博碩士論文 110324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.220.1.239
姓名 章晶寧(Ching-Ning Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無機填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯複合型固 態電解質於鋰電池之應用
(Applications of Inorganic Fillers in Poly (vinylidene fluoride)-hexafluoropropene/ Poly (propylene carbonate)-Based Composite Electrolyte Solid-State Lithium Batteries)
相關論文
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 運用芳香化合物與鋰金屬之化學預鋰化方法對鋰離子電池負極影響
★ 以雙深共熔溶劑系統對廢棄鋰離子電池進行選擇性回收及優化之研究★ Li7La3Zr2O12與聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯 複合型電解質應用於類固態鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-14以後開放)
摘要(中) 複合型的固態電解質結合高分子與無機填料(陶瓷材料、二氧化矽)之優點,特別是高分子主體PVDF-HFP與PPC具有良好的機械性質、穩定的電化學窗口等優勢,兩種材料可有效提升電池的電化學特性,並添加相較於商用電池極少量的離子液體,可降低固態電解質與電極的界面電阻,更接近全固態鋰電池的未來趨勢。
本研究之高分子由聚偏氟乙烯-六氟丙烯共聚物(Poly vinylidene fluoride-hexafluoropropylene,PVDF-HFP)作為主體,添加少量聚碳酸亞丙酯(Poly propylene carbonate,PPC)進行混摻,將兩者混合後塗佈並烘乾形成固態高分子電解質層作為對照組,實驗組則添加二氧化矽奈米材料(SiO2)作為被動填料,或是已添加已參雜金屬鉭(Ta)或金屬鋁(Al)之陶瓷材料(LLZTO、LLZAO)作為主動填料,探討無機填料加入高分子中形成複合型固態電解質,對於材料本身及電化學性質的影響。
實驗搭配NCM811為正極系統,鋰金屬為負極,於室溫下進行充放電分析。實驗結果發現SiO2作為被動填料可表現出較高分子優異的電化學特性。添加10wt% SiO2於PVDF-HFP/PPC中,可得低速比電容量(207.14 mAh/g @ 25 mA/g)、高速比電容量(122.79 mAh/g @ 300 mA/g)、離子導率(7.81 ×10-4 S/cm)、鋰離子遷移率(tLi+=0.43)。
另一種本身含有元素鋰之主動填料(LLZTO、LLZAO),其中又以添加10wt.%-LLZAO於PVDF-HFP/PPC有最佳電性表現:具備低速比電容量(228.87 mAh/g @ 25 mA/g)、高速比電容量(161.50 mAh/g @ 300 mA/g)、離子導率(8.84 ×10-4 S/cm)、鋰離子遷移率(tLi+=0.47)。
透過本研究得知,透過添加適量無機填料(SiO2、LLZTO、LLZAO)於固態高分子電解質,可使電性有明顯提升,皆有助於未來固態電解質之發展。
摘要(英) Lithium metal batteries (LMBs) have recently been regarded as a potential energy source. However, safety issues arising from the leakage of liquid organic solvents and the growth of lithium dendrites need to be addressed. Therefore, replacing liquid electrolytes with solid-state composite electrolytes (SCEs)1 may be a promising solution.
The SCEs in this study are mainly composed of poly-vinylidene fluoride-hexafluoropropylene (PVDF-HFP) and poly-propylene carbonate (PPC) and inorganic fillers such as silicon dioxide (SiO2) particles, Ta-Li7La3Zr2O12 (LLZTO) or Al-Li7La3Zr2O12 (LLZAO). The SCEs combine the advantages of good mechanical properties and a wide electrochemical window provided by polymers. Additionally, the inorganic fillers are used to reduce the crystallinity and enhance the Li+ transportation by forming a space-charge region and the acid-base interaction. At last, add a trace amount of ionic liquid relative to commercial lithium batteries in order to reduce the interface resistance between the membrane and electrodes.
