參考文獻 |
[1] Kakirde, A. and Dravid, S., Study of Vibration Loosening of Bolted Joints-A Review. International Journal for Advance Research in Applied Science and Engineering, 2017, 6(Special): p. 988-997. https://www.iaetsdjaras.org/gallery/6-january-399.pdf.
[2] Wang, T., Song, G., Liu, S., Li, Y., and Xiao, H., Review of Bolted Connection Monitoring. International Journal of Distributed Sensor Networks, 2013, 9(12): p. 871213. https://doi.org/10.1155/2013/871213.
[3] Liu, X., Mi, X., Liu, J., Long, L., Cai, Z., Mo, J., Peng, J., and Zhu, M., Axial load distribution and self-loosening behavior of bolted joints subjected to torsional excitation. Engineering Failure Analysis, 2021, 119: p. 104985. https://doi.org/10.1016/j.engfailanal.2020.104985.
[4] Yokoyama, T., Olsson, M., Izumi, S., and Sakai, S., Investigation into the self-loosening behavior of bolted joint subjected to rotational loading. Engineering Failure Analysis, 2012, 23: p. 35-43. https://doi.org/10.1016/j.engfailanal.2012.01.010.
[5] Zhang, Y., Zhao, X., Sun, X., Su, W., and Xue, Z., Bolt loosening detection based on audio classification. Advances in Structural Engineering, 2019, 22(13): p. 2882-2891. https://doi.org/10.1177/1369433219852565.
[6] Yuan, C., Wang, S., Qi, Y., and Kong, Q., Automated structural bolt looseness detection using deep learning-based prediction model. Structural Control and Health Monitoring, 2022, 29(3): p. e2899. https://doi.org/10.1002/stc.2899.
[7] Wang, F. and Song, G., 1D-TICapsNet: An audio signal processing algorithm for bolt early looseness detection. Structural Health Monitoring, 2021, 20(5): p. 2828-2839. https://doi.org/10.1177/1475921720976989.
[8] Wang, F., Ho, S.C.M., and Song, G., Modeling and analysis of an impact-acoustic method for bolt looseness identification. Mechanical Systems and Signal Processing, 2019, 133: p. 106249. https://doi.org/10.1016/j.ymssp.2019.106249.
[9] Wu, J., Cui, X., and Xu, Y., A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring. Sensors, 2016, 16(2): p. 168. https://doi.org/10.3390/s16020168.
[10] Shao, J., Wang, T., Yin, H., Yang, D., and Li, Y., Bolt Looseness Detection Based on Piezoelectric Impedance Frequency Shift. Applied Sciences, 2016, 6(10): p. 298. https://doi.org/10.3390/app6100298.
[11] Wang, F., Chen, Z., and Song, G., Smart crawfish: A concept of underwater multi-bolt looseness identification using entropy-enhanced active sensing and ensemble learning. Mechanical Systems and Signal Processing, 2021, 149: p. 107186. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107186.
[12] Xing, Y. and Geng, H., Loose bolt detection method based on wavelet packet decomposition with CNN. Journal of Physics: Conference Series, 2023, 2419(1): p. 012038. https://doi.org/10.1088/1742-6596/2419/1/012038.
[13] Park, J.H., Kim, T.H., and Kim, J.T., Image-based Bolt-loosening Detection Technique of Bolt Joint in Steel Bridges. 6th International Conference on Advances in Experimental Structural Engineering 11th International Workshop on Advanced Smart Materials and Smart Structures Technology, 2015: p. 1-2. http://sstl.cee.illinois.edu/papers/aeseancrisst15/219_Park_Image-Based.pdf.
[14] Nguyen, T.-C., Huynh, T.-C., Ryu, J.-Y., Park, J.-H., and Kim, J.-T. Bolt-loosening identification of bolt connections by vision image-based technique. in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016. 2016. p. 227-243. https://doi.org/10.1117/12.2219055.
[15] Kong, X. and Li, J., Image Registration-Based Bolt Loosening Detection of Steel Joints. Sensors, 2018, 18(4): p. 1000. https://doi.org/10.3390/s18041000.
