博碩士論文 110426024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.138.181.90
姓名 陳宜薇(Yi-Wei Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 用於處理電子產品退貨的逆物流模型 -以巴西電商為例
(Designing a Reverse Logistics Model for Electronic Product Returns in Brazilian E-commerce)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球電子商務銷售正在迅速增長,隨著“大數據”背景下與新興技術和消費模式的興起,電子商務已成為電子垃圾回收的新趨勢。隨著對循環經濟的關注不斷提升,許多公司認為可持續發展逆向物流的閉環運營管理非常重要。巴西是拉丁美洲最大的電子廢物生產國,於一個電子廢物管理法規不完善的情況下,也缺乏研究領域的貢獻,關於電子商務公司的逆向物流網路設計文獻也存在著一些缺陷,像是沒有確定顧客市場、初始收集中心、退貨保留時間的最佳數量等。
為了改善現有文獻的研究缺陷,本實驗設計一個適當的逆物流網路,牢記退貨的類別和數量,以便正確收集和處置退貨,並通過基於一家從事消費電子產品的電子商務公司的案例進行驗證。實驗過程中,利用聚類分析的方法,將顧客市場分群,並選擇群的中心為初始收集中心預定位置。將使用退貨量、顧客市場與初始收集中心、營運中心及正規回收中心的位置、運輸成本及初始收集中心固定成本帶入數學模型,旨在最小化逆物流網絡的總成本。
最後,本實驗對相關參數進行了敏感性分析,驗證此逆物流模型於現實的實用性。並在改變日退貨數量、退貨商品在 ICC (The initial collection center) 中的保留時間以及 ICC 的數量的參數下,為總成本及各項成本要素的變化提供了管理的見解。
摘要(英) Global e-commerce sales are growing rapidly. With the background of "big data" and the rise of emerging technologies and consumption patterns, e-commerce has become a new trend in e-waste recycling. With increasing attention to the circular economy, many companies believe that the closed-loop operation management of sustainable reverse logistics is very important. Brazil is the largest e-waste producer in Latin America. In a situation where e-waste management regulations are not perfect, there is also a lack of contributions from the research field. There are also some shortcomings in the literature on reverse logistics network design for e-commerce companies, such as no Determine the optimal number of customer markets, initial collection centers, return hold times, etc.
To improve the research deficiencies of the existing literature, this experiment designs an appropriate reverse logistics network keeping in mind the categories and quantities of returned goods so that the returned goods can be collected and disposed correctly, and is verified by a case based on an e-commerce company engaged in consumer electronics. During the experiment, the customer market is grouped by cluster analysis method, and the center of the group is selected as the initial collection center to reserve the location. The amount of returned goods in use, the customer market and the initial collection center, the location of the operation center and the formal recycling center, the transportation cost and the fixed cost of the initial collection center are brought into the mathematical model to minimize the total cost of the reverse logistics network.
Finally, this experiment conducted a sensitivity analysis on the relevant parameters to verify the practicality of the inverse logistics model in practice. It also provides management insights into changes in the total cost and individual cost elements under the parameters of changing the number of returns per day, the retention time of returned items in the ICC (The initial collection centers), and the number of ICCs.
關鍵字(中) ★ 電商
★ 電子垃圾
★ 逆向物流模型設計
★ 機器學習
★ 聚類分析
★ 輪廓係數
關鍵字(英) ★ E-commerce
★ Waste electrical and electronic equipment
★ Reverse logistics model design
★ Machine learning
★ Cluster analysis
★ Silhouette coefficient
論文目次 中文摘要.......................................i
Abstract......................................ii
目錄...........................................iv
圖目錄.........................................vi
表目錄.........................................vii
第一章 緒論.....................................1
1-1 研究背景與動機...........................1
1-2 研究目的.................................2
1-3 研究流程與架構...........................2
第二章 文獻探討.................................5
2-1 電子垃圾現況及定義........................5
2-2 機器學習.................................7
2-3 聚類分析.................................8
2-4 封閉式供應鏈.............................10
第三章 研究方法.................................12
3-1 研究對象.................................12
3-2 問題描述.................................13
3-3 K-means.................................14
3-4 Silhouette coefficient method...........14
3-5 模型建構.................................16
3-5-1 情境假設...............................16
3-5-2 參數及決策變數設定......................17
3-5-3 逆物流模型.............................18
第四章 模型求解與敏感度分析.......................20
4-1 實驗工具及系統環境........................20
4-2 資料篩選.................................21
4-3 聚類分析.................................23
4-4 成本之最佳解..............................26
4-5 敏感度分析...............................29
4-5-1 每日退貨量的影響........................29
4-5-2庫存持有時間 (t) 變化的影響...............30
4-5-3 ICC數量變化的影響.......................32
第五章 結論與未來研究方向.........................34
5-1 結論.....................................34
5-2 未來研究方向..............................35
參考文獻.........................................36
中文文獻.........................................36
參考文獻 中文文獻
〔1〕Tang, R (2021),機器學習易混淆名詞/演算法比較,HackMD。
檢自2023年3月4日:
https://hackmd.io/@ritatang242/HJBneZORE#
〔2〕PyInvest (2020),[機器學習首部曲] 聚類分析 K-Means / K-
Medoids,PyInvest。
檢自2022年12月16日:
https://pyecontech.com/2020/05/19/k-means_k-medoids/
英文文獻
〔3〕Araujo, A., Matsuoka, E. M., Ung, J. E., & Massote, A.
