博碩士論文 110426030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.99.15
姓名 吳羿辰(Yi-Chen Wu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Locusbots系統之揀貨區域的AGV選取問題與派車問題研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來資訊科技迅速發展,再加上行動網絡的普及化,造成電子商務的盛行,因此市場需求逐漸轉變為「少量、多樣化」,市場需求的改變同時也提升了物流中心的作業難度,其中對於揀貨作業更甚明顯。根據 De Koster et al.(2007)的研究指出,目前大多數的物流中心仍屬於勞力密集的產業,揀貨作業不僅相當耗費成本,更是一種屬於勞力密集的活動,在物流中心裡與揀貨作業相關的人力佔了50%以上。為了因應「少量、多樣化」需求的時代來臨,適時地導入自動化設備並規劃一個合適的揀貨策略,將對物流中心的成本、產能以及效率有著決定性的影響。

由於類 Locusbots 系統可以任意增加或減少無人搬運車的數目,因此可以有效地解決訂單淡、旺季的問題。除此之外 Locusbots 可以利用動態路徑規劃,即時更新揀貨環境狀態,有效避開路上各種障礙物,並規劃最有利的揀貨路徑。同時在類 Locusbots 系統,揀貨員不必在物流中心裡四處走動,其只需固定待在揀貨區域裡,無人搬運車會載送訂單及揀貨箱至揀貨區域讓揀貨員進行揀貨作業,如此一來不僅可以降低人力成本,同時可以提升揀貨作業之效率與準確性。

基於上述原因,本研究將針對類 Locusbots 系統中的揀貨策略進行探討,以「揀貨區域選擇 AGV 問題」以及「派車問題」進行研究,最後利用 Arena 模擬軟體實驗之結果,分析本研究提出的數種法則在不同績效指標下的表現,期望可以找出最合適的揀貨策略組合,並對未來之類似研究有相對貢獻。
摘要(英) Nowadays, the rapid development of information technology and popularization of mobile networks has led to the prevalence of e-commerce, the market demand has gradually changed to "small and diverse", the change in market demand has also increase the difficulty of logistics centre operations, it’s even more obvious for picking operations. According to the research of De Koster et al. (2007), most logistics centres are still labor-intensive industries, picking operations are not only cost-intensive but also a labor-intensive activity, picking operation-related manpower accounted for more than 50% in the logistics centres. In order to cope with the advent of the era of "small and diverse" demand, introduction of automation equipment timely and planning a suitable picking strategy will have a decisive impact on the cost, production capacity and efficiency of the logistics centres.

Since the Locusbots system can arbitrarily increase or decrease the number of Locusbots, so can effectively solve the problem of weak and peak seasons. Locusbots can use dynamic path planning which can update environment information to avoid obstacles effectively and plan the picking path smoother. In the Locusbots system, the pickers don’t need to walk around in the logistics centre, pickers only need to stay in the picking zone, and the Locusbots will carry the order and the picking boxes to the picking zone. In this way not only reduce labor costs but also improve the efficiency and accuracy of picking operations.

Base on the above reasons, the research will mainly discusses the Locusbots system with "selecting AGV in the picking zone problem" and "dispatching problem". Finally, use the results of Arena simulation software experiments, analyze the performance of the several rules proposed in this research under different performance indicators, hoping to find the most suitable combination of picking strategies and make a relative contribution to similar research will be made in the future.
