博碩士論文 106382010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.136.26.181
姓名 黃俊學(Jun-Xue Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鄰近開挖工程對既存矩形隧道影響之評估
(The evaluation of the effects to the existing rectangular tunnel from the near-by excavation engineering)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 在地下空間高度發展的都會區興建高樓建築時,地基開挖可能對鄰近既存隧道產生影響。開挖過程中土壓力解壓和土壤沉陷等因素可能威脅隧道結構的穩定性和安全性。因此,在施工前需要詳細評估和規劃,確定合適的施工方法和措施,以減少對隧道結構的影響。目前台灣的施工規範缺乏對既存隧道鄰近地區開挖工程的具體指引,因此多數案例會使用數值模擬分析開挖工程對隧道和周圍環境的影響,並應配合監測計畫,在施工過程中監控隧道的安全,調整施工方法或進行地盤改良等補強措施,以確保整體工程的安全性。總之,了解開挖工程對既存隧道的影響是未來都會區地下交通網路和高樓建築發展中不可或缺的課題之一。本研究使用有限元素軟體PLAXIS進行數值模型模擬,並配合離心模型試驗結果,對數值模型輸入參數進行驗證。針對相對密度為70%的乾砂地盤,評估既存矩形隧道在不同影響因素下受鄰近開挖工程影響的情況,影響因素包含隧道與擋土壁之距離、隧道覆土厚度以及擋土壁厚度等。
  結果顯示,隨著隧道與擋土壁間距離以及隧道覆土厚度的增加,隧道的位移及旋轉角皆會隨之減小。表示當開挖工程距離隧道越遠或隧道的覆土厚度較深時,隧道受鄰近開挖工程影響較小;反之,開挖工程距離越近或隧道覆土厚度較薄時,則需要更多評估開挖工程可能造成的影響,或者採取補強工法保護隧道安全。根據模擬結果可通過從開挖工程擋土壁底部延伸的保守破壞面和Rankine主動破壞面,將擋土壁後區域分為低程度影響範圍、中等程度影響範圍和高程度影響範圍。當隧道位置位於保守破壞面外時,隧道的水平位移、垂直位移及旋轉角分別小於2 mm、1 mm及0.01度,在此為低程度影響範圍。在保守破壞面及Rankine主動破壞面之間為中等程度影響範圍;在Rankine主動破壞面內為高程度影響範圍。此外,以厚度為0.8 m及0.4 m的擋土壁為例,由於擋土壁之勁度降低至1/8,因此擋土壁本身產生更大的側向位移量,導致地表沉陷加深並增加隧道的位移和旋轉量。相較於厚度0.8 m之擋土壁,厚度0.4 m之擋土壁模型中擋土壁的最大側向位移增加了24%,隧道的水平位移、垂直位移及旋轉角則分別增加了29%、20%及27%,接近擋土壁側向位移增加量。
摘要(英) In the urban arear, the near-by basement excavation may be able to affect the existing tunnels during the construction of high-rise buildings. The stability and safety of the tunnel would be threatened by the soil pressure relief and soil settlement due to the near-by excavation. To minimize the effects on the existing tunnel by the near-by excavation, the detailed assessment and planning are required to design the appropriate methods before construction starts. Currently, Taiwan′s construction regulations lack specific guidelines for excavation projects near existing tunnels. Therefore, most cases would adopt numerical simulation to analyze the effects of excavation on the existing tunnels. To ensure the safety of tunnels, the construction methods should be adjusted or the reinforcement measures such as ground improvement should be applied if it is necessary according to the monitoring data from the tunnels. Understanding the effects of the near-by excavation on existing tunnels is essential for the development of underground transportation networks and high-rise buildings in future urban areas.
In this study, the finite element software PLAXIS was used for numerical modeling, and the input parameters of the numerical model were validated using centrifuge model test results.
Several factors such as the distance between the tunnel and retaining wall, the thickness of overburden soil on the tunnel, and the thickness of the retaining wall were selected to evaluate the effects of the near-by excavation on the existing tunnel in the case of dry sandy ground with relative density of 70%.
The results show that as the distance between the tunnel and the retaining wall increases, as well as the thickness of the overburden soil on the tunnel, the displacement and rotation angle of the tunnel decrease. This indicates that when the excavation is farther from the tunnel or when the overburden soil on the tunnel is thicker, the tunnel is less affected by the near-by excavation. Conversely, when the excavation is closer or the overburden soil on the tunnel is thinner, more evaluation is needed to assess the effects of the excavation on the tunnel, or reinforcement measures should be taken to protect the safety of tunnel.
