Locat, A., Leroueil, S., Bernander, S., Demers, D., Jostad, H.P., and Ouehb, L. (2011) “Progressive failures in eastern Canadian and Scandinavian sensitive clays,” Canadian Geotechnical Journal, Vol. 48, No. 11, pp. 1696–1712.
53. Lorig, L. J., Hart R.D., and Cundall, P.A. (2016) “Slope Stability Analysis of Jointed Rock Using Distinct Element Method,” Engineering Geology.
54. Lu, Y.C., Tien, Y.M. and Juang, C.H. (2017) “Uncertainty of 1-D fracture intensity measurements,” Journal of Geophysical Research: Solid Earth, Vol. 122, No. 11, pp. 9344–9358.
55. Mas Ivars, D., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011) “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 2, pp. 219-244.
56. Mas Ivars, D., Pierce, M., Gagne, D., and Darcel, C. (2008) “Anisotropy and scale dependency in jointed rock mass strength-a synthetic rock mass study,” Proceedings of the First International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239.
57. Mreyen, A.S., Donati, D., Elmo, D., Donze, F.V., and Havenith, H.-B. (2022) “Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method: Insights from the balta rockslide (Romania)”, Engineering Geology, Vol. 307, No. 20, pp. 106774.
58. Nian, T.K., Huang, R.Q, Wan, S.S., and Chen G.O. (2012) “Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects,” Canadian Geotechnical Journal, Vol. 49, No. 5, pp. 574–588.
59. Park, E.S., Martin, C.D., and Christiansson, R. (2004) “Simulation of the mechanical behavior of discontinuous rock masses using a bonded-particle model,” Proceedings of the 6th North American rock mechanics symposium, Houston, USA, ARMA 04–480.
60. Paronuzzi, P., Bolla, A., Pinto, D., Lenaz, D., and Soccal, M. (2021) “The clays involved in the 1963 vajont landslide: Genesis and Geomechanical Implications,” Engineering Geology, Vol. 294, No. 5, pp. 106376.
61. Pierce, M., Mas Ivars, D., and Sainsbury, B. (2009) “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA.
62. Potyondy, D.O., and Cundall, P.A. (2004) “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 8, pp. 1329-1364.
63. Romana M. (1985) “New adjustment ratings for application of Bieniawski classification to slopes,” Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, Zacatecas, pp. 49-53.
64. Romana M. (1993) “A geomechanical classification for slopes: Slope Mass Rating,” Comprehensive Rock Engineering, JA Hudson, ed. Oxford: Pergamon Press.
65. Romer, C., and Ferentinou, M. (2019) “Numerical investigations of Rock Bridge effect on open pit slope stability,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 11, No. 6, pp. 1184–1200.
66. Sainsbury, D., and Sainsbury, B.A. (2013) “Three-dimensional analysis of pit slope stability in anisotropic rock masses,” Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 683-695.
67. Scholtès, L., and Donzé, F.V. (2015) “A DEM analysis of step-path failure in jointed rock slopes,” Comptes Rendus Mécanique, Vol. 343, No. 2, pp. 155–165.
68. Scholtès, L., and Donzé, F.V. (2012) “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 52, pp. 18-30.
69. Shen, J., and Karakus, M. (2014) “Three-dimensional numerical analysis for rock slope stability using shear strength reduction method,” Canadian Geotechnical Journal, Vol. 51, No. 2, pp. 164–172.
70. Snohomish County (2015): The definition of landslide hazard area.
71. Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S. (2016) “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method,” Géotechnique, Vol. 66, No. 3, pp. 248-273.
72. Stead, D., and Wolter, A. (2015) “A critical review of rock slope failure mechanisms: The importance of structural geology,” Journal of Structural Geology, Vol.74, pp. 1–23.
73. Stead, D., Eberhardt, E., and Coggan, J.S. (2006) “Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques,” Engineering Geology, Vol. 83, No. 1-3, pp. 217–235.
74. Tian, W.K., Qi, L.H., Chao, X.J., Liang, J.H., and Fu, M.W. (2019) “Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm,” International Journal of Heat and Mass Transfer, Vol. 134, No. 16, pp. 735–751.
