博碩士論文 107887605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.189.180.76
姓名 裴皇玲(Bui Hoang Linh)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER)
相關論文
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ 建立雙離子高分子修飾蛋白質技術與分析
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於其在許多生物醫學應用中的潛力,包括組織修復和再生、藥物管理、抗菌和防污應用,仿生兒茶酚功能化水凝膠受到了廣泛的關注。
在第二章中,多巴胺被開發為光引髮劑,利用一鍋法製備功能性兒茶酚胺水凝膠。 根據偽一級動力學,多巴胺在酸性溶液中在紫外線照射下產生自由基,最有可能是半醌自由基,以引發加成聚合。 多巴胺引發的光聚合提供了一種簡單直接的方法,同時還防止了兒茶酚基團的不利氧化。 為了創建生物相容性水凝膠,使用了超親水性磺基甜菜鹼甲基丙烯酸酯(SBMA)。 為了研究聚合機理以及pH、UV劑量和多巴胺濃度方面的理想實驗環境,進行了1H核磁共振、紫外-可見光譜、凝膠滲透色譜和流變學測試。 所得兒茶酚官能化 pSBMA 水凝膠的機械特性、自愈性和可注射性、高粘附性和抗污染性均有所提高,證明了其特殊品質。 因此,創建兒茶酚胺水凝膠的合成方法可以有利於多巴胺在許多應用中的利用。
第三章的研究目標是創建一種改性技術,使鎳鈦諾合金上的一致兒茶酚輔助兩性電離成為可能,從而實現生物相容性和抗污染性。多巴胺引發的光聚合用於生成兒茶酚官能化的聚磺基甜菜鹼甲基丙烯酸酯 (pSBMA/DA)。 多巴胺(DA)在紫外線照射下產生的半醌自由基抑制pH 2溶液的分子內環化和分子間二聚化失去電子。 揭示了 pSBMA/DA 光聚合中的準一級聚合動力學以及數均分子量和表觀速率常數之間的關係。 PSBMA/DA 在 pH 值為 3 的溶液中開始聚集,防止兒茶酚部分過早氧化,並能夠均勻沉積在鎳鈦諾基材上。 當 pSBMA/DA 在 pH 調節至 8.5 後延伸時,兒茶酚部分通過形成雙齒結合被觸發與鎳鈦諾表面相互作用。 根據 X 射線光電子能譜 (XPS) 研究,較短的 pSBMA/DA 鍊和較高的兒茶酚含量可提供更多的錨定位點,從而提高兩性離子部分在底物上的覆蓋率。 有趣的是,在原子力顯微鏡 (AFM) 圖片中發現基於 pH 轉換方法的 pSBMA/DA 沉積是均勻且光滑的。 鎳鈦合金表面 pSBMA/DA 塗層的強離子水合作用可防止非特異性生物污垢吸附,並具有出色的防污能力。 經兩性離子處理的鎳鈦諾對金黃色葡萄球菌和大腸桿菌的粘附率降低99.9%。 此外,在培養條件下孵育24小時後,pSBMA/DA對NIH 3T3小鼠成纖維細胞表現出很強的防污性能。 綜合考慮,通過 pH 轉變技術的 pSBMA/DA 塗層為促進防污和塗層技術的均勻表面功能化提供了一種有前途的方法。
第四章討論了生物污垢如何粘附在各種表面上並通過傳播醫院感染來損害工業設施、醫療設備和/或醫院的功能。 兩性離子化合物的表面固定化可以阻止污染物的初始粘附,但其應用並不廣泛。 在這項研究中,我們提供了一種簡單、通用的兩步表面改性方法來提高抗污性。 為了創建“底漆”層(PDA/PEI),在第一階段將基材浸入含有多巴胺和支化聚乙烯亞胺(PEI)的共沉積溶液中。 PEI 的伯胺、仲胺和叔胺部分在第二步中被 1,3-丙烷磺內酯甜菜化,從而在底物上產生兩性離子。 甜菜鹼化後,經過開環烷基化反應的PS接枝PDA/PEI(PDA/PEI/S)的潤濕性發生了變化。 根據X射線光電子能譜,發現由PDA/PEI/S製成的表面具有兩性離子部分。 使用橢圓光度術和原子力顯微鏡進一步研究了 PEI 含量、薄膜厚度、底漆穩定性和甜菜鹼化之間的關係。 在理想條件下製造的兩性離子修飾的基材可以表現出強大的抗細菌污染能力,細菌粘附減少 98.5%。 該技術還展示了與基材無關的特性,可以在有機和無機表面上成功應用。 最後但並非最不重要的一點是,最近發現的方法表現出出色的生物相容性,與空白對照樣品沒有明顯的差異。 總的來說,我們相信簡單的表面改性技術將有助於推動未來兩性離子裝飾材料的生產。
第五章將討論貽貝類材料的應用研究。 由磷酸甜菜鹼 MPC 單體和兒茶酚 DMA 單體組成的 P(MPC-co-DMA) 共聚物被研究作為乾眼病 (DED) 的潛在局部治療方法。 該共聚物通過無規自由基共聚合成,產生不同程度的 DMA 官能化。 由於兒茶酚殘留,共聚物表現出粘膜粘附特性,引起粘蛋白吸光度最大值(UV-VIS)的紅移以及粘蛋白沉積表面上吸附質量密度的增加。 有趣的是,局部滴注 4 天后,p(MPC-co-DMA) 促進了兔眼眼表的牢固粘附。 在藥理作用方面,該共聚物表現出優異的抗氧化和抗炎作用,清除細胞內活性氧(ROS)並抑制炎症因子表達和細胞凋亡。 結果,DED 誘導的兔眼表現出淚膜穩定性和淚液分泌增強,表明有恢復的跡象。 展望未來,p(MPC-co-DMA)可以進一步用活性試劑(如抗體、抗生素)進行後修飾,以增強其抗菌活性或用作藥物載體。
摘要(英) Due to their potential in a number of bio-medical applications, including tissue repair and regeneration, drug administration, antimicrobial and antifouling applications, biomimetic catechol-functionalized hydrogels have received a lot of interest.
Dopamine was developed as a photo-initiator in chapter II to create functional catecholamine hydrogels utilizing a one-pot method. Dopamine produces free radicals under UV irradiation in an acidic solution, most likely semiquinone radicals, to initiate the addition polymerization, according to pseudo first-order kinetics. Dopamine-initiated photopolymerization offers a simple and straightforward method while also preventing the unfavorable oxidation to catechol groups. For the creation of biocompatible hydrogels, superhydrophilic sulfobetaine methacrylate (SBMA) was used. In order to investigate the polymerization mechanism and the ideal experimental circumstances in terms of pH, UV dosages, and dopamine concentration, 1H nuclear magnetic resonance, UV-vis spectroscopy, gel permeation chromatography, and rheological tests were carried out. The increased mechanical characteristics, self-healing and injectability, high adhesiveness, and fouling resistance of the resulting catechol-functionalized pSBMA hydrogels were evidence of their special qualities. As a result, the synthetic approach to creating catecholamine hydrogels can benefit the utilization of dopamine in a number of applications.