關鍵字(中) ★ 物流中心
★ Locusbots系統
★ 訂單選取法則
★ 揀貨區域選擇AGV法則
★ 派車法則
關鍵字(英) ★ Distribution Centre
★ Locusbots system
★ Order selection
★ Picking Zone Selecting AGV
★ Dispatching
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究環境 3
1.5 論文架構 5
第二章 文獻探討 8
2.1 Locusbots 系統(Locusbots System) 9
2.1.1 Locusbots系統環境與作業流程 10
2.1.2 Locusbots設備介紹 11
2.2 物流(Logistics) 15
2.2.1 物流的定義(Logistics definition) 15
2.2.2 物流中心介紹(Distribution centre introduction) 16
2.3 倉儲規劃(Warehouse planning) 18
2.3.1 倉儲設計(Warehouse design) 18
2.3.2 走道設計(Aisle design) 23
2.4 揀貨作業規劃(Picking operation planning) 27
2.4.1 揀貨方法(Picking method) 27
2.4.2 揀貨政策(Picking policy) 29
2.4.3 揀貨路徑策略(Picking routing strategy) 34
2.4.4 揀貨作業績效評估指標(Picking operation performance evaluation indicator) 39
2.5 AGV 派車法則(AGV dispatching rule) 40
2.5.1 單屬性派車法則(Single attribute dispatching rule) 40
2.5.2 多屬性派車法則(Multiple attribute dispatching rule) 44
第三章 研究方法 46
3.1 Locusbots作業流程與問題分析 46
3.2 各研究問題之方法整理 48
3.3 研究問題說明 51
3.4 訂單選取問題 53
3.4.1 隨機選取法 53
3.5 派車問題(決定無人搬運車該至哪一個揀貨區域進行揀貨作業) 54
3.5.1 隨機派車法 54
3.5.2 最短旅行距離法 54
3.5.2.1 範例說明 54
3.5.3 最大揀貨品項數法 56
3.5.3.1 範例說明 56
3.5.4 最小揀貨品項數法 57
3.5.4.1 範例說明 57
3.5.5 最大(揀貨品項數 / 旅行距離)比例法 57
3.5.5.1 範例說明 58
3.5.6 最小(揀貨品項數 / 旅行距離)比例法 59
3.5.6.1 範例說明 60
3.5.7 最少剩餘揀貨時間法 61
3.5.7.1 範例說明 68
3.5.8 最早最晚可開始揀貨時間法 72
3.5.8.1 範例說明 79
3.5.9 多屬性派車法 84
3.6 揀貨區域選擇AGV問題(揀貨區域優先處理哪一台AGV) 87
3.6.1 隨機選擇法 87
3.6.2 最少剩餘揀貨區域數法 87
3.6.2.1 範例說明 87
3.6.3 最早到期時間法 88
3.6.3.1 範例說明 88
3.6.4 在該ZONE等候時間最久法 89
3.6.4.1 範例說明 89
3.6.5 最少寬鬆時間法 89
3.6.5.1範例說明 93
3.6.6 最少剩餘揀貨品項數法 96
3.6.6.1 範例說明 96
3.6.7 在系統停留時間最久法 97
3.6.7.1 範例說明 97
3.6.8 在該ZONE揀貨品項數最少法 98
3.6.8.1 範例說明 98
3.6.9 多屬性揀貨區域選擇AGV法 99
第四章 模擬實驗與分析 102
4.1 模擬實驗設計 102
4.1.1 揀貨環境設定 102
4.1.2 實驗訂單設定 103
4.1.3 揀貨環境假設 104
4.1.4 績效評估指標 105
4.2 統計分析 105
4.2.1 分析說明 106
4.2.2 依「揀貨系統總執行時間(TST)」為績效評估指標 106
4.2.2.1 個別因子之說明(依TST績效值) 107
4.2.2.2 不同因子交互作用之說明(依TST績效值) 110
4.2.2.3 最佳因子組合與績效 120
4.2.3 依「訂單在系統內總時間(TTIS)」為績效評估指標 126
4.2.3.1 個別因子之說明(依TTIS績效值) 126
4.2.3.2 不同因子交互作用之說明(依TTIS績效值) 130
4.2.3.3 最佳因子組合與績效 140
4.3 實驗結論 147
第五章 研究結論與建議 149
5.1 研究結論 149
5.2 未來研究建議 150
參考文獻 152
中文文獻 152
英文文獻 155
參考文獻 中文文獻
1.王孔政、褚志鵬(2007)。供應鏈管理。華泰文化,台北,初版。
2.江偉銘(2011)。具途程彈性之分區揀貨系統的揀貨作業探討。國立中央大學工業管理研究所。
3.李天傑(2009)。零散揀貨環境下之分區揀貨作業問題的探討。國立中央大學工業管理研究所。
4.李宗儒(2019)。計劃性生產型態下彈性製造系統生產排程擬定方法之研究。國立交通大學工業工程研究所。
5.周士俊(2000)。塔布搜尋法在物流中心人工揀貨區揀貨問題之研究。元智大學工業工程研究所。
6.林育立(2011)。順序式分區揀貨之合作揀貨方法探討。國立中央大學工業管理研究所。
7.林家慈(2022)。類 Locusbots 系統之揀貨派車問題研究。國立中央大學工業管理研究所。
8.洪麗珠、馮正民(2003)。 第三方物流中心績效指標之建立與應用 。
9.張福榮(2005)。物流管理。五南,台北,二版。
10.張兆中(2011)。利用途程彈性於順序式分區揀貨之改善。國立中央大學工業管理研究所。
11.張有恆(1998)。物流管理。華泰文化,台北,初版。
12.張軒銘(2018)。TFT-LCD廠之自動化搬運系統的多屬性派送控制方法。國立中央大學工業管理研究所。
13.張凱崴(2022)。類 Locusbots 系統之揀貨區域 AGV 選取問題研究。國立中央大學工業管理研究所。
14.張智陽(2008)。模擬導入RFID應用於物流倉儲作業流程之研究。逢甲大學交通工程與管理學系碩士班。
15.許晏誠(2008)。協力式無人搬運車系統之派車問題探討。國立中央大學工業管理研究所。
16.郭俊威(2012)。具不同功能I/O點之分區揀貨倉庫的揀貨路徑發展與比較。國立中央大學工業管理研究所碩士。
17.陳暉江(2004)。具兩條以上橫向走道之物流中心揀貨路徑規劃研究。國立中央大學工業管理研究所。
18.陳慧娟(1994)。物流中心生產力評估指標100。經濟部發行,機械工業雜誌總經銷,台北,初版。
19.黃靖華(2017)。類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討。國立中央大學工業管理研究所。
20.楊壁寧(2015)。越庫作業之多排理貨區播種式揀貨相關問題探討。國立中央大學工業管理研究所。