75. Tommasi, P., Pettinelli, E., Ribacchi, R., Campedel, P., Franceschini, A., and Veronese, L. (1999) “Instability phenomena on a high dip slope in layered limestones with marly–clayey interbeds (Lavini di Marco, Italy). IX International Congress on Rock Mechanics, Paris, 1, pp. 139–144.
76. Vazaios, I., Farahmand, K., Vlachopoulos, N., and Diederichs, M.S. (2018) “Effects of confinement on rock mass modulus: A synthetic rock mass (SRM) modelling study,” Journal of Rock Mechanics and Geotechnical Engineering, University of Queen, Kingston, Canada, Vol. 10, No. 3, pp. 436-456.
77. Vyazmensky, A., Stead, D., Elmo, D., and Moss, A. (2010) “Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach,” Rock Mechanics and Rock Engineering, Vol. 43, No. 1, pp. 21-39.
78. Wang, B., Vardon, P.J., and Hicks, M.A., (2016) “Investigation of retrogressive and progressive slope failure mechanisms using the material point method,” Computers and Geotechnics, Vol. 78, No. 3, pp. 88–98.
79. Wang, C., Tannant, D.D., and Lilly, P.A. (2003) “Numerical Analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 3, pp. 415–424.
80. Wang, J., Li, H.B., Jiang, Y.H., Tian, P.H., Cao, A.S., Long, Y.X., and Liu, X.T. (2023) “Slope monitoring optimization considering three-dimensional deformation and failure characteristics using the strength reduction method: A case study,” Scientific Reports, Vol. 13, No. 3, pp. 4049.
81. Wang, L., and Lei, Q. (2023) “Modelling the pre- and post-failure behaviour of faulted rock slopes based on the particle finite element method with a damage mechanics model,” Computers and Geotechnics, Vol. 153, pp. 105057.
82. Wei, W.B., Cheng, Y.M., and Li, L. (2009) “Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods,” Computers and Geotechnics, Vol. 36, No. 1-2, pp. 70–80.
83. Weng, M.-C., Chang, C.-Y., Jeng, F.-S., and Li, H.-H. (2020) “Evaluating the stability of anti-dip slate slope using an innovative failure criterion for foliation,” Engineering Geology, Vol. 275, No. 20, pp. 105737.
84. Wines, D. (2016) “A comparison of slope stability analyses in two and three dimensions,” Journal of the Southern African Institute of Mining and Metallurgy, Vol. 116, No. 5, pp. 399-406.
85. Wu, J.-H., Lin, W.-K., and Hu, H.-T. (2018) “Post-failure simulations of a large slope failure using 3DEC: The hsien-du-shan slope,” Engineering Geology, Vol. 242, No. 14, pp. 92–107.
86. Wyllie, D.C., and Mah, C.W. (2005) “Rock Slope Engineering (4th ed.),” Taylor & Francis e-Library, pp. 130-242.
87. Yeh, P.-T., Chen, I.-H., Lee, K.Z.-Z., Chang, K.-T. (2022) “Graphical comparison of numerical analysis, slope mass rating, and kinematic analysis for the effects of weak plane orientations on rock slope stability,” Engineering Geology, Vol. 311, pp. 106900.
88. Zhang, Y., Chen, G., Zheng, L., Li, Y., and Zhuang, X. (2013) “Effects of geometries on three-dimensional slope stability,” Canadian Geotechnical Journal, Vol. 50, No. 3, pp. 233–249.
89. Zhao, S., Chigira, M., and Wu, X. (2019) “Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau,” Geomorphology, Vol. 338, No. 1, pp. 27–42.
90. Zheng, Y., Chen, C., Liu, T. Xia, K., and Liu, X. (2018) “Stability analysis of rock slopes against sliding or flexural-toppling failure,” Bulletin of Engineering Geology and the Environment, Vol. 77, No. 1, pp. 1383-1403.
91. Zheng, Y., Chen, C., Liu, T., Zhang, H., Xia, K., and Liu, F. (2018) “Study on the mechanisms of flexural toppling failure in anti-inclined rock slopes using numerical and limit equilibrium models,” Engineering Geology, Vol. 237, pp. 116–128. |