參考文獻 |
1. Zhang, Y., X. Zhao, X. Sun, W. Su, and Z. Xue, Bolt loosening detection based on audio classification. Advances in Structural Engineering, 2019. 22(13): p. 2882-2891. https://doi.org/10.1177/1369433219852565.
2. Yuan, R., Y. Lv, S. Xu, L. Li, Q. Kong, and G. Song, ResNet-integrated very early bolt looseness monitoring based on intrinsic feature extraction of percussion sounds. Smart Materials and Structures, 2023. 32(3): p. 034002. https://doi.org/10.1088/1361-665X/acb2a0.
3. Wang, F., X. Chen, and G. Song. Percussion-based Detection of Bolt Looseness Using Speech Recognition Technology and Least Square Support Vector Machine. in 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). 2020. IEEE. https://doi.org/10.1109/ICNSC48988.2020.9238108.
4. Wang, F. and G. Song, Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree. Structural Health Monitoring, 2020. 19(6): p. 2023-2032. https://doi.org/10.1177/1475921720912780.
5. Wang, F. and G. Song, 1D-TICapsNet: An audio signal processing algorithm for bolt early looseness detection. Structural Health Monitoring, 2020: p. 1475921720976989. https://doi.org/10.1177/1475921720976989.
6. Wang, F., A. Mobiny, H. Van Nguyen, and G. Song, If structure can exclaim: a novel robotic-assisted percussion method for spatial bolt-ball joint looseness detection. Structural Health Monitoring, 2021. 20(4): p. 1597-1608. https://doi.org/10.1177/1475921720923147.
7. Park, J., T. Kim, and J. Kim. Image-based bolt-loosening detection technique of bolt joint in steel bridges. in 6th International Conference on Advances in Experimental Structural Engineering 11th International Workshop on Advanced Smart Materials and Smart Structures Technology. 2015. http://sstl.cee.illinois.edu/papers/aeseancrisst15/219_Park_Image-Based.pdf.
8. Huang, J., J. Liu, H. Gong, and X. Deng, A comprehensive review of loosening detection methods for threaded fasteners. Mechanical Systems and Signal Processing, 2022. 168: p. 108652. https://doi.org/10.1016/j.ymssp.2021.108652.
9. Miao, R., R. Shen, S. Zhang, and S. Xue, A review of bolt tightening force measurement and loosening detection. Sensors, 2020. 20(11): p. 3165. https://doi.org/10.3390/s20113165.
10. Zhang, Y., X. Sun, K.J. Loh, W. Su, Z. Xue, and X. Zhao, Autonomous bolt loosening detection using deep learning. Structural Health Monitoring, 2020. 19(1): p. 105-122. https://doi.org/10.1177/1475921719837509.
11. Kong, X. and J. Li, Image registration-based bolt loosening detection of steel joints. Sensors, 2018. 18(4): p. 1000. https://doi.org/10.3390/s18041000.
12. Huynh, T.-C., J.-H. Park, H.-J. Jung, and J.-T. Kim, Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing. Automation in Construction, 2019. 105: p. 102844. https://doi.org/10.1016/j.autcon.2019.102844.
13. Pham, H.C., Q.-B. Ta, J.-T. Kim, D.-D. Ho, X.-L. Tran, and T.-C. Huynh, Bolt-loosening monitoring framework using an image-based deep learning and graphical model. Sensors, 2020. 20(12): p. 3382. https://doi.org/10.3390/s20123382.
14. Pan, X., S. Tavasoli, and T. Yang, Autonomous 3D vision‐based bolt loosening assessment using micro aerial vehicles. Computer‐Aided Civil and Infrastructure Engineering, 2023. https://doi.org/10.1111/mice.13023.
15. Eraliev, O., K.-H. Lee, and C.-H. Lee, Vibration-based loosening detection of a multi-bolt structure using machine learning algorithms. Sensors, 2022. 22(3): p. 1210. https://doi.org/10.3390/s22031210.
16. Nikravesh, S.M.Y. and M. Goudarzi, A review paper on looseness detection methods in bolted structures. Latin American Journal of Solids and Structures, 2017. 14: p. 2153-2176. https://doi.org/10.1590/1679-78254231.
17. Chen, D., L. Huo, and G. Song, EMI based multi-bolt looseness detection using series/parallel multi-sensing technique. Smart Struct. Syst, 2020. 25: p. 423-432. https://doi.org/10.12989/sss.2020.25.4.423.
18. Nguyen, T.-T., Q.-B. Ta, D.-D. Ho, J.-T. Kim, and T.-C. Huynh, A method for automated bolt-loosening monitoring and assessment using impedance technique and deep learning. Developments in the Built Environment, 2023. 14: p. 100122. https://doi.org/10.1016/j.dibe.2023.100122.
19. Li, X.-X., D. Li, W.-X. Ren, and J.-S. Zhang, Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network. Sensors, 2022. 22(18): p. 6825. https://doi.org/10.3390/s22186825.
20. Ying, T., D. Zhu, Y. Zou, Y. Huang, and P. Zhao. Design of restaurant intelligent seat-seeking system based on ESP32. in 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). 2023. IEEE. https://doi.org/10.1109/EEBDA56825.2023.10090804.
21. Abhinay, D., S.V. Vighnesh, L.K. Durgam, and R.K. Jatoth. Real-time Classification of Vehicle Logos on Arduino Nano BLE using Edge Impulse. in 2023 4th International Conference on Signal Processing and Communication (ICSPC). 2023. IEEE. https://doi.org/10.1109/ICSPC57692.2023.10126068.
