博碩士論文 108887604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:13.59.243.194
姓名 薩恩貝(Enkhbat Zayabaatar)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 微生物群對人類健康的有益影響:小鼠研究對解澱粉芽孢桿菌和 痤瘡丙酸桿菌脂肪酶的新見解
(Beneficial effects of microbiota in human health: Novel Insights from Mice Studies on Bacillus amyloliquefaciens and Cutibacterium acnes Lipase)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-5以後開放)
摘要(中) 微生物群能夠通過調節免疫系統、代謝營養物質和抵禦包括細菌和病毒在內的病原體,
在維持人類健康方面發揮著至關重要的作用。 微生物群失調或失衡與多種疾病有關,
表明了微生物群與人類健康之間相互作用的重要性。 在本研究中,我們首先研究液化
澱粉芽孢桿菌(Bacillus amyloliquefacien, B. amyloliquefaciens)對發芽水稻種子 γ-胺基丁酸
(Gamma-aminobutyric acid, GABA) 積累的影響,從而增加小鼠背部皮膚中的 I 型膠原
蛋白 (type I collagen, COL1)。不管有沒有液化澱粉芽孢桿菌對發芽水稻進行孵育,都能
從中檢測到 GABA 含量,並且使用蛋白質轉漬法能夠檢測到大量的 COL1。結果表明,
局部應用與液化澱粉芽孢桿菌共培養水稻種子的上清液可以顯著增加小鼠皮膚中
COL1 的產生。其次,我們研究了痤瘡丙酸桿菌(Cutibacterium acnes, C. acnes)的脂肪酶
或棕櫚酸是否可以促進小鼠產生針對 SARS-CoV-2 膜蛋白( membrane glycoprotein M)
的抗體。每隔 2 周使用膜蛋白加上脂肪酶或棕櫚酸對小鼠進行 3 次皮下免疫注射。並通
過酵素連結免疫吸附分析法(Enzyme Linked Immune Sorbent Assay, ELISA) 對小鼠肺部
中的白細胞介素-6(level interleukin-6, IL-6)水平進行定量。我們的數據表明,與小鼠單獨
使用膜蛋白的免疫相比,使用膜蛋白加脂肪酶或棕櫚酸的聯合免疫有效誘導了高抗體反
應。此外,在使用膜蛋白加脂肪酶或棕櫚酸免疫的小鼠肺中,由 SARS-CoV-2 膜蛋白誘
導產生的 IL-6 顯著減少。總而言之,這些研究提供了對天然來源的佐劑在 COVID-19
疫苗開發中的潛力以及微生物群中細菌作為治療人類疾病的生物療法的重要性的見解。
摘要(英) The microbiome has been shown to play a crucial role in maintaining human health by
regulating the immune system, metabolizing nutrients, and protecting against pathogens
including bacteria and viruses. Dysbiosis or imbalance in the microbiome has been linked to
various diseases, highlighting the importance of understanding the interaction between
microbiome and human health. First, we investigated the effect of Bacillus amyloliquefaciens
(B. amyloliquefaciens) on the accumulation of gamma-aminobutyric acid (GABA) in
germinated rice seed. Afterward, we tested the effect of those germinated rice seed on
production of type I collagen (COL1) in the dorsal skin of mice. GABA content were detected
in the germinated rice incubated with or without B. amyloliquefaciens by the colorimetric test.
Further, amount of COL1 were detected using western blot method. The results showed that
the topical application of supernatant from rice seed co-cultivated with B. amyloliquefaciens
can significantly increase the production of COL1 in the dorsal skin of mice. Secondly, we
investigated whether Cutibacterium acnes (C. acnes) lipase or palmitic acid could boost the
antibody production against SARS-CoV-2 membrane glycoprotein (M protein) in mice. Mice
were subcutaneously immunized with M protein plus lipase or palmitic acid 3 times in 2-week
intervals. The level interleukin (IL)-6 in the lung of mice were quantified by enzyme linked
immune sorbent assay (ELISA). Our data demonstrated that co-immunization with M protein
plus lipase or palmitic acid effectively induced a high antibody response in comparison to
immunization with M protein alone in mice. Furthermore, the production of IL-6 induced by
SARS-CoV-2 M protein was drastically reduced in the lung of mice immunized with M protein
plus lipase or palmitic acid. In summary, these studies provide insights into the potential of
naturally derived adjuvants for COVID-19 vaccine development and the importance of bacteria
in the microbiome as biotherapeutics for treatments of human diseases.