Based on the results, the back area of the retaining wall can be divided into three area: low-level impact area, medium-level impact area, and high-level impact area. This can be achieved by considering the conservative failure surface extending from the bottom of the retaining wall and the Rankine active failure surface associated with the excavation engineering. When the tunnel is located outside the conservative failure surface, the horizontal displacement, vertical displacement, and rotation angle of the tunnel are less than 2 mm, 1 mm, and 0.01 degrees, respectively, indicating a low-level impact area. The area between the conservative failure surface and the Rankine active failure surface represents a medium-level impact area, while the area inside the Rankine active failure surface indicates a high-level impact area.
Furthermore, the retaining wall with thicknesses 0.4 m has larger lateral displacement than the wall with thicknesses 0.8 m due to the reduction of the stiffness of the retaining wall. This resulting in increased ground settlement and increased displacement and rotation of the tunnel. Compared to the retaining wall with a thickness of 0.8 m, the maximum lateral displacement of the retaining wall in the model with a thickness of 0.4 m increased by 24%. The horizontal displacement, vertical displacement, and rotation angle of the tunnel also increased by 29%, 20%, and 27%, respectively, approaching the increase in lateral displacement of the retaining wall.
關鍵字(中) ★ 大地工程
★ 開挖工程
★ 隧道工程
★ 離心模型
★ 數值模型
關鍵字(英) ★ Geotechnical Engineering
★ Excavation
★ Tunnel
★ Centrifuge modeling
★ Numerical model
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 x
符號 xi
第一章 前言 1
1-1 研究動機 1
1-2 研究目標 2
1-3 論文各章節概述 2
第二章 文獻回顧 3
2-1 隧道工程 3
2-1-1 隧道工程的基本介紹 3
2-1-2 明挖覆蓋隧道 4
2-2 開挖工程之擋土系統 7
2-2-1 開挖工程之基本介紹 7
2-2-2 擋土式開挖之穩定性分析 9
2-3 開挖引致的擋土壁側向位移及壁後地表沉陷 13
2-4 鄰近開挖工程對既存隧道之影響 17
2-5 離心模型縮尺律 21
第三章 研究方法 22
3-1 研究方法 22
3-2 有限元素法 24
3-3 PLAXIS 2D 24
3-4 土壤組成律模型 26
第四章 模型參數研究 30
4-1 模型幾何條件 30
4-2 土壤性質 32
4-2-1 基本物理性質 32
4-2-2 力學性質 33
4-2-3 界面性質 37
4-3 隧道壁之條件 38
4-4 擋土壁之條件 40
4-5 臨時支撐之條件 41
4-6 施工步驟 44
4-6-1 離心模型中的施工步驟模擬 44
4-6-2 PLAXIS 2D模型中的施工步驟模擬 44
4-7 模擬結果驗證 49
4-8 模型邊界之影響 51
第五章 數值模型 53
5-1 隧道與擋土壁距離之影響 56
5-2 隧道上方覆土深度之影響 67
5-3 綜合討論隧道與擋土壁之相對距離之影響 76
5-4 擋土壁厚度之影響 84
第六章 結論與建議 91
6-1 結論 91
6-2 建議 93
參考文獻 94
附錄A 數值模擬結果圖 附錄1
附錄B 綜合結果比較之詳細數據 附錄34
附表C 相關規範及準則之監測值建議表 附錄43
參考文獻 [1] 中華民國大地工程學會,TGS-EXCAVM106建築物基礎開挖工程監測準則,何樹根等人編,中華民國大地工程學會(2017)。
[2] 內政部營建署,建築物基礎構造設計規範,內政部營建署(2023)。
[3] 日本社團法人土木學會隧道工學委員會編,日本隧道工程標準規範及解說-明挖覆蓋工法篇,姚義久譯,財團法人中興工程科技研究發展基金會,臺北(2003)。
[4] 王錦洋,淺談隧道,財團法人中興工程科技研究發展基金會,臺北(2016)。
[5] 交通部,交通技術標準規範公路類公路工程部:公路隧道設計規範,交通部,臺北(2017)。
[6] 交通部,交通技術標準規範鐵路類工務部:鐵路明挖覆蓋隧道設計規範,交通部,臺北(2016)。
[7] 汪祐毅,以離心模型試驗探討不同隧道與連續壁間距的動態反應,碩士論文,國立中央大學土木工程學系,桃園,(2021)。
[8] 廖崇恩,鄰近地下隧道之深開挖工程行為探討,碩士論文,國立中興大學土木工程學系,台中(2018)。
[9] 臺灣隧道工程發展史特別工作小組編,臺灣隧道工程發展史及案例彙編,中華民國隧道協會,臺北(2009)。
[10] 歐章煜,進階深開挖工程分析與設計(二版),科技圖書股份有限公司,臺北(2021)。
[11] 賴建名、黃繼鋒、黃啟修、蘇福來、胡庭豪,「營運中捷運車站旁深開挖與下方潛盾穿越影響分析及評估」,地工技術,第123期,第85–96頁(2010)。
[12] Bolton, M.D., “The strength and dilatancy of sands,” Geotechnique, Vol. 36, No. 1, pp. 65–78 (1986).