[16] Zhang, Y., Sun, X., Loh, K.J., Su, W., Xue, Z., and Zhao, X., Autonomous bolt loosening detection using deep learning. Structural Health Monitoring, 2020, 19(1): p. 105-122. https://doi.org/10.1177/1475921719837509.
[17] Sun, Y., Li, M., Dong, R., Chen, W., and Jiang, D., Vision-Based Detection of Bolt Loosening Using YOLOv5. Sensors, 2022, 22(14): p. 5184. https://doi.org/10.3390/s22145184.
[18] Pan, X. and Yang, T.Y., Image-based monitoring of bolt loosening through deep-learning-based integrated detection and tracking. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(10): p. 1207-1222. https://doi.org/10.1111/mice.12797.
[19] Jiang, S., Zhang, J., Wang, W., and Wang, Y., Automatic Inspection of Bridge Bolts Using Unmanned Aerial Vision and Adaptive Scale Unification-Based Deep Learning. Remote Sensing, 2023, 15(2): p. 328. https://doi.org/10.3390/rs15020328.
[20] Lao, W., Cui, C., Zhang, D., Zhang, Q., and Bao, Y., Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures. Structural Control and Health Monitoring, 2023, 2023: p. 8817058. https://doi.org/10.1155/2023/8817058.
[21] Lu, Q., Jing, Y., and Zhao, X., Bolt Loosening Detection Using Key-Point Detection Enhanced by Synthetic Datasets. Applied Sciences, 2023, 13(3): p. 2020. https://doi.org/10.3390/app13032020.
[22] Pan, X., Tavasoli, S., and Yang, T.Y., Autonomous 3D vision-based bolt loosening assessment using micro aerial vehicles. Computer-Aided Civil and Infrastructure Engineering, 2023. https://doi.org/10.1111/mice.13023.
[23] Sanchez-Iborra, R. and Skarmeta, A.F., TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits and Systems Magazine, 2020, 20(3): p. 4-18. https://doi.org/10.1109/MCAS.2020.3005467.
[24] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D., Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1989, 1(4): p. 541-551. https://doi.org/10.1162/neco.1989.1.4.541.
[25] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): p. 2278-2324. https://doi.org/10.1109/5.726791.
[26] Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): p. 84-90. https://doi.org/10.1145/3065386.
[27] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1-9. https://doi.org/10.48550/arXiv.1409.4842.
[28] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. pmlr, 2015. p. 448-456. https://doi.org/10.48550/arXiv.1502.03167.
[29] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2818-2826. https://doi.org/10.48550/arXiv.1512.00567.
[30] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. in Proceedings of the AAAI conference on artificial intelligence. 2017. p. https://doi.org/10.1609/aaai.v31i1.11231.
[31] Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. https://doi.org/10.48550/arXiv.1409.1556.
[32] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770-778. https://doi.org/10.48550/arXiv.1512.03385.
[33] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., and Keutzer, K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360, 2016. https://doi.org/10.48550/arXiv.1602.07360.
[34] Chollet, F. Xception: Deep learning with depthwise separable convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251-1258. https://doi.org/10.48550/arXiv.1610.02357.
[35] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017. https://doi.org/10.48550/arXiv.1704.04861.
[36] Zhang, X., Zhou, X., Lin, M., and Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv:1707.01083. 2017. https://doi.org/10.48550/arXiv.1707.01083.
[37] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640. 2015. https://doi.org/10.48550/arXiv.1506.02640.
[38] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv:1512.02325. 2015. https://doi.org/10.48550/arXiv.1512.02325.
[39] Edge Impulse, FOMO: Object detection for constrained devices. 2022. https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices.
[40] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv:1801.04381. 2018. https://doi.org/10.48550/arXiv.1801.04381.
[41] Wada, K., Labelme: Image Polygonal Annotation with Python (computer software). https://doi.org/10.5281/zenodo.5711226.
[42] Kingma, D.P. and Ba, J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980. 2014. https://doi.org/10.48550/arXiv.1412.6980. |