博碩士論文 110827002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.222.20.80
姓名 李佳錚(Jia-Jeng Lee)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 分析專注狀態與其前後的放鬆狀態之間大腦與心臟的相關性
(Analyze the correlation between brain and heart during resting and attentional states)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-3以後開放)
摘要(中) 大腦與心臟是有著相互連接的,在大腦中控制自主神經系統來對心臟進行調節,控制心臟跳動的速度。心臟會將心臟內部的訊息透過迷走神經或是脊髓傳遞給大腦,讓大腦可以更好的去控制心臟跳動的速度。大腦會根據不同的訊息來控制心臟跳動的速度,其中生理上的改變以及心理上的改變都會改變心律的改變,甚至於只是想像也可以讓心律產生改變。因此不同的階段下,大腦與心臟之間的關係也會產生變化,而本研究的目的在於檢測不同階段下腦電與心電的改變,以及其相關性的變化。
在本研究中召集了20個受試者,給予他們一份購物清單並記住,接著讓他們進入一個虛擬的超市中挑選清單上的物品。在這個任務階段的前後都各收5分鐘的放鬆階段的資料來做比對。總共有三個階段,分別為前測放鬆、任務以及後測放鬆階段。在所有的階段中都接收5個頻道的腦電資料、2個頻道的眼動資料以及3個頻道的心電資料。並對這些資料進行相關性、t檢定以及機器學習的方式進行分析。
在本研究中測試了不同階段中,腦電與心電特徵的變化以及兩者的相關性。腦電的特徵中則是在專注階段中的變化比放鬆階段要來的大。並且專注階段則是由交感神經佔優勢。在前測放鬆階段的放鬆程度比起後測階段要來的高。在相關性的結果中,在放鬆階段beta頻段控制心跳的特徵(nn20),到了專注的階段全部的頻段都與該心跳有關。Theta頻段則是與心臟受到交感神經與副交感神經的調節相關(SDNN、SD2),存在於專注階段與後測放鬆階段。Alpha頻段則是與放鬆階段的交感(LF)與副交感神經(HF)的活性有關,在前測階段中控制交感神經的活性,在後測階段中控制副交感神經的活性。機器學習中的結果則表明,在不同階段的腦電與心電特徵都是可以分辨的出來的,甚至是在不同的放鬆階段,其中MLP模型的表現最好,使用混合的模型則可以達到最高的準確度。
摘要(英) The brain and heart are physiologically related, with the brain modulate the heart rate via the autonomic nervous system. The heart transfer signals through the vagus nerve or spinal cord to the brain, allowing the brain to better modulate the heart. Physiological and psychological changes can both affect heart rate, even just through imagination. Therefore, the relationship between the brain and heart can change in different state, and the aim of this study is to investigate the changes in brain and heart activity and their correlation in different state.
Twenty participants were recruited for this study and given a shopping list to remember, then asked to select the items on the list in a virtual supermarket. Beside this task, data was collected during 5-minute resting state before and after the task. Thus, there were three stages: pre-resting, attentional(task), and post-resting state. Five-channel electroencephalography(EEG), two-channel Electrooculogram(EOG) and three-channel Electrocardiography(ECG) were recorded in all state. Pearson correlation analysis was used to assess the relationship between EEG features and heart rate variability (HRV). Two-sample t-tests and machine learning methods were used to compare the different states.
This study examined the changes in EEG and HRV features and their correlation in different states. There was significant change in EEG features during the attentional compared to resting state. During the attentional state, the sympathetic nervous system dominated. In terms of correlation, beta band in the resting state was related to heart rate feature(nn20), while all bands in the attentional state were related to heart rate feature. Theta band was related to sympathetic and parasympathetic modulation of heart (SDNN, SD2), and was present in the attentional and post-resting state. Alpha band was related to sympathetic (LF) and parasympathetic (HF) activity during resting state, modulation sympathetic activity during the pre-resting state and parasympathetic activity during the post-resting state. Machine learning results showed that brain and heart activity features in different state could be distinguished, even in different resting state. Among them, the MLP model performed the best, and the use of a fusion model achieved the highest accuracy.