A solid-state composite NCM811|SiO2-PVDF-HFP/PPC|Li battery exhibits an initial discharge capacity of 207.14 mAh/g @ 25 mA/g, 122.79 mAh/g @ 300 mA/g, ionic conductivity of 7.81×10-4 S/cm, and a lithium transference number of 0.43.
Another solid-state composite NCM811|LLZAO-PVDF-HFP/PPC|Li battery exhibits an initial discharge capacity of 228.87 mAh/g @ 25 mA/g, 161.50 mAh/g @ 300 mA/g, ionic conductivity of 8.84×10-4 S/cm, and a lithium transference number of 0.47.
關鍵字(中) ★ 鋰電池
★ 氧化物固態電解質
★ 複合型固態電解質
★ 單離子導體
關鍵字(英) ★ Lithium batteries
★ oxide-based solid-state electrolytes
★ solid-state composite electrolytes
★ single-ion conductor
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xv
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 文獻回顧 7
2-1 正極材料-LiNi0.8Co0.1Mn0.1O2 (NCM811)介紹 7
2-2固態高分子電解質介紹 8
2-3複合型固態電解質介紹 16
2-3-1 不包含鋰離子之無機填料-被動填料 (SiO2) 16
2-3-2 包含鋰離子之無機填料-主動填料 (LLZO) 20
2-4無機陶瓷固態電解質介紹 24
2-5石榴石型(Garnet type)-Li7La3Zr2O12的發展 26
2-6石榴石型(Garnet type)-Li7La3Zr2O12的機制 28
2-7 Li7La3Zr2O12之優化-元素摻雜介紹 29
2-7-1 鉭(Ta)參雜LLZO 30
2-7-2鋁(Al)參雜LLZO 32
第3章 實驗方法 35
3-1實驗藥品 35
3-2實驗設備 36
3-3實驗步驟 37
3-3-1固態高分子電解質製備 37
3-3-2複合型固態電解質製備 37
3-3-3複合正極製備 38
3-3-4離子液體配置 (PMPFSI+ LiTFSI+ 1 wt.% LiDFOB) 39
3-3-5鈕扣電池組裝 39
3-4材料分析與鑑定 41
3-4-1粉末X光繞射儀 (Powder X-ray diffraction, PXRD) 41
3-4-2冷場發射掃描式電子顯微鏡(The field-emission scanning electron microscope, FE-SEM) 41
3-4-3感應耦合電漿放射光譜儀 (ICP-OES) 41
3-4-4熱穩定分析 (Thermogravimetric analysis, TGA) 41
3-4-5機械性質測試 42
3-5電化學性質分析與鑑定 43
3-5-1 循環充放電 43
3-5-2交流阻抗 (Electrochemical impedance spectroscopy, EIS) 43
3-5-3循環壽命測試 (The Cycling performance) 47
第4章 結果與討論 48
4-1 LiNi0.8Co0.1Mn0.1O2之分析與鑑定 49
4-2不同含量之被動填料(SiO2) 於電池性能之分析 51
4-2-1無機填料(SiO2)之分析 51
4-2-2複合型固態電解質之分析 52
4-2-3充放電分析 59
4-2-4交流阻抗之分析 65
4-2-5循環壽命之分析 69
4-3不同含量之主動填料(LLZTO或LLZAO) 於LiNi0.8Co0.1Mn0.1O2對於電池性能之分析 71
4-3-1無機陶瓷固態電解質(LLZTO、LLZAO)之分析 71
4-3-2複合型固態電解質之分析 76
4-3-3充放電分析 87
4-3-4交流阻抗分析 100
4-3-5循環壽命分析 107
第5章 結論與未來展望 110
第6章 附錄 112
6-1 主動填料(LLZAO)之粒徑分佈對於LiNi0.8Co0.1Mn0.1O2對於電池性能之分析 112
6-1-1充放電分析 113
6-2 PAMPS及鋰化後介紹 120
6-2-1實驗步驟 (高分子主體-PAMPS) 122
6-2-2 結果與討論 123
6-2-3固態高分子電解質(PAMPSLi-EO3AA)之分析 123
第7章 參考資料 135
參考文獻 第7章 參考資料
1. Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews 2020, 49 (23), 8790-8839.
2. Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A., Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12 (6), 1074.
3. Ding, J.-F.; Zhang, Y.-T.; Xu, R.; Zhang, R.; Xiao, Y.; Zhang, S.; Bi, C.-X.; Tang, C.; Xiang, R.; Park, H. S.; Zhang, Q.; Huang, J.-Q., Review on lithium metal anodes towards high energy density batteries. Green Energy & Environment 2022.
4. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
5. Kai Liu, Y. L., Dingchang Lin, Allen Pei, Yi Cui, Materials for lithium-ion battery safety. Science advances 2018, 4(6), 9820.
6. Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H., Solid-state lithium batteries: safety and prospects. EScience 2022, 2 (2), 138-163.
7. Dirican, M.; Yan, C.; Zhu, P.; Zhang, X., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports 2019, 136, 27-46.
8. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews 2016, 116 (1), 140-162.
9. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry 2009, 182 (8), 2046-2052.
10. Zhan, H.; Wu, M.; Wang, R.; Wu, S.; Li, H.; Tian, T.; Tang, H., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanoparticles for lithium metal batteries. Polymers 2021, 13 (15), 2468.
11. Li, W.; Liu, X.; Xie, Q.; You, Y.; Chi, M.; Manthiram, A., Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chemistry of Materials 2020, 32 (18), 7796-7804.
12. Zheng, Y.; Xu, N.; Chen, S.; Liao, Y.; Zhong, G.; Zhang, Z.; Yang, Y., Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Applied Energy Materials 2020, 3 (3), 2837-2845.
13. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on polymer-based composite electrolytes for lithium batteries. Frontiers in Chemistry 2019, 7, 522.
14. Das, D.; Chandrasekaran, A.; Venkatram, S.; Ramprasad, R., Effect of crystallinity on Li adsorption in polyethylene oxide. Chemistry of Materials 2018, 30 (24), 8804-8810.
15. Young, W.-S.; Kuan, W.-F.; Epps, T. H., Block copolymer electrolytes for rechargeable lithium batteries. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (1), 1-16.
16. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
17. W Liu, X. K. Z., F Wu and Y Xiang, A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP conference series 2017, 23, 012036.
18. Zhang, Y.; Yang, B.; Li, K.; Hou, D.; Zhao, C.; Wang, J., Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC Advances 2017, 7 (89), 56183-56193.
19. Aravindan, V.; Vickraman, P., Nanoparticulate AlO (OH) n filled polyvinylidenefluoride-co-hexafluoropropylene based microporous membranes for lithium ion batteries. Journal of Renewable and Sustainable Energy 2009, 1 (2).
20. Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; Chen, L., Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Advanced Energy Materials 2015, 5 (24), 1501082.
21. Zhu, L.; Li, J.; Jia, Y.; Zhu, P.; Jing, M.; Yao, S.; Shen, X.; Li, S.; Tu, F., Toward high performance solid‐state lithium‐ion battery with a promising PEO / PPC blend solid polymer electrolyte. International Journal of Energy Research 2020, 44 (13), 10168-10178.
22. Wang, C.; Zhang, H.; Li, J.; Chai, J.; Dong, S.; Cui, G., The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources 2018, 397, 157-161.
23. Luo, K.; Yi, L.; Chen, X.; Yang, L.; Zou, C.; Tao, X.; Li, H.; Wu, T.; Wang, X., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Electroanalytical Chemistry 2021, 895, 115462.
24. Liang, Y. F.; Xia, Y.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Wu, J. B.; Tu, J. P., A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta 2019, 296, 1064-1069.