21.經濟部商業司(1996)。物流經營管理實務。經濟部商業司,台北。
22.董福慶、陳明德(1995)。物流中心揀貨作業。經濟部發行,機械工業雜誌總經銷,台北,出版。
23.賴順良(2019)。物流中心之訂單選取與揀貨路徑規劃的研究。國立中央大學工業管理研究所。
24.簡四華(2004)。在封閉式系統下多載量AGV之運送派車法則的研究。國立中央大學工業管理研究所。
25.顏憶茹、張淳智(2001)。物流管理。前程企管,新北市,三版。

英文文獻
1.Accorsi, R., Manzini, R., & Maranesi, F. (2014). A decision-support system for the design and management of warehousing systems. Computers in Industry, 65(1), 175-186.
2.Ai-Lan, F., Zhi, J., & Ji-Li, K. (2018). The comparative study of order pick location distribution characteristics impacting on the picking path in the distribution center. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1090-1094).
3.Baker, P., & Canessa, M. (2009). Warehouse design: A structured approach. European journal of operational research, 193(2), 425-436.
4.Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2019). Design of diagonal cross-aisle warehouses with class-based storage assignment strategy. The International Journal of Advanced Manufacturing Technology, 100(9), 2521-2536.
5.Bolanos Zuniga, J., Saucedo Martinez, J. A., Salais Fierro, T. E., & Marmolejo Saucedo, J. A. (2020). Optimization of the storage location assignment and the picker-routing problem by using mathematical programming. Applied Sciences, 10(2), 534.
6.Boysen, N., de Koster, R., & Füßler, D. (2021). The forgotten sons: Warehousing systems for brick-and-mortar retail chains. European Journal of Operational Research, 288(2), 361-381.
7.Cheng, T. C. E. (1987). A simulation study of automated guided vehicle dispatching. Robotics and Computer-Integrated Manufacturing, 3(3), 335-338.
8.Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
9.Chen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408.
10.Cano, J. A., Gomez, R. A., & Salazar, F. (2017). Routing policies in multi-parallel warehouses: an analysis of computing times. Espacios, 38(51), 23.
11.Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019). Genetic algorithms for the picker routing problem in multi-block warehouses. In International Conference on Business Information Systems (pp. 313-322).
12.De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
13.Đukić, G., Česnik, V., & Opetuk, T. (2010). Order-picking methods and technologies for greener warehousing. Strojarstvo: časopis za teoriju i praksu u strojarstvu, 52(1), 23-31.
14.De Vries, J., De Koster, R., & Stam, D. (2016). Aligning order picking methods, incentive systems, and regulatory focus to increase performance. Production and Operations Management, 25(8), 1363-1376.
15.De Koster, R. B., Johnson, A. L., & Roy, D. (2017). Warehouse design and management. International Journal of Production Research, 55(21), 6327-6330.
16.Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
17.Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
18.Esmero, A. T., Branzuela, Q. R. S., Paypa, J. T., Rojo, S. M. S., Sacay, E. S., Selerio, E.F., & Ocampo, L. A. (2021). Heuristic comparative assessment of non-conventional warehouse designs. Engineering Management in Production and Services, 13(1), 89-103.
