參考文獻 |
[1] Abbasi, A., Albrecht, C., Vance, A., & Hansen, J. (2012). Metafraud: a meta-learning framework for detecting financial fraud. Mis Quarterly, 1293-1327.
[2] Alberti, C., Andor, D., Pitler, E., Devlin, J., & Collins, M. (2019). Synthetic QA corpora generation with roundtrip consistency. arXiv preprint arXiv:1906.05416.
[3] Bao, Y., Ke, B., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting accounting fraud in publicly traded US firms using a machine learning approach. Journal of Accounting Research, 58(1), 199-235.
[4] Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24-36.
[5] Cohen, L., Malloy, C., & Nguyen, Q. (2020). Lazy prices. The Journal of Finance, 75(3), 1371-1415.
[6] Cornegruta, S., Bakewell, R., Withey, S., & Montana, G. (2016). Modelling radiological language with bidirectional long short-term memory networks. arXiv preprint arXiv:1609.08409.
[7] Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139, 113421.
[8] Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17-82.
[9] Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060.
[10] Dong, W., Liao, S., & Liang, L. (2016). Financial statement fraud detection using text mining: A systemic functional linguistics theory perspective.
[11] Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance & Management, 7(1), 21-41.
[12] Gaganis, C. (2009). Classification techniques for the identification of falsified financial statements: a comparative analysis. Intelligent Systems in Accounting, Finance & Management: International Journal, 16(3), 207-229.
[13] Goel, S., Gangolly, J., Faerman, S. R., & Uzuner, O. (2010). Can linguistic predictors detect fraudulent financial filings? Journal of Emerging Technologies in Accounting, 7(1), 25-46.
[14] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
[15] Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud–A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139-152.
[16] Hamal, S., & Senvar, Ö. (2021). Comparing performances and effectiveness of machine learning classifiers in detecting financial accounting fraud for Turkish SMEs. Int. J. Comput. Intell. Syst., 14(1), 769-782.
[17] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[18] Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2), 806-841.
[19] Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585-594.
[20] Izzalqurny, T. R., Subroto, B., & Ghofar, A. (2019). Relationship between financial ratio and financial statement fraud risk moderated by auditor quality. International Journal of Research in Business and Social Science (2147-4478), 8(4), 34-43.
[21] conference proceddings :Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar, S., Afzal, S., Sharma Mittal, R., & Munigala, V. (2020). Overview and importance of data quality for machine learning tasks. Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, 3561-3562.
[22] Jang, B., Kim, M., Harerimana, G., Kang, S.-u., & Kim, J. W. (2020). Bi-LSTM model to increase accuracy in text classification: Combining Word2vec CNN and attention mechanism. Applied Sciences, 10(17), 5841.
[23] Karpoff, J. M., Koester, A., Lee, D. S., & Martin, G. S. (2014). Database challenges in financial misconduct research. Georgetown McDonough School of Business Research Paper(2012–15).
[24] Khan, S., Fazil, M., Sejwal, V. K., Alshara, M. A., Alotaibi, R. M., Kamal, A., & Baig, A. R. (2022). BiCHAT: BiLSTM with deep CNN and hierarchical attention for hate speech detection. Journal of King Saud University-Computer and Information Sciences, 34(7), 4335-4344.
[25] Lebret, R. P. (2016). Word embeddings for natural language processing. EPFL.
[26] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[27] Li, C., Jan, N. M., & Huang, B. (2018). Data analytics for oil sands subcool prediction—a comparative study of machine learning algorithms. IFAC-PapersOnLine, 51(18), 886-891.
[28] Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Journal of accounting literature, 29, 143.
[29] Li, Y., Zhu, Z., Kong, D., Han, H., & Zhao, Y. (2019). EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems, 181, 104785.
[30] conference proceddings :Liu, S., Tao, H., & Feng, S. (2019). Text classification research based on bert model and bayesian network. 2019 Chinese Automation Congress (CAC), 5842-5846.
[31] Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187-1230.
[32] conference proceddings :Ma, J., Gao, W., Joty, S., & Wong, K.-F. (2019). Sentence-level evidence embedding for claim verification with hierarchical attention networks.
[33] Purda, L., & Skillicorn, D. (2015). Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection. Contemporary Accounting Research, 32(3), 1193-1223.
[34] conference proceddings :Rawte, V., Gupta, A., & Zaki, M. J. (2020). A comparative analysis of temporal long text similarity: Application to financial documents. Workshop on Mining Data for Financial Applications, 77-91.
[35] conference proceddings :Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why should i trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144.
[36] Schilit, H. M., & Perler, J. (2010). Financial Shenanigans Third Edition. In: McGraw-Hill.
[37] Shridhar, K., Laumann, F., & Liwicki, M. (2019). A comprehensive guide to bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731.
[38] conference proceddings :Wallach, H. M. (2006). Topic modeling: beyond bag-of-words. Proceedings of the 23rd international conference on Machine learning, 977-984.
[39] West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
[40] conference proceddings :Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, 1480-1489.
[41] Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923.
[42] Zhang, X., Chen, F., & Huang, R. (2018). A combination of RNN and CNN for attention-based relation classification. Procedia computer science, 131, 911-917.
[43] Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570-575. |