A. (2017). An exploratory study on the returns
mnagement process in an online retailer. International
journal of logistics research and applications, 21(2),
1–18.
〔4〕Arora, P., deepali, & Varshney, S. (2016). Analysis of
K-Means and K-Medoids Algorithm for Big Data. Procedia
Computer Science, 78, 507–512.
〔5〕Alshamsi, A., & Diabat, A. (2015). A reverse logistics
network design. Journal of manufacturing systems,
37(3), 5–6.
〔6〕Alegion. (2019). Supervised vs. unsupervised learning:
How to choose the right approach and data labeling
technique for your ML project.
Retrieved on Mar 5, 2023 from:
https://www.google.com/url?client=internal-element-
cse&cx=004583753679575878546:yi7k-
mnfzgw&q=https://orgs.mines.edu/daa/wp- content/uploads/sites/38/2019/07/Supervised_vs_Unsupervised_Learning.pdf&sa=U&ved=2ahUKEwiP05b78e79AhXirlYBHUr_BtYQFnoECAgQAQ&usg=AOvVaw25m-X4NZaYOvrblAPBZNOn
〔7〕Balde, C.P., Kuehr, R., Blumenthal, K., Fondeur Gill,
S., Kern, M., Micheli, P., Magpantay, E., & Huisman, J.
(2015). E-waste statistics: Guidelines on
classifications, reporting and indicators. United
Nations University, IAS - SCYCLE, Bonn, Germany.
〔8〕Banerji, A. (2021). K-mean: getting the optimal number
of clusters. Analytics Vidhya.
Retrieved on Mar 15, 2023 from:
https://www.analyticsvidhya.com/blog/2021/05/k-mean-
getting-the-optimal-number-of-clusters/
〔9〕Bishop, C. M. (2006). Pattern recognition and machine
learning (Information science and statistics).
Springer-Verlag New York, Inc.
〔10〕Brynjolfsson, E., & McAfee, A. (2017). The business of
artificial intelligence. Harvard business review, 1–
20.
〔11〕Chavent, M., Simonet, V. K., Labenne, A., & Saracco,
J. (2020). ClustGeo: an R package for hierarchical
clustering with spatial constraints. Computational
Statistics, Springer -Verlag, In press, 33 (4), 1-24.
〔12〕Chevalier, S. (2022). Average shipping cost per
checkout for online purchases in Brazil from 2017 to
2019. Statista.
Retrieved on May 8, 2023 from:
https://www.statista.com/statistics/769924/e-commerce-
brazil-shipping-cost-checkout/
〔13〕Chopra, S., & Kalra, D. (2019). Supply chain
management: Strategy, planning and operation, Pearson
India Education Services Pvt. Ltd., 7, Noida, India.
〔14〕Cucchiella, F., Adamo, I., Koh , L., & Rosa, P.
(2015). Recycling of WEEEs: An economic assessment of
present and future e-waste streams. Renewable and
sustainable energy reviews, 51, 263-272.
〔15〕Das, D., Kumar, R., & Rajak, M. K. (2020). Designing a
reverse logistics network for an e-commerce firm: A
case study. Operations and supply chain management,
13(1), 48–63.
〔16〕Deak, L. (2022). Brazil Industrial Q1 2022. Cushman &
Wakefield.
〔17〕Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020).