關鍵字(中) ★ 痤瘡丙酸桿菌
★ COVID-19 疫苗
★ GABA
★ 成纖維細胞
★ IL-6
★ IAA
★ 脂肪酶
★ M 蛋白
★ GABA 積累
★ 小鼠背部皮膚
★ 棕櫚酸
★ siRNA
關鍵字(英) ★ C. acnes
★ COVID-19 vaccine
★ GABA
★ fibroblast cells
★ IL-6
★ IAA
★ lipase
★ M protein
★ accumulation of GABA
★ dorsal skin of mice
★ palmitic acid
★ siRNA
論文目次 Table of Contents
Abstract in Chinese I
Abstract in English II
Acknowledgments III
Table of Contents V
List of Figures IX
List of Tables. IX
Abbreviations X
Chapter I. Introduction 1
1.1. Microbiome. 1
1.1.1. Human Microbiome 1
1.1.2. Plant microbiome 4
1.3. Human skin and its microbiome 6
1.3.1. Most abundant skin bacteria 6
1.3.2. C. acnes lipase 7
1.3.3. Aging Skin and Type I collagen (COL1) 8
1.4. Plant growth-promoting bacteria 9
1.4.1. B. amyloliquefaciens 9
1.5. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 11
1.5.1 SARS-CoV-2 M protein 12
1.5.2. Interleukin (IL)- 6 and cytokine storm in COVID-19 13
Chapter II. Co-Immunization of Mice with M Protein and Cutibacterium acnes Lipase Enhances the Antibody Responses to Sars-Cov-2 Membrane Glycoprotein and Mitigates the Interleukin-6 Production in Mice Lung 15
2.1. Introduction 15
2.2. Materials and methods 17
2.2.1. Animals 17
2.2.2. Cloning and expression of SARS-CoV-2 M protein and C. acnes lipase 17
2.2.3. Immunization of mice and detection of antibody titer 18
2.2.4. Western blotting 18
2.2.4. Cell culture 19
2.2.5. Gas chromatography-mass spectrometry (GC-MS) 19
2.2.6. Immunohistochemical staining (IHC) 20
2.2.7. Nasal inoculation of recombinant M protein and IL-6 determination 20
2.2.8. Statistical analysis 20
2.3. Results 21
2.3.1. Co-immunization with M protein plus lipase induced high humoral response 21
2.3.2. Co-immunization with M protein plus lipase induced the activation of DCs 22
2.3.3. GC-MS Analysis for the identification of FFAs produced by SZ95 cells 23
2.3.4. Co-immunization with M protein plus palmitic acid induced higher humoral response 26
2.3.5. Recombinant M protein-induced IL-6 in the BALF of mice and in vitro neutralization 27
2.3.6 M protein-induced IL-6 production in BALF of mice immunized with GFP, lipase or M protein. 28
2.4. Discussion 30
2.5 Summary of Chapter II. 32
Chapter III. Bacillus amyloliquefaciens Increases the Gaba in Rice Seed for Upregulation of Type I Collagen in The Skin 33
3.1 Introduction 33
3.2. Materials and methods 34
3.2.1 Animals and housing 34
3.2.2. Bacterial culture 35
3.2.3. Rice cultivation with bacteria and sampling 35
3.2.4. Gas chromatography-mass spectrometry (GC–MS) analysis 35
3.2.5. Quantification of GABA content in rice grain 36
3.2.6. Cell culture 36
3.2.7. siRNA-mediated gene silencing of GABRB3 gene/GABA-A receptor 37
3.2.8. Western blotting 37
3.2.9 Cell viability assay 38
3.2.10. Statistical analysis 38
3.2.11. Identification of bacteria 38
3.3. Results 39
3.3.1. GABA and IAA production in rice co-cultivated with B. amyloliquefaciens EH-9 39
3.3.2. COL1 production in NIH/3T3 with and without GABA 40
3.3.3. COL1 production in the dorsal skin of mice 42
3.3.4. COL1 production in the GABRB3 gene knocked down mice 44
3.3.5. Cell viability assay in NIH/3T3 with GABA 45
3.4. Discussion 46
3.5. Summary of Chapter III. 49
Chapter IV. Future Work 50
Changes In Electricity Generation of Gut Probiotic Lactobacillus Rhamnosus Via Serial Passage 50
4.1. Introduction 50
4.2. Materials and Methods 52
4.2.1. Bacterial culture and fermentation 52
4.2.2. Serial passage 52
4.2.3. Detection of bacterial electricity generation in microbial fuel cells (MFCs) 53
4.2.4. Detection of FMN production 53
4.2.5. Statistical analysis 54
4.3. Results 54
4.3.1. Linoleic acid as a prebiotic to induce fermentation of L. rhamnosus EH8 54
4.3.2. Fermentation ability of L. rhamnosus EH8 under anaerobic/aerobic condition. 55
4.3.3. Electricity production of L. rhamnosus EH8 in MFCs 56
4.3.4. Electricity generation in serial passages of L. rhamnosus EH-8. 58
4.4. Discussion 60
4.5. Limitations in future work. 62
Chapter V. Conclusion and Outlook 63
PUBLICATIONS 64
BIBLIOGRAPHY 66
參考文獻 [1]. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nut Rev 2012;70:S38-S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.