The study′s goal in chapter III is to create a modification technique that will make consistent catechol-assisted zwitterionization on nitinol alloy possible for biocompatibility and fouling resistance. Dopamine-initiated photo-polymerization is used to create catechol-functionalized polysulfobetaine methacrylate (pSBMA/DA). Semiquinone radicals produced from dopamine (DA) under UV irradiation inhibited pH 2 solution intramolecular cyclization and intermolecular dimerization from losing an electron. It is revealed how pseudo-first-order polymerization kinetics and relationships between the number average molecular weight and apparent rate constant in photopolymerization for pSBMA/DA. PSBMA/DA starts to aggregate in a solution with a pH of 3, preventing catechol moieties from early oxidation and enabling even deposition on the nitinol substrate. Catechol moieties are triggered to interact with the nitinol surface via the creation of bidentate binding as pSBMA/DA extends after pH adjustment to 8.5. A shorter pSBMA/DA chain with a higher catechol content offers more anchoring sites to improve the coverage of zwitterionic moieties on substrates, according to X-ray photoelectron spectroscopy (XPS) study. Interesting, pH-transition method-based pSBMA/DA deposition was seen in atomic force microscopy (AFM) pictures to be homogeneous and smooth. Strong ionic hydration of the pSBMA/DA coating on the surface of nitinol prevents non-specific bio-foulant adsorption and allows for outstanding antifouling capabilities. Nitinol treated with zwitterion has a 99.9% decrease rate for Staphylococcus aureus and Escherichia coli adhesion. Additionally, after 24 hours of incubation, pSBMA/DA displays a strong antifouling performance against NIH 3T3 mouse fibroblasts in culture conditions. All things considered, the pSBMA/DA coating via pH transition technique offers a promising method for facilitating homogeneous surface functionalization for antifouling and coating technology. In chapter IV, it is discussed how biofoulants can stick to various surfaces and impair the functionality of industrial facilities, medical devices, and/or hospitals by spreading nosocomial infections. Surface immobilization of zwitterionic compounds can stop the foulants′ initial adhesion, but it is not widely used. In this research, we provide a simple, universal two-step surface modification method to increase fouling resistance. To create a "primer" layer (PDA/PEI), the substrates were submerged in a co-deposition solution containing dopamine and branching polyethyleneimine (PEI) in the first phase. The primary, secondary, and tertiary amine moieties of PEI were betainized by 1,3-propane sultone in the second step, resulting in zwitterions on substrates. Following betainization, the wettability of PS-grafted PDA/PEI (PDA/PEI/S) with ring-opening alkylation reaction changed. Surfaces made of PDA/PEI/S were found to have zwitterionic moieties according to X-ray photoelectron spectroscopy spectra. The relationship between PEI content, film thickness, primer stability, and betainization was further examined using ellipsometry and atomic force microscopy. Zwitterion-decorated substrates created under ideal conditions can display great resistance against bacterial fouling, attaining a 98.5% reduction in bacterial adhesion. The technique also demonstrates a substrate-independent property, permitting successful application on both organic and inorganic surfaces. Last but not least, the recently discovered method exhibits outstanding biocompatibility, showing no discernible difference from blank control samples. Overall, we believe that the simple surface modification technique will help advance the production of materials ornamented with zwitterion in the future.
In chapter V, application-oriented research on mussel-inspired material will be discussed. P(MPC-co-DMA) copolymers, composed of phosphobetaine MPC monomer and catechol DMA monomer, were investigated as a potential topical treatment for dry eye disease (DED). The copolymers were synthesized via random free-radical copolymerization, producing different degrees of DMA functionalization. Owing to the catechol residues, the copolymers exhibited mucoadhesive properties, inducing a red shift in mucin absorbance maxima (UV-VIS) and an increase in adsorbed mass density on the mucin-deposited surface. Interestingly, p(MPC-co-DMA) facilitated robust adhesion on the ocular surface of the rabbit eye after 4 days of topical instillation. For pharmacological effect, the copolymers demonstrated excellent anti-oxidant and anti-inflammatory, scavenging intracellular reactive oxygen species (ROS) and inhibiting inflammatory factor expression and cell apoptosis. As a result, DED-induced rabbit eyes exhibited enhanced tear film stability and lacrimal fluid secretion, suggesting signs of recovery. For future perspective, p(MPC-co-DMA) can be further post-modify with active reagents (such as antibodies, antibiotics) for enhancing their antibacterial activity or use as a drug carrier.
關鍵字(中) ★ 兒茶酚功能化
★ 金屬絡合
★ 粘膜粘附
★ 兩性離子
★ 防污
關鍵字(英) ★ catechol functionalization
★ metal complexation
★ mucoadhesion
★ zwitterion
★ anti-fouling
論文目次 Abstract ii
摘要 xi
Acknowledgment xiv
Table of Contents xv
List of Figures xix
List of Tables xxxiii
CHAPTER I. Literature Review 1
1.1. Wet adhesion and mussel adhesive protein 1
1.2. Polydopamine surface chemistry 3
1.3. Physical and chemical properties 4
1.4. Catechol-functionalized polymer 6
1.5. Zwitterions 8
CHAPTER II. Dopamine-Initiated Photopolymerization for Versatile Catechol-Functionalized Hydrogel 11
1. Introduction 11
2. Experimental section 15
2.1 Materials. 15
2.2 Preparation of hydrogel. 16
2.3 1H nuclear magnetic resonance for Photolysis. 17
2.4 Characterization for Polymerization 17
2.5 ROS determination using 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) assay 18
2.6 Rheological study 18
2.7 Mechanical testing 19
2.8 Self-healing properties 19
2.9 Ti4+-Coordination complexation 19
2.10 Lap-shear tests 20
2.11 Cytotoxicity evaluation 21
2.12 Antifouling performance 22
3. Results and Discussion 22
3.1 pH effect on photopolymerization 22
3.2 Photo-initiation efficiency of dopamine 27
3.3 Swelling and mechanical properties of pSBMA/DA 32
3.4 Self-healing and injectable performance 33
3.5 Metal-catechol complexation 34
3.6 Adhesion performance 36
3.7 Biocompatibility evaluation 39
3.8 Antifouling properties 40
4. Conclusions 41
CHAPTER III. Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach 42
1. Introduction 42
2. Experimental Section 47
2.1 Materials 47
2.2. Synthesis of pSBMA/DA 48
2.3. Preparation of pSBMA/DA-modified nitinol 48
2.4. Characterization 49
2.5. Surface wettability 51
2.6. Antifouling against bacterial attachment 51
2.7. Surface coating stability assessment 52