The global e-waste monitor. U. N.Institute for
Training and Research.
Retrieved on Oct 10, 2022 from:
https://www.itu.int/hub/publication/d-gen-e_waste-01-
2020/
〔18〕Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning. The MIT Press.
〔19〕Janiesch, C., Zschech, P., & Heinrich, K. (2021).
Machine learning and deep learning. Electronic Markets
Volume, 31, 685–695.
〔20〕Jr, G., & Wassenhove, V. (2009). OR forum - the
evolution of closedloop supply chain research.
Operations Res, 57 (1), 10–18.
〔21〕Khor, K.S., & Udin, Z. M. (2012). Impact of reverse
logistics product disposition towards business
performance in Malaysian E&E companies. J. Supply
Chain Cust. Relatsh. Manag.
〔22〕Kilari, H., Edara, S., Yarra, G., & Gadhiraju, D. V.
(2022). Customer segmentation using k-means
clustering. Student, Department of computer science
engineering, GITAM University, Visakhapatnam, Andhra
Pradesh, India.
〔23〕Magalhães, F., Sonneveld, S., Woods, D., & Basso, R.
(n.d.). Six Strategies for Beating Brazil’s Supply
Chain Complexities. Boston Consulting Group.
Retrieved on May 8, 2023 from:
https://www.bcg.com/publications/2017/consumer-
products-six-strategies-beating-brazil-supply-chain-
complexities
〔24〕Mohammed, A., Zayed, T., & Dabous, S. A. (2018). A
clustering-based model for rating concrete bridges
using k-means technique. Canadian society for civil
engineering annual conference, Fredericton, NB,
Canada.
〔25〕Mohammed, J., Zschech, P., & Heinrich, K. (2021).
Machine learning and deep learning, 31(3), 685–695.
〔26〕Olist, Dabague , & magioli, F. (2021). Brazilian e-
commerce public dataset by Olist. Kaggle.
Retrieved on Nov 22, 2022 from:
https://www.kaggle.com/datasets/olistbr/brazilian-
ecommerce
〔27〕Ottoni, M., Dias, P., & Xavier, L. H. (2020). A
circular approach to the e-waste valorization through
urban mining in Rio de Janeiro, Brazil. Journal of
cleaner production, 261, 120–990.
〔28〕Qian, X.Y., Han, Y., Da, Q., & Stokes, P. (2012).
Reverse logistics network design model based on e-
commerce. International journal of organizational
analysis, 12 (2), 251-261.
〔29〕Rousseeuw, P. J. (1986). Silhouettes: a graphical aid
to the interpretation and validation of cluster
analysis. University of Fribourg, Fribourg,
Switzerland.
〔30〕Rudolph, S. (2016). E-commerce product return
statistics and trends, Business to Community.
Retrieved on Feb 22, 2022 from:
https://www.onlinesalesguidetip.com/e-commerce-
product-return-statistics-and-trends-infographic
〔31〕Santos, S. M., & Ogunseitan, O. A. (2022). E-waste
management in Brazil: Challenges and opportunities of
a reverse logistics model. Environmental technology &
innovation, 28(1), 102671.
〔32〕Shokouhyar, S., & Aalirezaei, A. (2016). Designing a
sustainable recovery network for waste from electrical
and electronic equipment using a genetic algorithm,
Int. J. Environ, Sustain, 60–79.
〔33〕Thinsungnoena, T., Kaoungkub, N., & Ongdumronchaib, P.
(2015). The clustering validity with silhouette and
sum of squared errors. International conference on
industrial application engineering, Kitakyushu,
Fukuoka, Japan.
〔34〕Yu, H., & Solvang, W. D. (2013). A reverse logistics
network design model for sustainable treatment of
multi-sourced waste of electrical and electronic
equipment (WEEE), 4th IEEE Int. Conf. Cogn.
Infocommunications, CogInfoCom, 595–600.
〔35〕Zaarour, N., Melachrinoudis, E., Solomon, M., & Min,
H. (2014). A Reverse Logistics Network Model for
Handling Returned Products. International Journal of
Engineering Business Management, 6(13).
〔36〕Zhang, X., Zou, B., Feng, Z., Wang, Y., & Yan, W.
(2022). A review on remanufacturing reverse rogistics
network design and model optimization. processes,
18(1), 84.
指導教授 陳振明(Zhen-Ming Chen) 審核日期 2023-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明