[2]. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med 2018;24:392-400. https://doi.org/10.1038/nm.4517.
[3]. Turner TR, James EK, Poole PS. The plant microbiome. Gen Biol 2013;14:209. https://doi.org/10.1186/gb-2013-14-6-209.
[4]. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020;8:103. https://doi.org/10.1186/s40168-020-00875-0.
[5]. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol 2013;14:1-10. https://doi.org/10.1186/gb-2013-14-6-209.
[6]. Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med 2019;216:20-40. https://doi.org/10.1084/jem.20180448.
[7]. Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc 2019;118 Suppl 1:S23-s31. https://doi.org/10.1016/j.jfma.2018.08.011.
[8]. Shu W-S, Huang L-N. Microbial diversity in extreme environments. Nat Rev Micro 2022;20:219-35. https://doi.org/10.1038/s41579-021-00648-y.
[9]. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal 2016;10:2557-68. https://doi.org/10.1038/ismej.2016.45.
[10]. Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 2017;14:573-84. https://doi.org/10.1038/nrgastro.2017.88.
[11]. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol 2013;14:209. https://doi.org/10.1186/gb-2013-14-6-209.
[12]. Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 2007;20:619-26. https://doi.org/10.1094/MPMI-20-6-0619.
[13]. Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. Stress Biology 2022;2:3. https://doi.org/10.1007/s44154-021-00027-w.
[14]. Leyva-Rojas JA, Coy-Barrera E, Hampp R. Interaction with soil bacteria affects the growth and amino acid content of Piriformospora indica. Molecules 2020;25:572. https://doi.org/10.3390/molecules25030572.
[15]. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;9:244-53. https://doi.org/10.1038/nrmicro2537.
[16]. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microb 2018;16:143-55. https://doi.org/10.1038/nrmicro.2017.157.
[17]. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Res 2008;18:1043-50. https://doi.org/10.1101/gr.075549.107.
[18]. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Archives of dermatology 2002;138:1462-70.
[19]. Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an opportunistic pathogen: An update of its virulence-associated factors. Microorganisms 2021;9:303. https://doi.org/10.3390/microorganisms9020303.
[20]. Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s cube of clinical microbiology? Antibiotics 2017;6:25. https://doi.org/10.3390/antibiotics6040025.
[21]. De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the anti-acne potential of impepho [Helichrysum odoratissimum (L.) Sweet] to combat cutibacterium acnes virulence. Front pharmacol 2020;10:1559. https://doi.org/10.3389/fphar.2019.01559.
[22]. Weeks JG, McCarty L, Black T, Fulton Jr JE. The inability of a bacterial lipase inhibitor to control acne vulgaris. J Invest Dermatol 1977;69:236-43. https://doi.org/10.1111/1523-1747.ep12506360.
[23]. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Derm-Endocrinol 2012;4:308-19. https://doi.org/10.4161/derm.22804.
[24]. Naylor EC, Watson RE, Sherratt MJ. Molecular aspects of skin ageing. Maturitas 2011;69:249-56. https://doi.org/10.1016/j.maturitas.2011.04.011.
[25]. Fisher GJ, Wang Z, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997;337:1419-29. https://doi.org/10.1056/NEJM199711133372003.
[26]. Poria V, Dębiec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, et al. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Front Plant Sci 2022;13. https://www.frontiersin.org/articles/10.3389/fpls.2022.999866.
[27]. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 2003;255:571-86. https://doi.org/10.1023/A:1026037216893.
[28]. Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 2007;20:619-26. https://doi.org/10.1094/MPMI-20-6-0619.
[29]. Huang C-J ZE, Wang S, Sunita K, Wei P, Hsiu-Ni Kung, C-M Huang, Y-H Lee. Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulates Serum Neuropeptide Y to Relieve Psychological Stress of Mice through Modulations of GABAB Receptor and Vagus Nerves. Biol Bull Russ Acad Sci in press;1-8. https://doi.org/10.1134/S1062359022700054.
[30]. Suzuki S, He Y, Oyaizu H. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 2003;47:0138-43. https://doi.org/10.1111/j.1574-6976.2007.00072.x.
[31]. Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol 2015;65:1381-89. https://doi.org/10.1007/s13213-014-0976-y.
[32]. Shinshi H, Mohnen D, Meins Jr F. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 1987;84:89-93. https://doi.org/10.1073/pnas.84.1.89.
[33]. Mohnen D, Shinshi H, Felix G, Meins Jr F. Hormonal regulation of β1, 3‐glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 1985;4:1631-35. https://doi.org/10.1002/j.1460-2075.1985.tb03830.x.