關鍵字(中) ★ EEG
★ HRV
★ 心腦關係
關鍵字(英) ★ EEG
★ HRV
★ brain heart interaction
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 腦電圖簡介 1
1.2 心電圖簡介 3
1.3 心腦關係文獻回顧 7
1.4 研究動機與目的 10
第二章 研究方法與流程 11
2.1 實驗儀器設備 11
2.2 實驗設計 13
2.3 資料分析 14
2.3.1 EEG資料處理分析 14
2.3.2 EKG資料處理與分析 16
2.3.3 統計分析 18
2.3.4 機器學習分析 19
第三章 實驗結果 27
3.1統計分析結果 27
3.2 相關性結果 33
3.3機器學習分析結果 49
第四章 討論與結論 52
4.1統計 52
4.2相關性 53
4.3機器學習 55
4.4總結 56
第五章 未來展望 57
Reference 58
參考文獻 1. Sanei, S. and J.A. Chambers, EEG signal processing. 2013: John Wiley & Sons.
2. Marzbani, H., H.R. Marateb, and M. Mansourian, Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and clinical neuroscience, 2016. 7(2): p. 143.
3. Dupre, A., S. Vincent, and P.A. Iaizzo, Basic ECG theory, recordings, and interpretation, in Handbook of cardiac anatomy, physiology, and devices. 2005, Springer. p. 191-201.
4. Dupre, A., S. Vincent, and P.A. Iaizzo, Basic ECG theory, recordings, and interpretation. Handbook of cardiac anatomy, physiology, and devices, 2005: p. 191-201.
5. Cygankiewicz, I. and W. Zareba, Heart rate variability. Handbook of clinical neurology, 2013. 117: p. 379-393.
6. Pham, T., et al., Heart Rate Variability in psychology: A review of HRV indices and an analysis tutorial. Sensors, 2021. 21(12): p. 3998.
7. Shaffer, F. and J.P. Ginsberg, An overview of heart rate variability metrics and norms. Frontiers in public health, 2017: p. 258.
8. Bernardi, L., et al., Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovascular research, 1996. 32(2): p. 234-237.
9. Pérez, P., et al., Conscious processing of narrative stimuli synchronizes heart rate between individuals. Cell Reports, 2021. 36(11): p. 109692.
10. P. Richter, C., On the phenomenon of sudden death in animals and man, in Psychopathology: A Source Book. 1958, Harvard University Press. p. 234-242.
11. Samuels, M.A., The brain–heart connection. Circulation, 2007. 116(1): p. 77-84.
12. Silvani, A., et al., Brain–heart interactions: physiology and clinical implications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016. 374(2067): p. 20150181.
13. Creel, D.J., Visually evoked potentials. Handbook of clinical neurology, 2019. 160: p. 501-522.
14. Plourde, G., Auditory evoked potentials. Best Practice & Research Clinical Anaesthesiology, 2006. 20(1): p. 129-139.
15. Muzyka, I.M. and B. Estephan, Somatosensory evoked potentials. Handbook of clinical neurology, 2019. 160: p. 523-540.
16. Judah, M.R., et al., The relationship between social anxiety and heartbeat evoked potential amplitude. Biological psychology, 2018. 139: p. 1-7.
17. Mai, S., et al., Interoception is associated with heartbeat-evoked brain potentials (HEPs) in adolescents. Biological Psychology, 2018. 137: p. 24-33.
18. Schulz, A., et al., Late heartbeat-evoked potentials are associated with survival after cardiac arrest. Resuscitation, 2018. 126: p. 7-13.
19. Baranauskas, M., A. Grabauskaitė, and I. Griškova-Bulanova, Brain responses and self-reported indices of interoception: Heartbeat evoked potentials are inversely associated with worrying about body sensations. Physiology & behavior, 2017. 180: p. 1-7.