19.Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
20.Geng, Y., Li, Y., & Lim, A. (2005). A very large-scale neighborhood search approach to capacitated warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI′05) (pp. 8-pp).
21.Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
22.Gong, Y., & De Koster, R. (2008). A polling-based dynamic order picking system for online retailers. IIE transactions, 40(11), 1070-1082.
23.Guan, X. (2009). Multi-attribute Dispatching Method with Deadlock Avoidance for AGV Systems. China Mechanical Engineering, 20(19), 0.
24.Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE transactions, 41(3), 171-182
25.Gan, Z., & Tao, L. (2013). Control of automated guided vehicles based on multi-attribute dispatching rule. In Applied Mechanics and Materials (Vol. 278, pp. 1432-1435).
26.Goeke, D., & Schneider, M. (2021). Modeling Single-Picker Routing Problems in Classical and Modern Warehouses: INFORMS Journal on Computing Meritorious Paper Awardee. INFORMS Journal on Computing, 33(2), 436-451.
27.Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O., & Vlasta, D. A. (2001). Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16(1), 79-100.
28.Hwang, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
29.Ho, Y. C., & Liu, C. F. (2005). A design methodology for converting a regular warehouse into a zone-picking warehouse. Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
30.Ho, Y. C., & Chien, S. P. (2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering, 50(4), 426-439.
31.Hsieh, L. F., & Tsai, L. (2006). The optimum design of a warehouse system on order picking efficiency. The International Journal of Advanced Manufacturing Technology, 28(5), 626-637.
32.Hwang, H. S., & Cho, G. S. (2006). A performance evaluation model for order picking warehouse design. Computers & Industrial Engineering, 51(2), 335-342.
33.Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
34.Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of manufacturing systems, 31(3), 288-300.
35.Ho, Y. C., & Lin, J. W. (2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
36.Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research, 257(1), 185-196.
37.Jeong, B. H., & Randhawa, S. U. (2001). A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
38.Klei, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), 95-110.
39.Koo, P. H., Jang, J., & Suh, J. (2004). Estimation of part waiting time and fleet sizing in AGV systems. International journal of flexible Manufacturing Systems, 16(3), 211-228.
40.Koo, P. H. (2009). The use of bucket brigades in zone order picking systems. OR spectrum, 31(4), 759-774.
41.Karásek, J. (2013). An overview of warehouse optimization. International journal of advances in telecommunications, electrotechnics, signals and systems, 2(3), 111-117.
42.Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29(1), 323-355.
43.Lin, C. H., & Lu, I. Y. (1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60, 301-307.
44.Lim, J. K., Kim, K. H., Yoshimoto, K., Lee, J. H., & Takahashi, T. (2003). A dispatching method for automated guided vehicles by using a bidding concept. OR Spectrum, 25(1), 25-44.
45.Le-Duc, T., & De Koster, R. M. (2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
46.Lau, H. Y., & Woo, S. O. (2008). An agent-based dynamic routing strategy for automated material handling systems. International Journal of Computer Integrated Manufacturing, 21(3), 269-288.
47.Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
48.Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821-5841.
49.Locus Robotics official website (2023). Flexible Configuration, Retrieved December 14, 2022 from https://locusrobotics.com/features/bot-configurations/.
50.Locus Robotics official youtube video (2023). How it works, Retrieved December 14, 2022 from https://www.youtube.com/watch?v=MDKPRkcknRA.
51.Löffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in AGV-assisted order picking systems. INFORMS Journal on Computing, 34(1), 440-462.
52.Mohsen, & Hassan, M. D. (2002). A framework for the design of warehouse layout. Facilities, 20(13/14), 432-440.
53.Manzini, R., Gamberi, M., & Regattieri, A. (2005). Design and control of a flexible order‐picking system (FOPS): a new integrated approach to the implementation of an expert system. Journal of Manufacturing Technology Management, 16(1), 18-35.
54.Mowrey, C. H., & Parikh, P. J. (2014). Mixed-width aisle configurations for order picking in distribution centers. European Journal of Operational Research, 232(1), 87-97.
55.Matusiak, M., De Koster, R., & Saarinen, J.(2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263 (3), 888-899.
56.Masae, M., Glock, C. H., & Vichitkunakorn, P. (2020). Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. International Journal of Production Research, 58(17), 5337-5358.
