摘要(英) |
In recent years, Taiwan has been affected by extreme climate and changes in rainfall patterns, surface water sources are unstable and cannot be used for a long time, resulting in an imbalance between supply and demand for water resources. Some areas have to pump groundwater to make up for the lack of water demand. If groundwater is pumped for a long time, it will This leads to rapid decline or even depletion of groundwater sources.
This study focuses on two administrative districts in Kaohsiung, Meinong and Qishan, using a Numerical modeling of Groundwater (MODFLOW) to simulate groundwater behavior. The model was calibrated and evaluated using correlation coefficients (R2) and root mean square error (RMSE) as criteria. The validation results showed high correlation coefficients, all above 0.7, indicating a strong relationship. The root mean square error for Meinong is 1.344m, while the others range from 0.2-0.4m. This suggests that the groundwater flow model established in this study can represent groundwater variations effectively.
Groundwater resources have become a major source of water for Taiwan. As a result, this study is intended to explore changes in groundwater levels from 2020 to 2023. Analysis of the simulation results shows that the factors with the greatest impact on groundwater are precipitation and pumping volume. Furthermore, the pumping volume is lower during periods of rain and higher during periods without precipitation. According to the simulated groundwater level changes, comparing the period before May 2023 to the dry period in 2020, Meinong District, Jiyang District, and Zhongzhou District experienced a respective decrease of 2.59m, 3.12m, and 4.07m. This indicates that the groundwater level in 2023 is lower than that in 2020. |
參考文獻 |
1. Anan, M., Yuge, K., Nakano, Y., Saptomo, S., & Haraguchi, T. (2007), Quantification of the effect of rice paddy area changes on recharging groundwater. Paddy and Water Environment, 5, pp.41-47. DOI 10.1007/s10333-006-0059-1.
2. Boonstra, J., & de Ridder N.A. (1990), Numerical modelling of groundwater basins, International Institute for Land Reclamation and Improvement (ILRI), Wageningen.
3. Kirshen, P. H. (2002), Potential Impacts of Global Warming on Groundwater in Eastern Massachusetts. Journal of Water Resources Planning and Management, 128(3), pp.216–226. DOI 10.1061/(asce)0733- 9496(2002)128:3(216).
4. McDonald, M. G., & Harbaugh, A. W. (1988), A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U, S, Geological Survey, Virginia.
5. Sobeih, M. M., El-Arabi, N. E., Helal, E. E. D. Y., & Awad, B. S. (2017), Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Science, 31(2), pp.137-150. DOI 10.1016/j.wsj.2017.09.001.
6. Tung, C. P., & Haith, D. A. (1995), Global Warming Effects on New York Streamflows. Journal of Water Resources Planning and management, 121(2): 216-225.
7. 中央地質調查所(2002),屏東平原水文地質調查研究總報告。
8. 中央地質調查所(2020),屏東平原地理環境概述。
9. 水利規劃試驗所(2012),強化北部水資源分區因應氣候變遷水資源管理調適能力研究。
10. 王如意、易任(2001),應用水文學上冊,pp.230。
11. 吳偉競(2007),蘭陽平原整合模式下之 MODFLOW 地下水模擬研究, 碩士論文,國立中正大學地震研究所暨應用地球物理研究所。
12. 吳雪蘋(2000),濁水溪沖積扇地區地下水位變化之研究,碩士論文,國 立台灣大學地質學研究所。
13. 李心惟(2014),結合 HEC-RAS 與 MODFLOW 於濁水溪沖積扇地下水與 地層下陷模擬,碩士論文,國立成功大學資源工程學系。
14. 李品醇(2011),利用廢棄土地於屏東平原進行地下水補注之可行性研究, 碩士論文,國立屏東科技大學土木工程系所。
15. 林燕初(2014),地質知識服務網地質百科, https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?mp=105&ctNode=1233&xItem=146480。
16. 科技部(2020),區域地下水智慧管理模式及技術研發(4/4)。
17. 張良正(2012),臺灣地區地下水區水文地質調查及地下水資源評估地下水補注潛勢評估與地下水模式建置(4/4),經濟部中央地質調查所。
18. 許盈松、周湘俊、楊舒雲(2004),流量律定曲線分析方法評估研究-以濁水溪為例,農業工程學報第 50 卷第 4 期,pp.62-76。
19. 陳仁德(2007),地表變遷對地下水補注之影響,碩士論文,國立成功大學水利及海洋工程研究所。
20. 陳柏穎(2020),應用集水區耦合型模式於地下水抽水影響與敏感度之研究-以屏東平原為例,碩士論文,國立中興大學土木工程學系。
21. 陳耐錦、許世孟、李鳳梅(2011),台灣中段山區地下水動態行為之分析-以濁水溪流域及北港溪流域為例,第二十屆水利工程研討會。
22. 陳珞亞(2022),農業灌溉對地區地下水資源系統之影響評估,碩士論文,國立中央大學土木工程學系。
23. 陳豐文、劉振宇(2013),水收支平衡應用於水田灌溉用水消耗特性之評 估,農業工程學報,59 (1),P. 77-98。
24. 黃松勳(2020),水資源循環的挑戰與如何永續發展,DOI 10.6916/STPIRP.2020-3-18.0002。
25. 黃信恩(2001),屏東平原地下水人工補注水資源優化管理之研究-以林 邊溪流域為例,碩士論文,國立屏東科技大學土木工程系碩士班。
26. 楊偉甫(2015),循環永續水資源政策,土木水利第 42 卷第 3 期,pp.28-36。
27. 經濟部(2014),地下水補注地質敏感區畫定計畫書(G0002 屏東平原)。
28. 經濟部水利署(2020),水資源運用實況。
29. 潘文健(2002),屏東平原合適出水量分析之研究,碩士論文,國立成功大學資源工程學研究所。
30. 賴楷元(2009),應用河川水位掃瞄評估地下水補注量之研究,碩士論文, 國立成功大學資源工程學系碩博士班。 |