2.8. Antifouling against fibroblast adhesion 52
2.9. Biocompatibility assessment 52
3. Results and Discussion 53
3.1. Photoinitiation efficiency of DA 53
3.2. pH-responsive characteristic of catechol group in pSBMA/DA polymer. 58
3.3. Surface characterization of pSBMA/DA coating. 63
3.4. Surface wettability of pSBMA/DA coatings. 69
3.5. Anti-biofouling efficiency of pSBMA/DA coatings. 70
4. Conclusions 76
CHAPTER IV. Betainization of polydopamine/polyethyleneimine coating for universal zwitterionization 77
1. Introduction 77
2. Experimental section 80
2.1. Materials 80
2.2. Fabrication of PDA and PDA/PEI coating 80
2.3. Betainization of PDA and PDA/PEI. 81
2.4. Surface characterization 81
2.5. Water contact angle measurement 81
2.6. Thickness measurement by ellipsometry 82
2.7. Anti-fouling against bacterial attachment 82
2.8. Indirect cytotoxicity test 82
3. Results and Discussion 83
3.1. Characterization of PDA and PDA/PEI coatings before and after betainization 83
3.2. The effect of PEI and thickness of ad-layer on betainization effeciency 86
3.3. Topography of the coatings 92
3.4. Anti-fouling performance of the coatings 93
3.5. The universality of the coatings 96
3.6. Cytotoxicity of the coatings. 97
4. Conclusions 98
CHAPTER V. Mucoadhesive, antixidant and lubricant catechol-copolymerized poly(phosphobetaine) toward topical treatment of dry eye disease 99
1. Introduction 99
2. Experimental section 104
2.1. Materials 104
2.2. Synthesis of DMA 104
2.3. Synthesis of pMPC homopolymer and p(MPC-co-DMA) copolymer. 105
2.4. Characterization of p(MPC) and p(MPC-co-DMA) copolymer. 106
2.5. QCM measurement 106
2.6. DPPH assay 107
2.7. Folin assay 108
2.8. Cell culture 108
2.9. Live/Dead assay 108
2.10. Comet assay 108
2.11. MTS assay 109
2.12. ROS assay 109
2.13. Ca2+ assay 110
2.14. Anti-inflammatory activity 110
2.15. Animal model 111
2.16. Corneal fluorescein staining 111
2.17. Schirmer tear test strip 112
2.18. I.C.P. Ocular Surface Analyzer 112
2.19. SEM-EDS 113
2.20. ICP-OES 113
2.21. Corneal topographer assay 113
2.22. Corneal endothelial cell density assay 114
2.23. H&E assay 114
2.24. TUNEL assay 114
2.25. DCFHCA immunofluorescence staining 114
2.26. IL-6, TNF-α immunofluorescence staining 115
3. Results and Discussion 115
3.1. Synthesis of p(MPC-co-DMA) copolymer 115
3.2. Mucin-copolymer complexation 118
3.3. Biocompatibility of p(MPC-co-DMA) copolymers 124
3.4. Anti-oxidant activities of p(MPC-co-DMA) copolymers 126
3.5. In vitro studies of p(MPC-co-DMA) copolymers 127
3.6. In vivo studies of p(MPC-co-DMA) copolymers 130
3.7. Histological studies of p(MPC-co-DMA) copolymer 139
4. Conclusions 143
Bibliography 145
參考文獻 [1] Zhang, W., et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chemical Society Reviews, 2020. 49(2): p. 433-464.
[2] Zhang, C., et al., Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020. 49(11): p. 3605-3637.
[3] Ahn, B.K., Perspectives on mussel-inspired wet adhesion. Journal of the American Chemical Society, 2017. 139(30): p. 10166-10171.
[4] Bui, H.L., et al., Dopamine-Initiated Photopolymerization for a Versatile Catechol-Functionalized Hydrogel. ACS Applied Bio Materials, 2021. 4(8): p. 6268-6279.
[5] Waite, J.H. and M.L. Tanzer, Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
[6] Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006. 103(35): p. 12999-13003.
[7] Lee, H., B.P. Lee, and P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007. 448(7151): p. 338-341.
[8] Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine surface chemistry: a decade of discovery. ACS applied materials & interfaces, 2018. 10(9): p. 7523-7540.
[9] Lee, H.A., E. Park, and H. Lee, Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Advanced Materials, 2020. 32(35): p. 1907505.
[10] Lyu, Q., N. Hsueh, and C.L. Chai, Unravelling the polydopamine mystery: is the end in sight? Polymer Chemistry, 2019. 10(42): p. 5771-5777.
[11] Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. science, 2007. 318(5849): p. 426-430.
[12] Hong, S., et al., Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Advanced Functional Materials, 2012. 22(22): p. 4711-4717.
[13] Mrówczyński, R., et al., Diazo transfer at polydopamine–a new way to functionalization. Polymer Chemistry, 2014. 5(22): p. 6593-6599.
[14] Della Vecchia, N.F., et al., Building‐block diversity in polydopamine underpins a multifunctional eumelanin‐type platform tunable through a quinone control point. Advanced Functional Materials, 2013. 23(10): p. 1331-1340.
[15] Yang, H.-C., et al., Surface engineering of polymer membranes via mussel-inspired chemistry. Journal of membrane science, 2015. 483: p. 42-59.
[16] McCloskey, B.D., et al., Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 2010. 51(15): p. 3472-3485.
[17] Lv, Y., et al., Co-deposition kinetics of polydopamine/polyethyleneimine coatings: Effects of solution composition and substrate surface. Langmuir, 2018. 34(44): p. 13123-13131.
[18] Qiu, W.-Z., H.-C. Yang, and Z.-K. Xu, Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification. Advances in colloid and interface science, 2018. 256: p. 111-125.
[19] Bren, K.L., R. Eisenberg, and H.B. Gray, Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry. Proceedings of the National Academy of Sciences, 2015. 112(43): p. 13123-13127.
[20] Oohora, K., A. Onoda, and T. Hayashi, Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Accounts of Chemical Research, 2019. 52(4): p. 945-954.
[21] Beinert, H., Iron-sulfur proteins: ancient structures, still full of surprises. Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry, 2000. 5(1): p. 2-15.
[22] Holten-Andersen, N., et al., pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences, 2011. 108(7): p. 2651-2655.
[23] Ryu, J., et al., Mussel‐inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Advanced Functional Materials, 2010. 20(13): p. 2132-2139.
[24] Guo, L., et al., A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale, 2012. 4(19): p. 5864-5867.
[25] Maier, G.P., et al., Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015. 349(6248): p. 628-632.
[26] Asha, A.B., Y. Chen, and R. Narain, Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chemical Society Reviews, 2021. 50: p. 11668-11683.
[27] Lee, B.P., et al., Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules, 2006. 39(5): p. 1740-1748.
[28] Brubaker, C.E. and P.B. Messersmith, Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules, 2011. 12(12): p. 4326-4334.
[29] Lee, B.P., J.L. Dalsin, and P.B. Messersmith, Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules, 2002. 3(5): p. 1038-1047.
[30] Brubaker, C.E., et al., Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials, 2010. 31(3): p. 420-427.
[31] Lee, Y., et al., Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010. 6(5): p. 977-983.