[34]. Bunsangiam S, Sakpuntoon V, Srisuk N, Ohashi T, Fujiyama K, Limtong S. Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis. Mycobiology 2019;47:292-300. https://doi.org/10.1080/12298093.2019.1638672.
[35]. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet 2020;395:565-74. https://doi.org/10.1016/S0140-6736(20)30251-8.
[36]. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265-69. https://doi.org/10.1038/s41586-020-2008-3.
[37]. Chen J, Deng Y, Huang B, Han D, Wang W, Huang M, et al. DNA Vaccines Expressing the Envelope and Membrane Proteins Provide Partial Protection Against SARS-CoV-2 in Mice. Front Immunol 2022;727. https://doi.org/10.3389/fimmu.2022.827605.
[38]. Jakhmola S, Indari O, Kashyap D, Varshney N, Rani A, Sonkar C, et al. Recent updates on COVID-19: a holistic review. Heliyon 2020;6:e05706. https://doi.org/10.1016/j.heliyon.2020.e05706.
[39]. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? Biomed Res Int 2020;2020:4389089. https://doi.org/10.1155/2020/4389089.
[40]. Marques-Pereira C, Pires MN, Gouveia RP, Pereira NN, Caniceiro AB, Rosário-Ferreira N, et al. SARS-CoV-2 membrane protein: from genomic data to structural new insights. Int J Mol Sci 2022;23:2986. https://doi.org/10.3390/ijms23062986.
[41]. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2021;54:159-63. https://doi.org/10.1016/j.jmii.2020.03.022.
[42]. Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, et al. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med 2022;9:815389. https://doi.org/10.3389/fmed.2022.815389.
[43]. Bartlett S, Skwarczynski M, Toth I. Lipids as activators of innate immunity in peptide vaccine delivery. Curr Med Chem 2020;27:2887-901. https://doi.org/10.2174/0929867325666181026100849.
[44]. Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens 2020;9:324. https://doi.org/10.3390/pathogens9050324.
[45]. Frisoni P, Neri M, D’Errico S, Alfieri L, Bonuccelli D, Cingolani M, et al. Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1β, IL-6, IL-15 and TNF-α. Forensic Sci Med Pathol 2022;18:4-19. https://doi.org/10.1007/s12024-021-00414-9.
[46]. Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020;40:1-7. https://doi.org/10.1186/s41232-020-00146-3.
[47]. Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020;111:102452. https://doi.org/10.1016/j.jaut.2020.102452.
[48]. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
[49]. Khan I, Ahmed Z, Sarwar A, Jamil A, Anwer F. The Potential Vaccine Component for COVID-19: A Comprehensive Review of Global Vaccine Development Efforts. Cureus 2020;12:e8871. https://doi.org/10.7759/cureus.8871.
[50]. Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front immunol 2020;11:585354. https://doi.org/10.3389/fimmu.2020.585354.
[51]. Li S, Yuan L, Dai G, Chen RA, Liu DX, Fung TS. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front Microbiol 2020;10:3022. https://doi.org/10.3389/fmicb.2019.03022.
[52]. Shi SQ, Peng JP, Li YC, Qin C, Liang GD, Xu L, et al. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Mol Immunol 2006;43:1791-8. https://doi.org/10.1016/j.molimm.2005.11.005.
[53]. Zhao P, Cao J, Zhao LJ, Qin ZL, Ke JS, Pan W, et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology 2005;331:128-35. https://doi.org/10.1016/j.virol.2004.10.016.
[54]. Al-Amri SS, Abbas AT, Siddiq LA, Alghamdi A, Sanki MA, Al-Muhanna MK, et al. Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein. Sci Rep 2017;7:44875. https://doi.org/10.1038/srep44875.
[55]. Ong E, Wong MU, Huffman A, He Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front Immunol 2020;11:1581. https://doi.org/10.3389/fimmu.2020.01581.
[56]. Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012;18:274-80. https://doi.org/10.1038/nm.2612.
[57]. Kaczynska A, Klosinska M, Janeczek K, Zarobkiewicz M, Emeryk A. Promising immunomodulatory effects of bacterial lysates in allergic diseases. Front Immunol 2022;3181. https://doi.org/10.3389/fimmu.2022.907149.
[58]. Mussalem JS, Vasconcelos JRC, Squaiella CC, Ananias RZ, Braga EG, Rodrigues MM, et al. Adjuvant effect of the Propionibacterium acnes and its purified soluble polysaccharide on the immunization with plasmidial DNA containing a Trypanosoma cruzi gene. Microbiol Immunol 2006;50:253-63. https://doi.org/10.1111/j.1348-0421.2006.tb03791.x.
[59]. Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018;32:5-14. https://doi.org/10.1111/jdv.15043.