20. Diamond, A., Executive functions, in Handbook of clinical neurology. 2020, Elsevier. p. 225-240.
21. Jensen, O. and C.D. Tesche, Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 2002. 15(8): p. 1395-1399.
22. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 1999. 29(2-3): p. 169-195.
23. Turella, L., et al., Beta band modulations underlie action representations for movement planning. Neuroimage, 2016. 136: p. 197-207.
24. Womelsdorf, T., et al., Modulation of neuronal interactions through neuronal synchronization. science, 2007. 316(5831): p. 1609-1612.
25. Kucewicz, M.T., et al., Dissecting gamma frequency activity during human memory processing. Brain, 2017. 140(5): p. 1337-1350.
26. Sklerov, M., E. Dayan, and N. Browner, Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clinical Autonomic Research, 2019. 29(6): p. 555-566.
27. Benarroch, E.E. The central autonomic network: functional organization, dysfunction, and perspective. in Mayo Clinic Proceedings. 1993. Elsevier.
28. Thayer, J.F. and R.D. Lane, Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 2009. 33(2): p. 81-88.
29. Lin, D. and A. Sharif, Integrated central-autonomic multifractal complexity in the heart rate variability of healthy humans. Frontiers in Physiology, 2012. 2: p. 123.
30. Bazanova, O., et al., Voluntary alpha-power increasing training impact on the heart rate variability. Fiziologiia Cheloveka, 2013. 39(1): p. 103-116.
31. Machetanz, K., et al., Brain–Heart Interaction During Transcutaneous Auricular Vagus Nerve Stimulation. Frontiers in neuroscience, 2021. 15: p. 632697.
32. Triggiani, A.I., et al., Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans. International journal of psychophysiology, 2016. 103: p. 79-87.
33. Roy, H., et al., Linking emotional reactivity between laboratory tasks and immersive environments using behavior and physiology. Frontiers in Human Neuroscience, 2019. 13: p. 54.
34. Bear, M.F., B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the brain. 2007.
35. Napadow, V., et al., Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage, 2008. 42(1): p. 169-177.
36. Thayer, J.F., et al., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 2012. 36(2): p. 747-756.
37. Armour, J.A., Anatomy and function of the intrathoracic neurons regulating the mammalian heart, in Reflex control of the circulation. 2020, CRC Press. p. 1-37.
38. Quigley, K.S., et al., Functions of interoception: From energy regulation to experience of the self. Trends in neurosciences, 2021. 44(1): p. 29-38.
39. Petzschner, F.H., et al., Computational models of interoception and body regulation. Trends in neurosciences, 2021. 44(1): p. 63-76.
40. McCraty, R. and D. Childre, Coherence: bridging personal, social, and global health. Altern Ther Health Med, 2010. 16(4): p. 10-24.
41. Cortese, M.D., et al., Inhibitory Control and Brain–Heart Interaction: An HRV-EEG Study. Brain Sciences, 2022. 12(6): p. 740.
42. Chen, P.-C., et al., Autonomic activity during a daytime nap facilitates working memory improvement. Journal of Cognitive Neuroscience, 2020. 32(10): p. 1963-1974.
43. Chen, C.-C., et al., Impaired brain-heart relation in patients with methamphetamine use disorder during VR induction of drug cue reactivity. IEEE Journal of Translational Engineering in Health and Medicine, 2022.
44. Candia-Rivera, D., Brain-heart interactions in the neurobiology of consciousness. Current Research in Neurobiology, 2022: p. 100050.
45. Di Pasquale, G., et al., Cardiologic complications of subarachnoid hemorrhage. Journal of neurosurgical sciences, 1998. 42(1 Suppl 1): p. 33-36.
46. wiki, Butterworth filter. 2022.
47. Schlögl, A., et al., A fully automated correction method of EOG artifacts in EEG recordings. Clinical neurophysiology, 2007. 118(1): p. 98-104.
48. wiki. Morlet wavelet. 2022; Available from: https://en.wikipedia.org/wiki/Morlet_wavelet.