[32] Ryu, J.H., et al., Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
[33] Zhang, H., et al., On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. Journal of Materials Chemistry B, 2015. 3(31): p. 6420-6428.
[34] Huang, K., et al., Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules, 2002. 3(2): p. 397-406.
[35] Bixler, G. and B. Bhushan, Biomimetics: Lessons from nature—An overview. Philos Trans R Soc, A, 2012. 370: p. 2381-2417.
[36] Magin, C.M., S.P. Cooper, and A.B. Brennan, Non-toxic antifouling strategies. Materials today, 2010. 13(4): p. 36-44.
[37] O′Toole, G.A., A resistance switch. Nature, 2002. 416(6882): p. 695-696.
[38] Yu, Q., L.K. Ista, and G.P. López, Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties. Nanoscale, 2014. 6(9): p. 4750-4757.
[39] Damodaran, V.B. and N.S. Murthy, Bio-inspired strategies for designing antifouling biomaterials. Biomaterials research, 2016. 20(1): p. 1-11.
[40] Leng, C., et al., Probing the surface hydration of nonfouling zwitterionic and PEG materials in contact with proteins. ACS applied materials & interfaces, 2015. 7(30): p. 16881-16888.
[41] Shahkaramipour, N., et al., Membranes with surface-enhanced antifouling properties for water purification. Membranes, 2017. 7(1): p. 13.
[42] Keefe, A.J. and S. Jiang, Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature chemistry, 2012. 4(1): p. 59-63.
[43] Iwasaki, Y. and K. Ishihara, Phosphorylcholine-containing polymers for biomedical applications. Analytical and bioanalytical chemistry, 2005. 381: p. 534-546.
[44] Chien, H.-W., et al., An in situ poly (carboxybetaine) hydrogel for tissue engineering applications. Biomaterials science, 2017. 5(2): p. 322-330.
[45] Liu, Q., et al., A facile method of using sulfobetaine‐containing copolymers for biofouling resistance. Journal of Applied Polymer Science, 2014. 131(18).
[46] Fuchs, S., K. Shariati, and M. Ma, Specialty Tough Hydrogels and Their Biomedical Applications. Adv. Healthc. Mater., 2020. 9(2): p. 1901396.
[47] Wilson, A.N. and A. Guiseppi‐Elie, Bioresponsive hydrogels. Mater. Today, 2013. 2(4): p. 520-532.
[48] Qin, H., et al., Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun., 2019. 10(1): p. 1-11.
[49] Liu, X., et al., Hydrogel machines. Mater. Today, 2020. 36: p. 102-124.
[50] Yang, C. and Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater., 2018. 3(6): p. 125.
[51] Zhang, C., et al., Mussel-inspired hydrogels: from design principles to promising applications. Chem. Soc. Rev., 2020. 49(11): p. 3605-3637.
[52] Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces, 2018. 10(9): p. 7523-7540.
[53] Han, L., et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater., 2017. 9(4): p. e372-e372.
[54] Li, L., et al., Novel mussel‐inspired injectable self‐healing hydrogel with anti‐biofouling property. Adv. Mater., 2015. 27(7): p. 1294-1299.
[55] Avdeef, A., et al., Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc., 1978. 100(17): p. 5362-5370.
[56] Harrington, M.J., et al., Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science, 2010. 328(5975): p. 216-220.
[57] Huang, C.-J., et al., Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly. Langmuir, 2014. 30(42): p. 12638-12646.
[58] Liu, C.-Y. and C.-J. Huang, Functionalization of polydopamine via the aza-michael reaction for antimicrobial interfaces. Langmuir, 2016. 32(19): p. 5019-5028.
[59] Monahan, J. and J.J. Wilker, Specificity of metal ion cross-linking in marine mussel adhesives. Chem. Comm., 2003(14): p. 1672-1673.
[60] Rahim, M.A., et al., Metal–phenolic supramolecular gelation. Angew. Chem., 2016. 128(44): p. 14007-14011.
[61] Chen, Q., et al., Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem. Mater., 2016. 28(16): p. 5710-5720.
[62] Zheng, S.Y., et al., Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules, 2016. 49(24): p. 9637-9646.
[63] Zhang, W., et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev., 2020. 49(2): p. 433-464.
[64] Gan, D., et al., Mussel‐inspired contact‐active antibacterial hydrogel with high cell affinity, toughness, and recoverability. Adv. Funct. Mater., 2019. 29(1): p. 1805964.
[65] Du, X., et al., UV‐triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv. Mater., 2014. 26(47): p. 8029-8033.
[66] Chung, H., et al., Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. Biomacromolecules, 2011. 12(2): p. 342-347.
[67] Zhang, H., et al., On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. J. Mater. Chem. B, 2015. 3(31): p. 6420-6428.
[68] Ahn, B.K., Perspectives on mussel-inspired wet adhesion. J. Am. Chem. Soc., 2017. 139(30): p. 10166-10171.
[69] Zhang, C., et al., Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings. ACS App. Mater. Interfaces, 2017. 9(39): p. 34356-34366.
[70] Ligon, S.C., et al., Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev., 2014. 114(1): p. 557-589.
[71] Mironi-Harpaz, I., et al., Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater., 2012. 8(5): p. 1838-1848.
[72] Wei, M., et al., Design of photoinitiator-functionalized hydrophilic nanogels with uniform size and excellent biocompatibility. Polym. Chem., 2019. 10(22): p. 2812-2821.
[73] Williams, C.G., et al., Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005. 26(11): p. 1211-1218.
[74] Roth, M., et al., Highly Water‐Soluble Alpha‐Hydroxyalkylphenone Based Photoinitiator for Low‐Migration Applications. Macromol. Chem. Phys., 2017. 218(14): p. 1700022.
[75] Cencer, M., et al., Effect of pH on the rate of curing and bioadhesive properties of dopamine functionalized poly (ethylene glycol) hydrogels. Biomacromolecules, 2014. 15(8): p. 2861-2869.
[76] Qi, Y.-B., et al., Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase. Phys. Chem. Chem. Phys., 2015. 17(44): p. 29597-29607.
[77] Hu, J., et al., Polydopamine free radical scavengers. Biomater. Sci., 2020. 8(18): p. 4940-4950.
[78] Ju, K.-Y., M.C. Fischer, and W.S. Warren, Understanding the role of aggregation in the broad absorption bands of eumelanin. ACS nano, 2018. 12(12): p. 12050-12061.
[79] Hong, S., et al., Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Adv. Funct. Mater., 2012. 22(22): p. 4711-4717.
[80] Lee, H.A., E. Park, and H. Lee, Polydopamine and Its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST. Adv. Mater., 2020: p. 1907505.
[81] Zheng, W., et al., Oxidative self-polymerization of dopamine in an acidic environment. Langmuir, 2015. 31(42): p. 11671-11677.
[82] Chen, T.-P., et al., Self-polymerization of dopamine in acidic environments without oxygen. Langmuir, 2017. 33(23): p. 5863-5871.