[60]. Falcocchio S, Ruiz C, Pastor FJ, Saso L, Diaz P. Propionibacterium acnes GehA lipase, an enzyme involved in acne development, can be successfully inhibited by defined natural substances. J Mol Catal 2006;40:132-37. https://doi.org/10.1016/j.molcatb.2006.02.011.
[61]. Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol 2015;8:371-88. https://doi.org/10.2147/CCID.S69135.
[62]. Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front physiol 2017;8:902. https://doi.org/10.3389/fphys.2017.00902.
[63]. Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 2019;68:915-32. https://doi.org/10.1007/s00011-019-01273-5.
[64]. Boivin GP, Hickman DL, Creamer-Hente MA, Pritchett-Corning KR, Bratcher NA. Review of CO(2) as a Euthanasia Agent for Laboratory Rats and Mice. J Am Assoc Lab Anim Sci 2017;56:491-99. https://www.ncbi.nlm.nih.gov/pubmed/28903819.
[65]. Keshari S, Sipayung AD, Hsieh CC, Su LJ, Chiang YR, Chang HC, et al. IL-6/p-BTK/p-ERK signaling mediates calcium phosphate-induced pruritus. FASEB J 2019;33:12036-46. https://doi.org/10.1096/fj.201900016RR.
[66]. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol 2004;82:497-505. https://doi.org/10.1111/j.0818-9641.2004.01286.x.
[67]. Unno M, Cho O, Sugita T. Inhibition of Propionibacterium acnes lipase activity by the antifungal agent ketoconazole. Microbiol immunol 2017;61:42-44. https://doi.org/10.1111/1348-0421.12464.
[68]. Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 2005;174:5390-7. https://doi.org/10.4049/jimmunol.174.9.5390.
[69]. Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccines Immunother 2016;12:612-22. https://doi.org/10.1080/21645515.2015.1105415.
[70]. Heath WR, Kato Y, Steiner TM, Caminschi I. Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol 2019;58:44-52. https://doi.org/10.1016/j.coi.2019.04.003.
[71]. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306. https://doi.org/doi:10.1038/nri1592.
[72]. Ahmad R, Al-Roub A, Kochumon S, Akther N, Thomas R, Kumari M, et al. The Synergy between Palmitate and TNF-alpha for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J Immunol 2018;200:3599-611. https://doi.org/10.4049/jimmunol.1701552.
[73]. Szatmari I, Nagy L. Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO J 2008;27:2353-62. https://doi.org/10.1038/emboj.2008.160.
[74]. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511. https://doi.org/10.1038/nri1391.
[75]. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135-45. https://doi.org/10.1038/35100529.
[76]. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front immunol 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708.
[77]. Pham MT, Yang AJ, Kao M-S, Gankhuyag U, Zayabaatar E, Jin S-LC, et al. Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. J Nutr Biochem 2021;98:108821. https://doi.org/10.1016/j.jnutbio.2021.108821.
[78]. Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S. An In Vivo Targeted Deletion of the Calmodulin-Binding Domain from Rice Glutamate Decarboxylase 3 (Os GAD3) Increases γ-Aminobutyric Acid Content in Grains. Rice 2020;13:1-12. https://doi.org/org/10.1186/s12284-020-00380-w.
[79]. Koike S, Matsukura, Chiaki, Takayama M, Asamizu E, Ezura H. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.). Plant Cell Physiol 2013;54:793-807. https://doi.org/10.1093/pcp/pct035.
[80]. Li R, Li R, Li X, Fu D, Zhu B, Tian H, et al. Multiplexed CRISPR/Cas9‐mediated metabolic engineering of γ‐aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 2018;16:415-27. https://doi.org/10.1111/pbi.12781.
[81]. Bawa A, Anilakumar K. Genetically modified foods: safety, risks and public concerns—a review. J Food Sci Technol 2013;50:1035-46. https://doi.org/10.1007/s13197-012-0899-1.
[82]. Kishinami I. Effect of auxins (2, 4-dichlorophenoxyacetic acid, indole-3-acetic acid and naphthaleneacetic acid) on the accumulation of γ-aminobutyric acid in excised rice root tips. Plant Cell Physiol 1988;29:581-85. https://doi.org/10.1093/oxfordjournals.pcp.a077532.
[83]. Yogeswara IBA, Kittibunchakul S, Rahayu ES, Domig KJ, Haltrich D, Nguyen TH. Microbial production and enzymatic biosynthesis of γ-aminobutyric acid (GABA) using Lactobacillus plantarum FNCC 260 isolated from Indonesian fermented foods. Processes 2020;9:22. https://doi.org/10.3390/pr9010022.
[84]. Dhakal R, Bajpai VK, Baek K-H. Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz J Microbiol 2012;43:1230-41. https://doi.org/10.1590/S1517-83822012000400001.