57.Öztürkoğlu, Ö., Gue, K. R., & Meller, R. D. (2012). Optimal unit-load warehouse designs for single-command operations. Iie Transactions, 44(6), 459-475.
58.Öztürkoğlu, Ö., & Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European Journal of Operational Research, 275(2), 411-430.
59.Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
60.Petersen, C. G. (2002). Considerations in order picking zone configuration. International Journal of Operations & Production Management.
61.Privé, J., Renaud, J., Boctor, F., & Laporte, G. (2006). Solving a vehicle-routing problem arising in soft-drink distribution. Journal of the Operational Research Society, 57(9), 1045-1052.
62.Parikh, P. J., & Meller, R. D. (2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research Part E: Logistics and Transportation Review, 44(5), 696-719.
63.Pohl, L. M., Meller, R. D., & Gue, K. R. (2009). Optimizing fishbone aisles for dual‐command operations in a warehouse. Naval Research Logistics (NRL), 56(5), 389-403.
64.Pohl, L. M., Meller, R. D., & Gue, K. R. (2011). Turnover-based storage in non-traditional unit-load warehouse designs. IIE Transactions, 43(10), 703-720.
65.Petersen, C. G., & Aase, G. R. (2017). Improving order picking efficiency with the use of cross aisles and storage policies. Open Journal of Business and Management, 5(1), 95.
66.Park, H., Son, D., Koo, B., & Jeong, B. (2021). Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm. Expert Systems with Applications, 165, 113959.
67.Pourvaziri, H., Pierreval, H., & Marian, H. (2021). Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. European Journal of Operational Research, 290(2), 499-513.
68.Quader, S., & Castillo-Villar, K. K. (2018). Design of an enhanced multi-aisle order-picking system considering storage assignments and routing heuristics. Robotics and Computer-Integrated Manufacturing, 50, 13-29.
69.Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H. (2000). Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), 515-533.
70.Roodbergen, K. J., & Koster, R. (2001a). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.
71.Roodbergen, K. J., & De Koster, R. (2001b). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43.
72.Roodbergen, K. J., & Vis, I. F. (2006). A model for warehouse layout. IIE transactions, 38(10), 799-811.
73.Roodbergen, K. J., Sharp, G. P., & Vis, I. F. (2008). Designing the layout structure of manual order picking areas in warehouses. Iie Transactions, 40(11), 1032-1045.
74.Rimiene, K. (2008). THE DESIGN AND OPERATION OF WAREHOUSE. Economics & Management.
75.Ran, W., Liu, S., & Zhang, Z. (2020). A polling-based dynamic order-picking system considering priority orders. Complexity, 2020.
76.Şahin, R., Ertoğral, K., & Türkbey, O. (2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers & Industrial Engineering, 59(2), 308-313.
77.Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
78.Schrotenboer, A. H., Wruck, S., Roodbergen, K. J., Veenstra, M., & Dijkstra, A. S. (2017). Order picker routing with product returns and interaction delays. International Journal of Production Research, 55(21), 6394-6406.
79.Shah, B., & Khanzode, V. (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26(3), 346-378.
80.Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
81.Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A., & Trevino, J. (2002). Facilities Planning John Wiley and Sons Inc. New York.
82.Urzúa, M., Mendoza, A., & González, A. O. (2019). Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logist. Int. Sci. J. Logist, 6(4), 103-114.
83.Van den Berg, J. P., & Zijm, W. H. (1999). Models for warehouse management: Classification and examples. International journal of production economics, 59(1-3), 519-528.
84.Vivaldini, K. C., Rocha, L. F., Becker, M., & Moreira, A. P. (2015). Comprehensive review of the dispatching, scheduling and routing of AGVs. In CONTROLO’2014–proceedings of the 11th Portuguese conference on automatic control (pp. 505-514).
85.Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261.
86.Yamashita, H. (2001). Analysis of dispatching rules of AGV systems with multiple vehicles. IIE Transactions, 33(10), 889-895.
87.Yener, F., & Yazgan, H. R. (2019). Optimal warehouse design: Literature review and case study application. Computers & Industrial Engineering, 129, 1-13.
88.Yetkin Ekren, B. (2021). A multi-objective optimisation study for the design of an AVS/RS warehouse. International Journal of Production Research, 59(4), 1107-1126.
89.Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated order batching and distribution scheduling in a single-block order picking warehouse considering S-shape routing policy. International Journal of Engineering, 31(10), 1723-1733.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明