[83] Ponzio, F., et al., Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem. Mater., 2016. 28(13): p. 4697-4705.
[84] Kord Forooshani, P., et al., Hydroxyl Radical Generation through the Fenton-like Reaction of Hematin-and Catechol-Functionalized Microgels. Chem. Mater., 2020. 32(19): p. 8182-8194.
[85] Huang, K.-T., K. Ishihara, and C.-J. Huang, Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels. Biomacromolecules, 2019. 20(9): p. 3524-3534.
[86] Gan, D., et al., Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun., 2019. 10(1): p. 1-10.
[87] Jhiang, J.-S., et al., Gel-like ionic complexes for antimicrobial, hemostatic and adhesive properties. J. Mater. Chem. B, 2019. 7(17): p. 2878-2887.
[88] Huang, Y., et al., Ionic liquid-coated Fe3O4/APTES/graphene oxide nanocomposites: synthesis, characterization and evaluation in protein extraction processes. RSC Adv., 2016. 6(7): p. 5718-5728.
[89] Wang, L., et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces, 2018. 11(3): p. 3506-3515.
[90] Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U.S.A., 2006. 103(35): p. 12999-13003.
[91] He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta Biomater., 2016. 40: p. 142-152.
[92] Wei, T., et al., Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS App. Mater. Interfaces, 2017. 9(43): p. 37511-37523.
[93] Elahinia, M.H., et al., Manufacturing and processing of NiTi implants: A review. Progress in materials science, 2012. 57(5): p. 911-946.
[94] Duerig, T., A. Pelton, and D. Stöckel, An overview of nitinol medical applications. Materials Science and Engineering: A, 1999. 273: p. 149-160.
[95] Mani, G., et al., Coronary stents: a materials perspective. Biomaterials, 2007. 28(9): p. 1689-1710.
[96] Shabalovskaya, S.A., Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-medical materials and engineering, 2002. 12(1): p. 69-109.
[97] Blaszykowski, C., S. Sheikh, and M. Thompson, Surface chemistry to minimize fouling from blood-based fluids. Chemical Society Reviews, 2012. 41(17): p. 5599-5612.
[98] Bryers, J.D., Medical biofilms. Biotechnology and bioengineering, 2008. 100(1): p. 1-18.
[99] Ahmadabadi, H.Y., K. Yu, and J.N. Kizhakkedathu, Surface modification approaches for prevention of implant associated infections. Colloids and Surfaces B: Biointerfaces, 2020. 193: p. 111116.
[100] Zhang, Y., et al., Fundamentals and applications of zwitterionic antifouling polymers. Journal of Physics D: Applied Physics, 2019. 52(40): p. 403001.
[101] Maan, A.M., et al., Recent developments and practical feasibility of polymer‐based antifouling coatings. Advanced functional materials, 2020. 30(32): p. 2000936.
[102] Wang, H., et al., Winning the fight against biofilms: the first six-month study showing no biofilm formation on zwitterionic polyurethanes. Chemical science, 2020. 11(18): p. 4709-4721.
[103] Edmondson, S., V.L. Osborne, and W.T. Huck, Polymer brushes via surface-initiated polymerizations. Chemical society reviews, 2004. 33(1): p. 14-22.
[104] Li, N., et al., Universal strategy for efficient fabrication of blood compatible surfaces via polydopamine-assisted surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization of zwitterions. ACS applied materials & interfaces, 2020. 12(10): p. 12337-12344.
[105] Yang, J., M.A.C. Stuart, and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews, 2014. 43(24): p. 8271-8298.
[106] Li, Y. and Y. Cao, The molecular mechanisms underlying mussel adhesion. Nanoscale Advances, 2019. 1(11): p. 4246-4257.
[107] Zhao, H. and J.H. Waite, Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. Journal of Biological Chemistry, 2006. 281(36): p. 26150-26158.
[108] Martinez Rodriguez, N.R., et al., Interfacial pH during mussel adhesive plaque formation. Biofouling, 2015. 31(2): p. 221-227.
[109] Dalsin, J.L., et al., Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 2003. 125(14): p. 4253-4258.
[110] Zhang, C., et al., Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings. ACS applied materials & interfaces, 2017. 9(39): p. 34356-34366.
[111] Rechendorff, K., et al., Enhancement of protein adsorption induced by surface roughness. Langmuir, 2006. 22(26): p. 10885-10888.
[112] Rana, D. and T. Matsuura, Surface modifications for antifouling membranes. Chemical reviews, 2010. 110(4): p. 2448-2471.
[113] Wang, Y., et al., Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal–Phenolic Networks for Prevention of Biofilm Formation. ACS Applied Materials & Interfaces, 2021. 13(41): p. 48403-48413.
[114] Jiang, Z., S. Karan, and A.G. Livingston, Membrane fouling: does microscale roughness matter? Industrial & Engineering Chemistry Research, 2019. 59(12): p. 5424-5431.
[115] Zhou, Y., et al., Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition. Journal of Materials Science: Materials in Medicine, 2013. 24(10): p. 2277-2286.
[116] Narkar, A.R. and B.P. Lee, Incorporation of Anionic Monomer to Tune the Reversible Catechol–Boronate Complex for pH-Responsive, Reversible Adhesion. Langmuir, 2018. 34(32): p. 9410-9417.
[117] Yan, Q., et al., A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid & Polymer Science, 2019. 297(5): p. 705-717.
[118] Treglia, A., et al., Novel aerosol assisted plasma deposition of PEG containing coatings for non-fouling application. Applied Surface Science, 2020. 527: p. 146698.
[119] Zhou, J., et al., Improved antifouling properties of PVA hydrogel via an organic semiconductor graphitic carbon nitride catalyzed surface-initiated photo atom transfer radical polymerization. Colloids and Surfaces B: Biointerfaces, 2021. 203: p. 111718.
[120] Hu, J., et al., Polydopamine free radical scavengers. Biomaterials Science, 2020. 8(18): p. 4940-4950.
[121] Zou, Y., et al., Photothermal-enhanced synthetic melanin inks for near-infrared imaging. Polymer, 2020. 186: p. 122042.
[122] Yang, P., et al., Tailoring synthetic melanin nanoparticles for enhanced photothermal therapy. ACS applied materials & interfaces, 2019. 11(45): p. 42671-42679.
[123] Wang, L., et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS applied materials & interfaces, 2018. 11(3): p. 3506-3515.
[124] Zeng, M., et al., Dopamine semiquinone radical doped PEDOT: PSS: Enhanced conductivity, work function and performance in organic solar cells. Advanced Energy Materials, 2020. 10(25): p. 2000743.
[125] Bährle, C., et al., High-field electron paramagnetic resonance and density functional theory study of stable organic radicals in lignin: influence of the extraction process, botanical origin, and protonation reactions on the radical g tensor. The Journal of Physical Chemistry A, 2015. 119(24): p. 6475-6482.