[85]. Rashmi D, Zanan R, John S, Khandagale K, Nadaf A. γ-aminobutyric acid (GABA): Biosynthesis, role, commercial production, and applications. Studies in natural products chemistry 2018;57:413-52. https://doi.org/10.1016/B978-0-444-64057-4.00013-2.
[86]. Wan-Mohtar WAAQI, Sohedein MNA, Ibrahim MF, Ab Kadir S, Suan OP, Weng Loen AW, et al. Isolation, identification, and optimization of γ-aminobutyric acid (GABA)-producing Bacillus cereus strain KBC from a commercial soy sauce moromi in submerged-liquid fermentation. Processes 2020;8:652. https://doi.org/10.3390/pr8060652.
[87]. Sawai Y, Yamaguchi Y, Miyama D, Yoshitomi H. Cycling treatment of anaerobic and aerobic incubation increases the content of γ-aminobutyric acid in tea shoots. Amino acids 2001;20:331-34. https://doi.org/10.1007/s007260170049.
[88]. Wang HF, Tsai YS, Lin ML, Ou AS-m. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food chem 2006;96:648-53. https://doi.org/10.1016/j.foodchem.2005.02.046.
[89]. Saikusa T, Horino T, Mori Y. Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci Biotechnol Biochem 1994;58:2291-92. https://doi.org/10.1271/bbb.58.2291.
[90]. Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. Plant Signal Behav 2021;16:1862565. https://doi.org/10.1080/15592324.2020.1862565.
[91]. Shiu M-S, Shyu Y-T, Wu S-J. Flooding stress and high-pressure treatment enhance the GABA content of the vegetable soybean (Glycine max Merr.). Agriculture 2020;10:175. https://doi.org/10.3390/agriculture10050175.
[92]. Gramazio P, Takayama M, Ezura H. Challenges and prospects of new plant breeding techniques for GABA improvement in crops: tomato as an example. Front Plant Sci 2020;11:577980. https://doi.org/10.3389/fpls.2020.577980.
[93]. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 1997;61:1168-71. https://doi.org/10.1271/bbb.61.1168.
[94]. Lee J, Nonaka S, Takayama M, Ezura H. Utilization of a genome-edited tomato (Solanum lycopersicum) with high gamma aminobutyric acid content in hybrid breeding. J Agric Food Chem 2018;66:963-71. https://doi.org/10.1021/acs.jafc.7b05171.
[95]. Ghayoumi M, Emamjomeh A, Kavousi K, Najafi A. Rhizosphere soil bacteria community vary and correlate with saffron quality at four locations. Rhizosphere 2022;100627. https://doi.org/10.1016/j.rhisph.2022.100627.
[96]. Qiao J-Q, Wu H-J, Huo R, Gao X-W, Borriss R. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem Biol Technol Agric 2014;1:1-14. https://doi.org/10.1186/s40538-014-0012-2.
[97]. Uehara E, Hokazono H, Hida M, Sasaki T, Yoshioka H, Matsuo N. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs). Biosci Biotechnol Biochem 2017;81:1198-205. https://doi.org/10.1080/09168451.2017.1290518.
[98]. Pham MT, Huang CM, Kirschner R. The plant growth‐promoting potential of the mesophilic wood‐rot mushroom Pleurotus pulmonarius. J Appl Microbiol 2019;127:1157-71. https://doi.org/10.1111/jam.14375.
[99]. Vine JH, Noiton D, Plummer JA, Baleriola-Lucas C, Mullins MG. Simultaneous quantitation of indole 3-acetic Acid and abscisic Acid in small samples of plant tissue by gas chromatography/mass spectrometry/selected ion monitoring. Plant Physiol 1987;85:419-22. https://doi.org/10.1104/pp.85.2.419.
[100]. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep 2018;8:1-11. https://doi.org/10.1038/s41598-018-19463-2.
[101]. Keshari S, Balasubramaniam A, Myagmardoloonjin B, Herr DR, Negari IP, Huang C-M. Butyric acid from probiotic staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. Int J Mol Sci 2019;20:4477. https://doi.org/10.3390/ijms20184477.
[102]. Han D-O, Kim H-Y, Lee H-J, Shim I-S, Hahm D-H. Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J Microbiol Biotechnol 2007;17:1661-69. https://koreascience.kr/article/JAKO200709906364147.page.
[103]. Cho D-H, Lim S-T. Germinated brown rice and its bio-functional compounds. Food Chem 2016;196:259-71. https://doi.org/10.1016/j.foodchem.2015.09.025.
[104]. Ng L, Sariah M, Sariam O, Radziah O, Zainal Abidin M. Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Austr J Crop Sci 2012;6:170-75. https://scholar.google.com/scholar_lookup?title=Rice%20seed%20bacterization%20for%20promoting%20germination%20and%20seedling%20growth%20under%20aeroic%20cultivation%20system&publication_year=2012&author=L.C.%20Ng&author=M.%20Sariah&author=O.%20Sariam&author=O.%20Radziah&author=M.A.Z.%20Abidin.