[13] Bowles, J.E., Foundation analysis and design, 5th edition, McGraw–Hill, Singapore (1996).
[14] Brinkgreve, R.B.J., Kumarswamy, S., and Swolfs, W.M., Plaxis 2016, Plaxis bv, Delft, Netherlands (2016).
[15] Chang, C.T., Sun, C.W., Duann, S.W., and Hwang, R.N., “Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation,” Tunnelling and Underground Space Technology, Vol. 16, pp. 151–158 (2001).
[16] Clough, G.W. and O’Rourke, T.D., “Construction induced movements of insitu walls,” Design and Performance of Earth Retaining Structures (Geotechnical Special Publication 25), pp. 439–470 (1990).
[17] Clough, G.W., Smith, E.M., and Sweeney, B.P., “Movement control of excavation support systems by interative design,” Foundation Engineering: Current Principles and Practice, ASCE, Vol. 2, pp. 869–884 (1989).
[18] Cubrinovski, M. and Ishihara, K., Gibbs, H.J. and Holtz, W.G., “Research on determining the density of sands by spoon penetration testing,” Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, pp. 35-39 (1957).
[19] Duncan, J.M. and Chang, C.Y., “Nonlinear analysis of stress and strain in soil,” Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. 5, pp. 1629–1653 (1970).
[20] Goh, A.T.C. and Donald, I.B., “Investigation of soil-concrete interface behavior by simple shear apparatus,” Proceedings of the Fourth Australia-New Zealand Conference on Geomechanics, Perth, Western Australia, pp. 101–106 (1984)
[21] Gouw, T.L., “Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems,” International Journal of Applied Engineering Research, Vol. 9, No. 21 pp. 8291–8311 (2014).
[22] Hashiguchi, K., “Fundamental requirements and formulations of elastoplastic constitutive equations with tangential plasticity,” International Journal of Plasticity, Vol. 9, pp. 525–549 (1993).
[23] Hashiguchi, K., “Macrometric approaches-static-instrinsically time-independent,” Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), Constitutive laws for soils, San Francisco, pp. 25–65 (1985).
[24] Hsieh, P.G. and Ou, C.Y., “Shape of ground surface settlement profiles caused by excavation,” Canadian Geotechnical Journal, Vol. 35, pp. 1004–1007 (1998).
[25] Hsiung, B.C.B., “A case study on the behavior of a deep excavation in sand,” Computers and Geotechnics, Vol. 36, pp. 665–675 (2009).
[26] Hsiung, B.C.B., “Observations of the ground and structural behaviours induced by a deep excavation in loose sands,” Acta Geotechnica, Vol. 15, pp. 1577–1593 (2019).
[27] Hung, W.Y., Soegianto, D.P., Wang, Y.H., and Huang, J.X., “Reverse fault slip through soft rock and sand strata by centrifuge modeling tests,” Acta Geotechnica, Vol. 17, pp. 3337–3356 (2022).
[28] Junbu, N., “Soil compressibility as determined by oedometer and triaxial test,” Proceedings of European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, pp. 19–25 (1963).
[29] Kondner, R.L. and Zelasko, J.S., “A hyperbolic stress strain formulation for sands,” Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, pp. 289–324 (1963).
[30] Kung, G.T.C, Juang, C.H., Hsiao, E.C.L., and Hashash, Y.M.A., “Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 6, pp. 731–747 (2007).