[126] Liang, W., et al., Polystyrenesulfonate dispersed dopamine with unexpected stable semiquinone radical and electrochemical behavior: a potential alternative to PEDOT: PSS. ACS Sustainable Chemistry & Engineering, 2017. 5(1): p. 460-468.
[127] Du, X., et al., UV‐triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Advanced Materials, 2014. 26(47): p. 8029-8033.
[128] Okazaki, S. and K. Takeshita, Irradiation of phenolic compounds with ultraviolet light causes release of hydrated electrons. Applied Magnetic Resonance, 2018. 49(8): p. 881-892.
[129] FitzGerald, G.B. and M.M. Wick, 3, 4-Dihydroxybenzylamine: an improved dopamine analog cytotoxic for melanoma cells in part through oxidation products inhibitory to dna polymerase. Journal of Investigative Dermatology, 1983. 80(2): p. 119-123.
[130] Nothling, M.D., et al., Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization. Journal of the American Chemical Society, 2022. 144(15): p. 6992-7000.
[131] Zhang, J., et al., ROS Scavenging Biopolymers for Anti‐Inflammatory Diseases: Classification and Formulation. Advanced Materials Interfaces, 2020. 7(16): p. 2000632.
[132] Wu, J., et al., Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously improving optical transparency, oxygen permeability, and antifouling properties. Journal of Materials Chemistry B, 2017. 5(24): p. 4595-4606.
[133] Zhang, C., et al., Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors. ACS nano, 2021. 15(1): p. 1785-1794.
[134] Ko, Y., et al., Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules, 2021. 23(1): p. 424-430.
[135] Ball, V., Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids Surf. A Physicochem. Eng. Asp., 2010. 363(1-3): p. 92-97.
[136] Shih, Y.-J., et al., “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules, 2012. 13(9): p. 2849-2858.
[137] Sun, H., et al., Dual thermoresponsive aggregation of schizophrenic PDMAEMA-b-PSBMA copolymer with an unrepeatable ph response and a recycled CO2/N2 response. Langmuir, 2017. 33(10): p. 2646-2654.
[138] Montazerian, H., et al., Stretchable and bioadhesive gelatin methacryloyl-based hydrogels enabled by in situ dopamine polymerization. ACS Applied Materials & Interfaces, 2021. 13(34): p. 40290-40301.
[139] Ponzio, F., et al., Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chemistry of Materials, 2016. 28(13): p. 4697-4705.
[140] Azzaroni, O., A.A. Brown, and W.T. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self‐association. Angewandte Chemie International Edition, 2006. 45(11): p. 1770-1774.
[141] Ren, P.-F., et al., Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly (sulfobetaine methacrylate) and tannic acid. Langmuir, 2015. 31(21): p. 5851-5858.
[142] Schulz, D., et al., Phase behaviour and solution properties of sulphobetaine polymers. Polymer, 1986. 27(11): p. 1734-1742.
[143] Shih, Y.-J. and Y. Chang, Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010. 26(22): p. 17286-17294.
[144] Dimitrov, I., et al., Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Progress in Polymer Science, 2007. 32(11): p. 1275-1343.
[145] Chen, C.Y. and H.L. Wang, Dual thermo‐and pH‐responsive zwitterionic sulfobataine copolymers for oral delivery system. Macromolecular rapid communications, 2014. 35(17): p. 1534-1540.
[146] Huang, K.-T., et al., Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. Journal of Materials Chemistry B, 2020. 8(33): p. 7390-7402.
[147] Mary, P., et al., Reconciling low-and high-salt solution behavior of sulfobetaine polyzwitterions. The Journal of Physical Chemistry B, 2007. 111(27): p. 7767-7777.
[148] Li, S., et al., Biocompatibility of micro/nanostructures nitinol surface via nanosecond laser circularly scanning. Materials Letters, 2019. 255: p. 126591.
[149] Liao, Y., et al., Silicone rubber composites with high breakdown strength and low dielectric loss based on polydopamine coated mica. Polymers, 2019. 11(12): p. 2030.
[150] De Guzman, M.R., et al., Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. Journal of Membrane Science, 2021. 620: p. 118881.
[151] Liu, C., et al., Tunable electronic properties of TiO2 nanocrystals by in situ dopamine functionalization for planar perovskite solar cells. Electrochimica Acta, 2020. 354: p. 136720.
[152] Yu, J., et al., Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules, 2013. 14(4): p. 1072-1077.
[153] Zhang, Q., et al., Thermo-sensitive zwitterionic block copolymers via ATRP. RSC Advances, 2014. 4(46): p. 24240-24247.
[154] Zhang, Y.Q., et al., Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation. Journal of Materials Chemistry A, 2017. 5(16): p. 7316-7325.
[155] Fowler, P.M.P.T., et al., Surface Zwitterionization of Expanded Poly (tetrafluoroethylene) via Dopamine-Assisted Consecutive Immersion Coating. ACS Applied Materials & Interfaces, 2020. 12(37): p. 41000-41010.
[156] Vaterrodt, A., et al., Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly. Langmuir, 2016. 32(5): p. 1347-1359.
[157] Bog, U., et al., Clickable antifouling polymer brushes for polymer pen lithography. ACS Applied Materials & Interfaces, 2017. 9(13): p. 12109-12117.
[158] He, Y., et al., The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. Biomaterials Science, 2020. 8(24): p. 6890-6902.
[159] Tripathi, S.K., et al., Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells. Colloids and Surfaces B: Biointerfaces, 2014. 115: p. 79-85.
[160] Franz, S., et al., Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011. 32(28): p. 6692-6709.
[161] Milo, S., et al., Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019. 233(1): p. 68-83.
[162] Magill, S.S., et al., Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine, 2014. 370(13): p. 1198-1208.
[163] Georgiev, G.S., et al., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006. 7(4): p. 1329-1334.
[164] Ishihara, K., et al., The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials science, Polymer edition, 2017. 28(10-12): p. 884-899.
[165] Chen, S., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
[166] Shao, Q., et al., Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B, 2010. 114(49): p. 16625-16631.
[167] Shao, Q. and S. Jiang, Molecular understanding and design of zwitterionic materials. Advanced Materials, 2015. 27(1): p. 15-26.
[168] Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
[169] Chen, S.-H., et al., Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir, 2012. 28(51): p. 17733-17742.
[170] Jung, S., et al., Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion. Advanced Materials Interfaces, 2020. 7(22): p. 2001433.
[171] Yu, B.-Y., et al., Surface zwitterionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir, 2014. 30(25): p. 7502-7512.
[172] Fan, Y.-J., M.T. Pham, and C.-J. Huang, Development of antimicrobial and antifouling universal coating via rapid deposition of polydopamine and zwitterionization. Langmuir, 2018. 35(5): p. 1642-1651.
[173] Lee, S.Y., et al., Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomaterials research, 2018. 22(1): p. 1-7.
[174] Schönemann, E., et al., Sulfobetaine methacrylate polymers of unconventional polyzwitterion architecture and their antifouling properties. Biomacromolecules, 2021. 22(4): p. 1494-1508.