25. Manthiram, X. Y. a. A., A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials 2021, 34, 282-300.
26. Fu, K., Gong, Y., Dai, J., Gong, A., Han, X., Yao, Y., & Hu, L, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences 2016, 113 (26), 7094-7099.
27. Tambelli, C. C., Bloise, A. C., Rosario, A. V., Pereira, E. C., Magon, C. J., & Donoso, J. P., Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochimica Acta 2002, 47 (11), 1677–1682.
28. Ji, K.-S.; Moon, H.-S.; Kim, J.-W.; Park, J.-W., Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. Journal of Power Sources 2003, 117 (1-2), 124-130.
29. Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Letters 2016, 16 (1), 459-465.
30. Liu, H.; Xu, J.; Guo, B.; He, X., Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceramics International 2014, 40 (9), 14105-14110.
31. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8 (1), 2.
32. Xu, Z.; Yang, T.; Chu, X.; Su, H.; Wang, Z.; Chen, N.; Gu, B.; Zhang, H.; Deng, W.; Zhang, H.; Yang, W., Strong Lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Applied Materials & Interfaces 2020, 12 (9), 10341-10349.
33. Liang, C. C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. Journal of The Electrochemical Society 1973, 120 (10), 1289.
34. Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X., Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Applied Materials & Interfaces 2019, 11 (1), 784-791.
35. Liu, W.; Lin, D.; Sun, J.; Zhou, G.; Cui, Y., Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016, 10 (12), 11407-11413.
36. Liu, L.; Zhang, D.; Xu, X.; Liu, Z.; Liu, J., Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chemical Research in Chinese Universities 2021, 37 (2), 210-231.
37. Yu, T.; Yang, X.; Yang, R.; Bai, X.; Xu, G.; Zhao, S.; Duan, Y.; Wu, Y.; Wang, J., Progress and perspectives on typical inorganic solid-state electrolytes. Journal of Alloys and Compounds 2021, 885, 161013.
38. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46 (41), 7778-7781.
39. Zhu, Y.; He, X.; Mo, Y., Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Applied Materials & Interfaces 2015, 7 (42), 23685-23693.
40. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
41. O′Callaghan, M. P., Lynham, D. R., Cussen, E. J., Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu). Chemistry of Materials 2006, 18, 4681-4689.
42. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
43. Samson, A. J., Hofstetter, K., Bag, S., & Thangadurai, V., A bird′s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science 2019, 12 (10), 2957-2975.
44. Thompson, T.; Wolfenstine, J.; Allen, J. L.; Johannes, M.; Huq, A.; David, I. N.; Sakamoto, J., Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO). Journal of Materials Chemistry A 2014, 2 (33), 13431-13436.
45. Salimkhani, H.; Yurum, A.; Gursel, S. A., A glance at the influence of different dopant elements on Li7La3Zr2O12 garnets. Ionics 2021, 27 (9), 3673-3698.
46. Allen, J. L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources 2012, 206, 315-319.
47. Meesala, Y.; Liao, Y.-K.; Jena, A.; Yang, N.-H.; Pang, W. K.; Hu, S.-F.; Chang, H.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M.; Guo, X.; Liu, R.-S., An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. Journal of Materials Chemistry A 2019, 7 (14), 8589-8601.
48. Kuhn, A.; Narayanan, S.; Spencer, L.; Goward, G.; Thangadurai, V.; Wilkening, M., Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced Li7 spin-lattice relaxation NMR spectroscopy. Physical Review B 2011, 83 (9), 094302.
49. Rettenwander, D.; Blaha, P.; Laskowski, R.; Schwarz, K.; Bottke, P.; Wilkening, M.; Geiger, C. A.; Amthauer, G., DFT study of the role of Al(3+) in the fast ion-conductor Li(7-3x) Al(3+)(x) La3Zr2O12 garnet. Chemistry of Materials 2014, 26 (8), 2617-2623.