49. wiki. Pearson correlation coefficient. 2023; Available from: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#External_links.
50. Schölkopf, B. and A. Smola, Support vector machines and kernel algorithms, in Encyclopedia of Biostatistics. 2005, Wiley. p. 5328-5335.
51. Renjith, S., Detection of fraudulent sellers in online marketplaces using support vector machine approach. arXiv preprint arXiv:1805.00464, 2018.
52. Ahani, A., et al., Quantitative change of EEG and respiration signals during mindfulness meditation. Journal of neuroengineering and rehabilitation, 2014. 11(1): p. 1-11.
53. Amin, H.U., et al., Classification of EEG signals based on pattern recognition approach. Frontiers in computational neuroscience, 2017. 11: p. 103.
54. Jalilifard, A., E.B. Pizzolato, and M.K. Islam. Emotion classification using single-channel scalp-EEG recording. in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. IEEE.
55. Myles, A.J., et al., An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 2004. 18(6): p. 275-285.
56. Greenwell, L. Intro to Dexision Trees for computer Science Students. 2020; Available from: https://medium.com/@lucasgreenwell15/intro-to-decision-trees-for-computer-science-students-671d3093a531.
57. Atallah, D.M., et al., Predicting kidney transplantation outcome based on hybrid feature selection and KNN classifier. Multimedia Tools and Applications, 2019. 78: p. 20383-20407.
58. Swarbrick, J. and J.C. Boylan, Encyclopedia of pharmaceutical technology.. Volume 1. 2007, Marcel Dekker.
59. Craik, A., Y. He, and J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering, 2019. 16(3): p. 031001.
60. Code, P.W. Convolutional Neural Networks. 2014; Available from: https://paperswithcode.com/methods/category/convolutional-neural-networks.
61. Huang, S.-C., et al., Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital medicine, 2020. 3(1): p. 1-9.
62. Jacobs, J., et al., EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. Neuroimage, 2006. 32(2): p. 978-987.
63. Tan, H.-R.M., H. Leuthold, and J. Gross, Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band. Neuroimage, 2013. 82: p. 634-644.
64. Knyazev, G.G., Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 2007. 31(3): p. 377-395.
65. Lake, D.E., et al., Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2002.
66. Deschodt-Arsac, V., et al., Entropy in heart rate dynamics reflects how HRV-biofeedback training improves neurovisceral complexity during stress-cognition interactions. Entropy, 2020. 22(3): p. 317.
67. Takahashi, T., et al., Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. International Journal of Psychophysiology, 2005. 55(2): p. 199-207.
68. Luft, C.D.B. and J. Bhattacharya, Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Scientific reports, 2015. 5(1): p. 15717.
69. Lechinger, J., et al., Heartbeat‐related EEG amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations. Psychophysiology, 2015. 52(11): p. 1441-1450.
70. Kubota, Y., et al., Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Cognitive brain research, 2001. 11(2): p. 281-287.
71. Yu, X., et al., Relationship between scalp potential and autonomic nervous activity during a mental arithmetic task. Autonomic Neuroscience, 2009. 146(1-2): p. 81-86.
72. Peláez, M.D.C., et al., Photoplethysmographic waveform versus heart rate variability to identify low-stress states: Attention test. IEEE journal of biomedical and health informatics, 2018. 23(5): p. 1940-1951.
73. Peng, C.-J., et al., An EEG-based attentiveness recognition system using Hilbert–Huang transform and support vector machine. Journal of Medical and Biological Engineering, 2020. 40(2): p. 230-238.
74. Khare, S.K., et al., Classification of mental states from rational dilation wavelet transform and bagged tree classifier using EEG signals, in Artificial Intelligence-Based Brain-Computer Interface. 2022, Elsevier. p. 217-235.
75. Alirezaei, M. and S.H. Sardouie. Detection of human attention using EEG signals. in 2017 24th National and 2nd International Iranian Conference on biomedical engineering (ICBME). 2017. IEEE.
76. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明