[175] Kobayashi, M., et al., Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir, 2012. 28(18): p. 7212-7222.
[176] Sakamaki, T., et al., Ion-specific hydration states of zwitterionic poly (sulfobetaine methacrylate) brushes in aqueous solutions. Langmuir, 2018. 35(5): p. 1583-1589.
[177] Baggerman, J., M.M. Smulders, and H. Zuilhof, Romantic surfaces: a systematic overview of stable, biospecific, and antifouling zwitterionic surfaces. Langmuir, 2019. 35(5): p. 1072-1084.
[178] Kuzmyn, A.R., et al., Antifouling polymer brushes via oxygen-tolerant surface-initiated PET-RAFT. Langmuir, 2020. 36(16): p. 4439-4446.
[179] Yang, H.-C., et al., Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2014. 2(26): p. 10225-10230.
[180] Zhao, C., et al., Mussel‐Inspired One‐Pot Synthesis of a Fluorescent and Water‐Soluble Polydopamine–Polyethyleneimine Copolymer. Macromolecular rapid communications, 2015. 36(10): p. 909-915.
[181] Paschke, S. and K. Lienkamp, Polyzwitterions: From surface properties and bioactivity profiles to biomedical applications. ACS Applied Polymer Materials, 2020. 2(2): p. 129-151.
[182] Sahiner, N. and S. Demirci, Can PEI microgels become biocompatible upon betainization? Materials Science and Engineering: C, 2017. 77: p. 642-648.
[183] Yao, L., et al., Codeposition of polydopamine and zwitterionic polymer on membrane surface with enhanced stability and antibiofouling property. Langmuir, 2018. 35(5): p. 1430-1439.
[184] Zangmeister, R.A., T.A. Morris, and M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013. 29(27): p. 8619-8628.
[185] Lin, J.-C., T.-M. Ko, and S.L. Cooper, Polyethylene surface sulfonation: surface characterization and platelet adhesion studies. Journal of colloid and interface science, 1994. 164(1): p. 99-106.
[186] Tripathi, B.P., et al., Ultralow fouling membranes by surface modification with functional polydopamine. European Polymer Journal, 2018. 99: p. 80-89.
[187] Zhang, C., et al., Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 2022. 13(6): p. 1698-1705.
[188] Yang, S.-J., et al., Codeposition of levodopa and polyethyleneimine: reaction mechanism and coating construction. ACS applied materials & interfaces, 2020. 12(48): p. 54094-54103.
[189] Zhang, C., et al., Deposition and adhesion of polydopamine on the surfaces of varying wettability. ACS applied materials & interfaces, 2017. 9(36): p. 30943-30950.
[190] Lin, X., et al., Self-solidification ionic liquids as heterogeneous catalysts for biodiesel production. Green Chemistry, 2019. 21(11): p. 3182-3189.
[191] Bütün, V., S.P. Armes, and N.C. Billingham, Selective quaternization of 2-(dimethylamino) ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers. Macromolecules, 2001. 34(5): p. 1148-1159.
[192] Dreyer, D.R., et al., Elucidating the structure of poly (dopamine). Langmuir, 2012. 28(15): p. 6428-6435.
[193] Fischer, R., Propanesultone. Industrial & Engineering Chemistry, 1964. 56(3): p. 41-45.
[194] Wei, H., et al., Stability of polydopamine and poly (DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces B: Biointerfaces, 2013. 110: p. 22-28.
[195] Zander, Z.K. and M.L. Becker, Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Letters, 2018. 7(1): p. 16–25.
[196] Duan, H. and S. Nie, Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. Journal of the American Chemical Society, 2007. 129(11): p. 3333-3338.
[197] Liu, J., et al., Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules, 2016. 17(10): p. 3153-3161.
[198] Perez, V.L., M.E. Stern, and S.C. Pflugfelder, Inflammatory basis for dry eye disease flares. Experimental eye research, 2020. 201: p. 108294.
[199] Bradley, J.L., et al., Dry eye disease ranking among common reasons for seeking eye care in a large US claims database. Clinical Ophthalmology (Auckland, NZ), 2019. 13: p. 225.
[200] Farrand, K.F., et al., Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older. American journal of ophthalmology, 2017. 182: p. 90-98.
[201] O’Neil, E.C., et al., Advances in dry eye disease treatment. Current opinion in ophthalmology, 2019. 30(3): p. 166.
[202] Li, C., et al., Research on the stability of a rabbit dry eye model induced by topical application of the preservative benzalkonium chloride. PLoS One, 2012. 7(3): p. e33688.
[203] Nguyen, D.D. and J.-Y. Lai, Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polymer Chemistry, 2020. 11(44): p. 6988-7008.
[204] Bayer, I.S., Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Advanced Materials Interfaces, 2022. 9(18): p. 2200211.
[205] Gote, V., et al., Ocular drug delivery: present innovations and future challenges. Journal of Pharmacology and Experimental Therapeutics, 2019. 370(3): p. 602-624.
[206] Gaudana, R., et al., Recent perspectives in ocular drug delivery. Pharmaceutical research, 2009. 26: p. 1197-1216.
[207] Sall, K., et al., Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. Ophthalmology, 2000. 107(4): p. 631-639.
[208] Barber, L.D., et al., Phase III safety evaluation of cyclosporine 0.1% ophthalmic emulsion administered twice daily to dry eye disease patients for up to 3 years. Ophthalmology, 2005. 112(10): p. 1790-1794.
[209] Mandal, A., et al., Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. Journal of Controlled Release, 2017. 248: p. 96-116.
[210] Sharma, A., et al., Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(4): p. 505-513.
[211] Davis, B.M., et al., Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5‐associated liposomes. Small, 2014. 10(8): p. 1575-1584.
[212] Kalomiraki, M., K. Thermos, and N.A. Chaniotakis, Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. International journal of nanomedicine, 2016: p. 1-12.
[213] Hassan, S., et al., Evolution and clinical translation of drug delivery nanomaterials. Nano today, 2017. 15: p. 91-106.
[214] Erfani, A., et al., Interactions between biomolecules and zwitterionic moieties: a review. Biomacromolecules, 2020. 21(7): p. 2557-2573.
[215] Banskota, S., et al., Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials, 2019. 192: p. 475-485.
[216] Li, B., et al., Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Advanced Materials, 2018. 30(14): p. 1705728.
[217] Zhao, G., X. Dong, and Y. Sun, Self-assembled curcumin–poly (carboxybetaine methacrylate) conjugates: potent nano-inhibitors against amyloid β-protein fibrillogenesis and cytotoxicity. Langmuir, 2018. 35(5): p. 1846-1857.
[218] Mengistu, D.H., K. Bohinc, and S. May, Binding of DNA to zwitterionic lipid layers mediated by divalent cations. The Journal of Physical Chemistry B, 2009. 113(36): p. 12277-12282.
[219] Lin, X., K. Fukazawa, and K. Ishihara, Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Acta biomaterialia, 2016. 40: p. 226-234.