22. Altayeb, M., M. Zennaro, and E. Pietrosemoli, TinyML Gamma Radiation Classifier. Nuclear Engineering and Technology, 2022. https://doi.org/10.1016/j.net.2022.09.032.
23. Luukkonen, T., A. Colley, T. Seppänen, and J. Häkkilä. Cough activated dynamic face visor. in Augmented Humans Conference 2021. 2021. https://doi.org/10.1145/3458709.3459000.
24. Ogore, M.M., K. Nkurikiyeyezu, and J. Nsenga. Offline Prediction of Cholera in Rural Communal Tap Waters Using Edge AI inference. in 2021 IEEE Globecom Workshops (GC Wkshps). 2021. IEEE. https://doi.org/10.1109/GCWkshps52748.2021.9682128.
25. Krayden, A., M. Schohet, O. Shmueli, D. Shlenkevitch, T. Blank, S. Stolyarova, and Y. Nemirovsky. CMOS-MEMS Gas Sensor Dubbed GMOS for Selective Analysis of Gases with Tiny Edge Machine Learning. in Presented at the 9th International Electronic Conference on Sensors and Applications. 2022. https://doi.org/10.3390/ecsa-9-13316.
26. Jailani, M.H.A., K.A. Mohamad, A. Alias, and M.S. Nordin, Development of Water Sound Analyzer for An Automatic Fertilizer System in Agriculture Industry. Evolution in Electrical and Electronic Engineering, 2022. 3(2): p. 351-359. https://penerbit.uthm.edu.my/periodicals/index.php/eeee/article/view/8581.
27. Stege, M., C. Orfanidis, and X. Fafoutis. Plantar Biometrics for Edge Computing. in BodySys@ MobiSys. 2022. https://doi.org/10.1145/3539489.3539589.
28. Ooko, S.O., D. Mukanyiligira, J.P. Munyampundu, and J. Nsenga. Edge AI-based respiratory disease recognition from exhaled breath signatures. in 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). 2021. IEEE. https://doi.org/10.1109/JEEIT53412.2021.9634140.
29. LeCun, Y., K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. in Proceedings of 2010 IEEE international symposium on circuits and systems. 2010. IEEE. https://doi.org/10.1109/ISCAS.2010.5537907.
30. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444. https://doi.org/10.1038/nature14539.
31. Kattenborn, T., J. Leitloff, F. Schiefer, and S. Hinz, Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS journal of photogrammetry and remote sensing, 2021. 173: p. 24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010.
32. Bharadiya, J., Convolutional Neural Networks for Image Classification. International Journal of Innovative Science and Research Technology, 2023. 8(5): p. 673-677. https://doi.org/10.5281/zenodo.7952031.
33. Park, E., CRNet: a multimodal deep convolutional neural network for customer revisit prediction. Journal of big Data, 2023. 10(1): p. 1-10. https://doi.org/10.1186/s40537-022-00674-4.
34. Dörfler, M., R. Bammer, and T. Grill. Inside the spectrogram: Convolutional Neural Networks in audio processing. in 2017 international conference on sampling theory and applications (SampTA). 2017. IEEE. https://doi.org/10.1109/SAMPTA.2017.8024472.
35. Kanke, R.G., R.M. Gaikwad, and M.R. Baheti, Enhanced Marathi Speech Recognition Using Double Delta MFCC and DTW. International Journal of Digital Technologies, 2023. 2(1). https://journal.nielit.edu.in/index.php/01/article/view/33.
36. Yee, C.S. and A.M. Ahmad. Malay language text-independent speaker verification using NN-MLP classifier with MFCC. in 2008 International Conference on Electronic Design. 2008. IEEE. https://doi.org/10.1109/ICED.2008.4786666.
37. Anabeza, C.C., G.B.S. Limt, M.L.P. Velasco, E. Svbingco, and D.D. Ligutan. DTW Threshold Determination for English Word Utterances in Filipino Accent using MFCC. in 2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM). 2023. IEEE. https://doi.org/10.1109/IMCOM56909.2023.10035607.
38. Mannar Mannan, J., Human Emotion Recognize Using Convolutional Neural Network (CNN) and Mel Frequency Cepstral Coefficient (MFCC). https://seyboldpublications.com/wp-content/uploads/2023/07/manJ41982.pdf.
39. Ramadevi, C., K. Anusha, and P. Thummeti, CNN and MFCC based Speech Net: Children Speech Recognition model. https://jcdronline.org/admin/Uploads/Files/63fc59a040bec0.68653996.pdf.
40. Nived, B.V., K. Jamal, G. Mahesh, and R.M. Kumar. Design of Custom Keyword Recognition using Edge Impulse on Arduino Nano 33 BLE Sense. in 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 2023. IEEE. https://doi.org/10.1109/ICAAIC56838.2023.10140757.
41. Muda, L., M. Begam, and I. Elamvazuthi, Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083, 2010. https://doi.org/10.48550/arXiv.1003.4083.
42. Xu, H., X. Zhang, and L. Jia. The extraction and simulation of Mel frequency cepstrum speech parameters. in 2012 International Conference on Systems and Informatics (ICSAI2012). 2012. IEEE. https://doi.org/10.1109/ICSAI.2012.6223385. |