[105]. Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, et al. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol 2017;8:1438. https://doi.org/10.3389/fmicb.2017.01438.
[106]. Vinci G, Cozzolino V, Mazzei P, Monda H, Savy D, Drosos M, et al. Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 2018;429:437-50. https://doi.org/10.1007/s11104-018-3701-y.
[107]. Mishra VK, Kumar A. Biosynthesis of indole-3-acetic acid by plant growth promoting rhizobacteria, Klebsiella pneumonia, Bacillus amyloliquefaciens and Bacillus subtilis. Afr J Microbiol Res 2015;9:1139-49. https://doi.org/10.5897/AJMR2015.7456.
[108]. Maia Campos PM, Melo MO, Siqueira César FC. Topical application and oral supplementation of peptides in the improvement of skin viscoelasticity and density. J Cosmet Dermatol 2019;18:1693-99. https://doi.org/10.1111/jocd.12893.
[109]. Cho S. The role of functional foods in cutaneous anti-aging. J Lifestyle Med 2014;4:8. https://doi.org/10.15280/jlm.2014.4.1.8.
[110]. Emri G, Horkay I, Remenyik E. The role of free radicals in the UV-induced skin damage. Photo-aging. Orv Hetil 2006;147:731-35. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+role+of+free+radicals+in+the+UV-induced+skin+damage.+Photo-aging&btnG=.
[111]. Jurkiewicz BA, Bissett DL, Buettner GR. Effect of topically applied tocopherol on ultraviolet radiation-mediated free radical damage in skin. J Invest Dermatol 1995;104:484-88. https://doi.org/10.1111/1523-1747.ep12605921.
[112]. Janson M. Orthomolecular medicine: the therapeutic use of dietary supplements for anti-aging. J Orthomol Med 2006;1:261. https://doi.org/10.2147/ciia.2006.1.3.261.
[113]. Krinsky NI. Carotenoids as chemopreventive agents. Prev Med 1989;18:592-602. https://doi.org/10.1016/0091-7435(89)90032-7.
[114]. Vayalil PK, Mittal A, Hara Y, Elmets CA, Katiyar SK. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 2004;122:1480-87. https://doi.org/10.1111/j.0022-202X.2004.22622.x.
[115]. Denda M, Inoue K, Inomata S, Denda S. γ-aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 2002;119:1041-47. https://doi.org/10.1046/j.1523-1747.2002.19504.x.
[116]. Uehara E, Hokazono H, Sasaki T, Yoshioka H, Matsuo N. Effects of GABA on the expression of type I collagen gene in normal human dermal fibroblasts. Biosci Biotechnol Biochem 2017;81:376-79. https://doi.org/10.1080/09168451.2016.1238296.
[117]. Ohsawa R, Miyazaki H, Niisato N, Shiozaki A, Iwasaki Y, Otsuji E, et al. Intracellular chloride regulates cell proliferation through the activation of stress‐activated protein kinases in MKN28 human gastric cancer cells. J Cell Physiol 2010;223:764-70. https://doi.org/10.1002/jcp.22088.
[118]. Miyazaki H, Shiozaki A, Niisato N, Ohsawa R, Itoi H, Ueda Y, et al. Chloride ions control the G1/S cell-cycle checkpoint by regulating the expression of p21 through a p53-independent pathway in human gastric cancer cells. Biochem Biophys Res Commun Biochem 2008;366:506-12. https://doi.org/10.1016/j.bbrc.2007.11.144.
[119]. Niisato N, Eaton DC, Marunaka Y. Involvement of cytosolic Cl− in osmoregulation of α-ENaC gene expression. Am J Physiol Renal Physiol 2004;287:F932-F39. https://doi.org/10.1152/ajprenal.00131.2004.
[120]. Fan W, Shi B, Wei H, Ma X, He X, Feng K. γ-Aminobutyric acid B receptor improves carbon tetrachloride-induced liver fibrosis in rats. Dig Dis Sci 2013;58:1909-15. https://doi.org/10.1007/s10620-013-2623-z.
[121]. Haruta S, Kanno N. Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 2015;30:123-25. https://doi.org/10.1264/jsme2.ME3002rh.
[122]. Shaikh J, Patil NP, Shinde V, Gaikwad VB. Simultaneous decolorization of methyl red and generation of electricity in microbial fuel cell by Bacillus circulans NPP1. J Microb Biochem Technol 2016;8:428-32. https://doi.org/10.4172/1948-5948.1000320.
[123]. Liu X, Wang S, Xu A, Zhang L, Liu H, Ma LZ. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019;103:1535-44. https://doi.org/10.1007/s00253-018-9484-5.