[220] Kang, S., et al., Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta biomaterialia, 2016. 40: p. 70-77.
[221] Nagai, N., et al., MPC polymer promotes recovery from dry eye via stabilization of the ocular surface. Pharmaceutics, 2021. 13(2): p. 168.
[222] Stern, M.E. and S.C. Pflugfelder, Inflammation in dry eye. The ocular surface, 2004. 2(2): p. 124-130.
[223] Kim, K., et al., Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials, 2015. 52: p. 161-170.
[224] Tang, Z., et al., Mussel-inspired biocompatible polydopamine/carboxymethyl cellulose/polyacrylic acid adhesive hydrogels with UV-shielding capacity. Cellulose, 2021. 28: p. 1527-1540.
[225] Liu, Y., et al., Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. Journal of the American Chemical Society, 2017. 139(2): p. 856-862.
[226] Zhao, H., et al., Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale, 2018. 10(15): p. 6981-6991.
[227] Zhao, W., et al., Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Applied Materials & Interfaces, 2020. 12(46): p. 51236-51248.
[228] Hodges, R.R. and D.A. Dartt, Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Experimental eye research, 2013. 117: p. 62-78.
[229] Xu, L.Q., et al., Antifouling coatings of catecholamine copolymers on stainless steel. Industrial & Engineering Chemistry Research, 2015. 54(22): p. 5959-5967.
[230] Oh, S., et al., Optimal design for studying mucoadhesive polymers interaction with gastric mucin using a quartz crystal microbalance with dissipation (QCM-D): Comparison of two different mucin origins. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 96: p. 477-483.
[231] Yang, J., et al., The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive. Polymer Chemistry, 2015. 6(16): p. 3121-3130.
[232] Burzio, L.A. and J.H. Waite, Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry, 2000. 39(36): p. 11147-11153.
[233] Pontremoli, C., et al., Mucin–drugs interaction: The case of theophylline, prednisolone and cephalexin. Bioorganic & Medicinal Chemistry, 2015. 23(20): p. 6581-6586.
[234] Hu, S., et al., A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nature communications, 2021. 12(1): p. 1689.
[235] Yusa, S.-i., et al., pH-responsive association behavior of biocompatible random copolymers containing pendent phosphorylcholine and fatty acid. Langmuir, 2021. 38(17): p. 5119-5127.
[236] Lee, Y., et al., Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Advanced materials, 2008. 20(21): p. 4154-4157.
[237] Dartt, D.A., Regulation of mucin and fluid secretion by conjunctival epithelial cells. Progress in retinal and eye research, 2002. 21(6): p. 555-576.
[238] Crouzier, T., et al., Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding. Advanced Materials Interfaces, 2015. 2(18): p. 1500308.
[239] Asha, A.B., et al., Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir, 2018. 35(5): p. 1621-1630.
[240] Dague, E., et al., Probing in vitro interactions between Lactococcus lactis and mucins using AFM. Langmuir, 2010. 26(13): p. 11010-11017.
[241] Narkar, A.R., et al., Catechol-functionalized chitosan: Optimized preparation method and its interaction with Mucin. Langmuir, 2019. 35(48): p. 16013-16023.
[242] Asha, A.B., et al., Dopamine assisted self-cleaning, antifouling, and antibacterial coating via dynamic covalent interactions. ACS Applied Materials & Interfaces, 2022. 14(7): p. 9557-9569.
[243] Sosnik, A. and M.M. Raskin, Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnology Advances, 2015. 33(6): p. 1380-1392.
[244] Marczynski, M., et al., Transient binding promotes molecule penetration into mucin hydrogels by enhancing molecular partitioning. Biomaterials science, 2018. 6(12): p. 3373-3387.
[245] Zheng, H.-T., et al., PEGylated metal-phenolic networks for antimicrobial and antifouling properties. Langmuir, 2019. 35(26): p. 8829-8839.
[246] Jhiang, J.-S., et al., Gel-like ionic complexes for antimicrobial, hemostatic and adhesive properties. Journal of Materials Chemistry B, 2019. 7(17): p. 2878-2887.
[247] Luo, L.-J., et al., Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of colloid and interface science, 2019. 536: p. 112-126.
[248] Lai, J.-Y., L.-J. Luo, and D.H.-K. Ma, Effect of cross-linking density on the structures and properties of carbodiimide-treated gelatin matrices as limbal stem cell niches. International Journal of Molecular Sciences, 2018. 19(11): p. 3294.
[249] Lin, P.-H., et al., Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia, 2022. 141: p. 140-150.
[250] Aygün, A., et al., Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of pharmaceutical and biomedical analysis, 2020. 178: p. 112970.
[251] Das, D., et al., Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013. 101: p. 430-433.
[252] Li, Y.-J., et al., Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale, 2019. 11(12): p. 5580-5594.
[253] Lee, H., et al., Therapeutic efficacy of nanocomplex of poly (ethylene glycol) and catechin for dry eye disease in a mouse model. Investigative Ophthalmology & Visual Science, 2017. 58(3): p. 1682-1691.
[254] Luo, L.-J., D.D. Nguyen, and J.-Y. Lai, Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Materials Science and Engineering: C, 2020. 115: p. 111095.
[255] Luo, L.-J. and J.-Y. Lai, Epigallocatechin gallate-loaded gelatin-g-poly (N-isopropylacrylamide) as a new ophthalmic pharmaceutical formulation for topical use in the treatment of dry eye syndrome. Scientific Reports, 2017. 7(1): p. 9380.
[256] Matsuo, T., Y. Tsuchida, and N. Morimoto, Trehalose eye drops in the treatment of dry eye syndrome. Ophthalmology, 2002. 109(11): p. 2024-2029.
[257] Wen, X., et al., Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. PloS one, 2013. 8(5): p. e62942.
[258] Zhivotovsky, B. and S. Orrenius, Calcium and cell death mechanisms: a perspective from the cell death community. Cell calcium, 2011. 50(3): p. 211-221.
[259] Maulvi, F.A., et al., pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids and Surfaces B: Biointerfaces, 2017. 157: p. 72-82.
[260] Bui, H.L., et al., Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids and Surfaces B: Biointerfaces, 2022. 220: p. 112879.
[261] Xiong, C., et al., A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Investigative ophthalmology & visual science, 2008. 49(5): p. 1850-1856.
[262] Guo, H., et al., A novel elastin-like polypeptide drug carrier for cyclosporine A improves tear flow in a mouse model of Sjögren′s syndrome. Journal of controlled release, 2018. 292: p. 183-195.
[263] Miller, W.L., et al., A comparison of tear volume (by tear meniscus height and phenol red thread test) and tear fluid osmolality measures in non-lens wearers and in contact lens wearers. Eye & contact lens, 2004. 30(3): p. 132-137.
[264] Koh, S., et al., Effect of non‐invasive tear stability assessment on tear meniscus height. Acta Ophthalmologica, 2015. 93(2): p. e135-e139.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明