50. Zeier, W. G., Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans 2014, 43 (43), 16133-16138.
51. Chen, C.; Sun, Y.; He, L.; Kotobuki, M.; Hanc, E.; Chen, Y.; Zeng, K.; Lu, L., Microstructural and electrochemical properties of Al- and Ga-Doped Li7La3Zr2O12 garnet solid electrolytes. ACS Applied Energy Materials 2020, 3 (5), 4708-4719.
52. Cheng, L.; Park, J. S.; Hou, H.; Zorba, V.; Chen, G.; Richardson, T.; Cabana, J.; Russo, R.; Doeff, M., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. Journal of Materials Chemistry A 2014, 2 (1), 172-181.
53. Vincent, P. G. B. a. C. A., Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 1987, 225 (28-30), 918-922.
54. Metz, S.; Jiguet, S.; Bertsch, A.; Renaud, P., Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab on a Chip 2004, 4 (2), 114-120.
55. Mouraliraman, D.; Shaji, N.; Praveen, S.; Nanthagopal, M.; Ho, C. W.; Varun Karthik, M.; Kim, T.; Lee, C. W., Thermally stable PVDF-HFP-based gel polymer electrolytes for high-performance lithium-ion batteries. Nanomaterials 2022, 12 (7), 1056.
56. Yang, Y. P.; Huang, A. C.; Tang, Y.; Liu, Y. C.; Wu, Z. H.; Zhou, H. L.; Li, Z. P.; Shu, C. M.; Jiang, J. C.; Xing, Z. X., Thermal stability analysis of lithium-ion battery electrolytes based on lithium bis(trifluoromethanesulfonyl)imide-lithium difluoro(oxalato)borate dual-salt. Polymers (Basel) 2021, 13 (5), 707.
57. Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W., Temperature effect and thermal impact in lithium-ion batteries: a review. Progress in Natural Science: Materials International 2018, 28 (6), 653-666.
58. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W., Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society 2014, 136 (20), 7395-7402.
59. Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P. K.; Guo, X.; Di, Z.; Wang, X.; Li, H., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.
60. Cai, Y.; Wu, H.; Yan, W.; Yu, Z.; Ma, W.; Liu, C.; Zhang, Q.; Jia, X., A atretchable and highly conductive sulfonic pendent single-ion polymer electrolyte derived from multifunctional tri-block polyether. ACS Applied Polymer Materials 2021, 3 (6), 3254-3263.
61. Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z., A single-ion polymer composite electrolyte via in situ polymerization of electrolyte monomers into a porous MOF-based fibrous membrane for lithium metal batteries. ACS Applied Energy Materials 2022, 5 (3), 3800-3809.
62. Guan, S.; Wen, K.; Liang, Y.; Xue, C.; Liu, S.; Yu, J.; Zhang, Z.; Wu, X.; Yuan, H.; Lin, Z.; Yu, H.; Li, L.; Nan, C.-W., An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. Journal of Materials Chemistry A 2022, 10 (45), 24269-24279.
63. Guo, M.; Zhang, M.; He, D.; Hu, J.; Wang, X.; Gong, C.; Xie, X.; Xue, Z., Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochimica Acta 2017, 255, 396-404.
64. Meyer, M.; Vechambre, C.; Viau, L.; Mehdi, A.; Fontaine, O.; Mourad, E.; Monge, S.; Chenal, J.-M.; Chazeau, L.; Vioux, A., Single-ion conductor nanocomposite organic–inorganic hybrid membranes for lithium batteries. J. Mater. Chem. A 2014, 2 (31), 12162-12165.
65. Liu, X.; Liu, J.; Lin, B.; Chu, F.; Ren, Y., PVDF-HFP-based composite electrolyte membranes having high conductivity and lithium-ion transference number for lithium metal batteries. ACS Applied Energy Materials 2021, 5 (1), 1031-1040.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明