[124]. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 2008;105:3968-73. https://doi.org/10.1073/pnas.0710525105.
[125]. Choi O, Um Y, Sang BI. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 2012;109:2494-502. https://doi.org/10.1002/bit.24520.
[126]. Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, et al. Extracellular polymeric substances from Shewanella sp. HRCR‐1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 2011;13:1018-31. https://doi.org/10.1111/j.1462.
[127]. Kumar SS, Kumar V, Malyan SK, Sharma J, Mathimani T, Maskarenj MS, et al. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel 2019;254:115526. https://doi.org/10.1016/j.fuel.2019.05.109.
[128]. Kumar R, Singh L, Zularisam A, Hai FI. Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res 2018;42:369-94. https://doi.org/10.1002/er.3780.
[129]. Mohammadifar M, Tahernia M, Yang JH, Koh A, Choi S. Biopower-on-Skin: Electricity generation from sweat-eating bacteria for self-powered E-Skins. Nano Energy 2020;75:104994. https://doi.org/10.1016/j.nanoen.2020.104994.
[130]. Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew sustain energy rev 2016;56:1322-36. https://doi.org/10.1016/j.rser.2015.12.029.
[131]. Wang W, Du Y, Yang S, Du X, Li M, Lin B, et al. Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Anal Chem 2019;91:12138-41. https://doi.org/10.1021/acs.analchem.9b03176.
[132]. Lee H-Y, Park J-H, Seok S-H, Baek M-W, Kim D-J, Lee K-E, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006;1761:736-44. https://doi.org/10.1016/j.bbalip.2006.05.007.
[133]. Duangurai T, Reamtong O, Rungruengkitkun A, Srinon V, Boonyuen U, Limmathurotsakul D, et al. In vitro passage alters virulence, immune activation and proteomic profiles of Burkholderia pseudomallei. Sci Rep 2020;10:8320. https://doi.org/10.1038/s41598-020-64914-4.
[134]. Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, et al. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol 2002;184:1430-7. https://doi.org/10.1128/jb.184.5.1430-1437.2002.
[135]. Mankoski R, Hoepf T, Krakowka S, Eaton K. flaA mRNA transcription level correlates with Helicobacter pylori colonisation efficiency in gnotobiotic piglets. J Med Microbiol 1999;48:395-99. https://doi.org/10.1099/00222615-48-4-395.
[136]. U′Ren JM, Schupp JM, Pearson T, Hornstra H, Friedman CLC, Smith KL, et al. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping. BMC Microbiology 2007;7:23. https://doi.org/10.1186/1471-2180-7-23.
[137]. Pham MT, Yang JJ, Balasubramaniam A, Rahim AR, Adi P, Do TTM, et al. Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet. Sci Rep 2020;10:21916. https://doi.org/10.1038/s41598-020-78835-9.
[138]. Cahoon LA, Freitag NE (2018) The electrifying energy of gut microbes. In. Nature Publishing Group UK London
[139]. Tian T, Fan X, Feng M, Su L, Zhang W, Chi H, et al. Flavin-mediated extracellular electron transfer in Gram-positive bacteria Bacillus cereus DIF1 and Rhodococcus ruber DIF2. RSC Advances 2019;9:40903-09. https://doi.org/10.1039/C9RA08045G.
[140]. Keshari S, Balasubramaniam A, Myagmardoloonjin B, Herr DR, Negari IP, Huang CM. Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International journal of molecular sciences 2019;20:4477. https://doi.org/10.3390/ijms20184477.
[141]. Balasubramaniam A, Adi P, Tra My DT, Keshari S, Sankar R, Chen C-L, et al. Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Sci Rep 2020;10:21585. https://doi.org/10.1038/s41598-020-78132-5.
[142]. Balasubramaniam A, Adi P, Do Thi TM, Yang J-H, Labibah AS, Huang C-M. Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B. Microorganisms 2020;8:1092. https://www.mdpi.com/2076-2607/8/7/1092.
[143]. Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, et al. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A 2019;116:26892-9. https://doi.org/10.1073/pnas.1915678116.
[144]. Rocha EP. An appraisal of the potential for illegitimate recombination in bacterial genomes and its consequences: from duplications to genome reduction. Genome Res 2003;13:1123-32. https://doi.org/10.1101/gr.966203.
[145]. Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet 2001;17:589-96. https://doi.org/10.1016/s0168-9525(01)02447-7.
[146]. Moran NA. Microbial minimalism: genome reduction in bacterial pathogens. Cell 2002;108:583-86. https://doi.org/10.1016/s0092-8674(02)00665-7.
[147]. Klasson L, Andersson SG. Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol 2004;12:37-43. https://doi.org/10.1016/j.tim.2003.11.006.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明