[31] Kusakabe, O., “Development and challenges of physical modeling-Japanese contributions,” Proceedings of the 10th International Conference on Physical Modelling in Geotechnics, Korea (2022).
[32] Lade, P.V., and Nelson, R.B., “Modelling the elastic behavior of granular materials,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 11, No. 5, pp. 521–542 (1987).
[33] Liu, B., Zhang, D.W., Yang, C., and Zhang, Q.B., “Long-term performance of metro tunnels induced by adjacent large deep excavation and protective measures in Nanjing silty clay,” Tunnelling and Underground Space Technology, Vol. 95, 103147 (2020).
[34] Meyerhof, G. G., “Discussion on research on determining the density of sands by spoon penetration testing,” Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 3, pp. 110 (1957).
[35] Ng, C.W.W., Shi, J., and Hong, Y., “Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand,” Canadian Geotechnical Journal, Vol. 50, pp. 874–888 (2013).
[36] Ng, C.W.W., Shi, J., Mašín, D., Sun, H., and Lei, G.H., “Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation,” Canadian Geotechnical Journal, Vol. 52, pp. 1811–1829 (2015).
[37] Ou, C.Y., Chiou, D.C., and Wu, T.S., “Three-dimensional finite element analysis of deep excavation,” Journal of Geotechnical Engineering, Vol. 122, No. 5, pp. 337–345 (1996).
[38] Ou, C.Y., Shiau, B.Y., and Wang, I.W., “Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history,” Canadian Geotechnical Journal, Vol. 37, pp. 438–448 (2000).
[39] Peck, R.B., “Deep excavations and tunneling in soft ground,” State of The-Art Report, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 225–290 (1969).
[40] PLAXIS, Material models manual – PLAXIS connect edition V20.04 (2020).
[41] PLAXIS, PLAXIS 2D-Reference manual – PLAXIS connect edition V20.04 (2020).
[42] Randolph, M.F. and House, A.R., “The complementary roles of physical and computational modelling,” International Journal of Physical Modelling in Geotechnics, Vol. 1, pp. 1–8 (2001).
[43] Rivera, R.C., Determination des proprieties mecanique de sables et des argils en regime dynamique et cyclique an faibles deformation, These de Doctorat del’Ecole Centrale de Paris (1988).
[44] Schanz, T., and Vermeer, P.A., “On the stiffness of sands,” Geotechnique: Pre-failure Deformation Behavior of Geomaterials, pp. 383–387 (1998).
[45] Schanz, T., Vermeer, P.A., and Bonnier, P.V., The hardening soil model: Formulation and verification, Beyond 2000 in Computation Geotechnics – 10 Years of PLAXIS, A.A. Balkema, Rotterdam (1999).
[46] Taylor, R.N., “Centrifuges in modelling: principles and scale effects,” In: Taylor RN (ed) Geotechnical Centrifuge Technology, pp. 19–33 (1995).
[47] Ter-Martirosyan, A., Sidorov, V., and Almakaeva, A., “Determining the interfaces parameters for geotechnical modelling,” E3S Web of Conferences, Vol. 97, 04042 (2019)
[48] Terzaghi, K. and Peck, R.B., Soil Mechanics in Engineering Practice, 2nd edition, John Wiley and Sons, Inc., New York (1967).
[49] Terzaghi, K., “Der grundbrunch on Stauwerken and Seine Verhutung,” Die Wasserkraft, Vol. 17, pp. 445 – 449 (1922). Reprinted in: From Theory to Practice in Soil Mechanics, John Wiley and Sons, New York, pp. 146–148 (1961).
[50] Von Soos, P. and Engel, J., “Eigenschaften von Boden und Fels – ihre Ermittlung im Labor,” Grundbau‐Taschenbuch: Teil 1: Geotechnische Grundlagen, 8. Auflage, Chapter 1.3, Ernst and Sohn Verlag, Berlin (1980).
[51] Xiao, X., Chen, J.J., Li, M.G., and Wang, J.H., “Field monitoring of an existing cut-and-cover tunnel between two large-scale deep excavations,” Journal of Aerospace Engineering, Vol. 31, No. 6, 04018082 (2018).
[52] Ye, S., Zhao, Z., and Wang, D., “Deformation analysis and safety assessment of existing metro tunnels affected by excavation of a foundation pit,” Underground Space, Vol. 6, pp. 421–431 (2021).
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明