博碩士論文 108827024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.243.184
姓名 侯侒利(An-Li Hou)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 開發以層狀金屬硫族化物之奈米複合材料於多功能摩擦奈米發電機設計
(A Multifunctional Triboelectric Nanogenerator Design Based on Layered Metal Chalcogenides Nanocomposite)
相關論文
★ 層狀金屬硫化物設計之異質結構應用於壓電奈米發電機
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-7以後開放)
摘要(中) 自供電電子設備基於其功能型聚合物/奈米複合材料界面與靈活性,被認為是實現先進醫療感測器網路和人機界面的潛力途徑,然而,這種概念在系統適應性和對複雜應用條件的適用性仍然具有挑戰性。本研究中提出一種低成本、製程簡單、高產率和可調變摩擦電性的矽膠/奈米粒子複合材料,並透過開爾文探針力顯微鏡 (KPFM) 和壓電力顯微鏡 (PFM) 探討所設計的奈米複合材料表面摩擦電性和壓電特性。我們將複合材料整合為混成奈米發電機裝置 (H-ETNG),使其具有產生混合輸出之能力,並兼具出色的耐用性與穩定性。此外,我們進一步將 H-ETNG 結合智能人機介面平台。我們相信這些發現不僅對未來能源收集器提供了新方向,亦可於未來仿生與輔助科技上提供幫助。
摘要(英) Self-powered electronics based on functionally engineering polymer/nanocomposite interface have been regarded as a promising route to achieve advanced healthcare sensor network and human-machine interface. However, the lack of system adaptability and applicability to complex conditions remain challenging. Herein, an silicone/nanoparticle nanocomposite (ETNC) with low cost, simple process, high yield, and tunable triboelectricity is proposed. The triboelectric and piezoelectric properties of the as-derived nanocomposite are also investigated by Kelvin Probe Force Microscope (KPFM) and Piezoresponse Force Microscope (PFM), respectively. Moreover, the nanocomposite is integrated into a hybrid nanogenerator (H-ETNG) with excellent stability and durability. Furthermore, the H-ETNG is further combined with a human-machine interactive platform. We believe that these insights will not only shed light on advanced energy harvester design but also for future assistive technologies toward humanoid applications.
關鍵字(中) ★ 奈米材料
★ 複合
★ 摩擦起電
★ 輔助科技
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2-1 奈米發電機簡介 2
2-2 摩擦奈米發電效應與機制 2
2-3 TENG優化方式 4
2-4 二維材料與層狀二硫族化物 5
2-5 製備方法簡介 7
2-5-1 機械剝離法 8
2-5-2 液相剝離法 8
2-5-3 化學氣相沉積法 9
2-5-4 原子層沉積法 10
2-5-5 物理氣相沉積法 12
2-5-6 化學氣相傳輸 13
2-5-7 水熱/溶劑熱合成法 14
2-6 摩擦-壓電混成奈米發電機 16
2-7 TENG之應用 18
2-7-1 人機介面 19
2-7-2 摩擦起電性之調變方式 21
2-7-3 研究動機與材料選擇 22
第三章 實驗方法 23
3-1 材料製備 23
3-1-1 奈米材料合成 23
3-1-2 複合材料製備 24
3-1-3 摩擦奈米發電機元件製備 24
3-2 材料鑑定儀器 25
3-2-1 掃描式電子顯微鏡 25
3-2-2 拉曼光譜 26
3-2-3 X光繞射儀 27
3-2-4 X射線光電子能譜儀 27
3-2-5 開爾文探針力顯微鏡 28
3-2-6 壓電力顯微鏡 29
第四章 結果與討論 31
4-1 SnS2-NF之鑑定與分析 31
4-1-1 SnS2-NF表貌 31
4-1-2 SnS2-NF之拉曼光譜鑑定 31
4-1-3 SnS2-NF之晶形鑑定 32
4-1-4 SnS2-NF之元素組成分析 32
4-2 ETNC性質鑑定與分析 33
4-2-1 ETNC之拉曼光譜鑑定 33
4-2-2 ETNC之元素分析 34
4-2-3 ETNC之表面電位 34
4-2-4 ETNC之介電常數 37
4-2-5 ETNC之壓電效應探討 38
4-2-6 不同濃度ETNC之輸出表現 38
4-3 H-ETNG輸出表現 39
4-3-1 實驗裝置架設 39
4-3-2 H-ETNG機制探討 40
4-3-3 電性輸出表現 41
4-3-4 驅動商用電子元件 43
4-4 人機介面設計於生醫輔助介面開發 43
第五章 結論與未來展望 47
參考文獻 48
參考文獻 [1] S. Sripadmanabhan Indira, C. Aravind Vaithilingam, K. S. P. Oruganti, F. Mohd, S. Rahman, Nanomaterials 2019, 9, 773.
[2] Z. L. Wang, J. Song, Science 2006, 312, 242.
[3] Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. L. Wang, Nano letters 2012, 12, 2833.
[4] S. Wang, L. Lin, Z. L. Wang, Nano letters 2012, 12, 6339.
[5] J. Dai, L. Li, B. Shi, Z. Li, Biosensors and Bioelectronics 2021, 194, 113609.
[6] W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, Y.-K. Choi, ACS Nano 2021, 15, 258.
[7] W. Kim, T. Okada, H.-W. Park, J. Kim, S. Kim, S.-W. Kim, S. Samukawa, D. Choi, Journal of Materials Chemistry A 2019, 7, 25066.
[8] W. Paosangthong, R. Torah, S. Beeby, Nano Energy 2019, 55, 401.
[9] S. Nie, H. Guo, Y. Lu, J. Zhuo, J. Mo, Z. L. Wang, Advanced Materials Technologies 2020, 5, 2000454.
[10] T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang, M. Zhu, Scientific Reports 2015, 5, 13942.
[11] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Energy & Environmental Science 2013, 6, 3576.
[12] L. Zhang, X. Shan, P. Bass, Y. Tong, T. D. Rolin, C. W. Hill, J. C. Brewer, D. S. Tucker, Z. Y. Cheng, Scientific Reports 2016, 6, 35763.
[13] S. Tu, Q. Jiang, X. Zhang, H. N. Alshareef, ACS Nano 2018, 12, 3369.
[14] M. Salauddin, S. S. Rana, M. Sharifuzzaman, H. S. Song, M. S. Reza, S. H. Jeong, J. Y. Park, Advanced Energy Materials 2023, 13, 2203812.
[15] J. Zhao, Y. Xiao, W. Yang, S. Zhang, H. Wang, Q. Wang, Z. Sun, W. Li, M. Gao, Z. Wang, Advanced Materials Technologies 2023, 2201769.
[16] S. S. Rana, M. A. Zahed, M. T. Rahman, M. Salauddin, S. H. Lee, C. Park, P. Maharjan, T. Bhatta, K. Shrestha, J. Y. Park, Advanced Functional Materials 2021, 31, 2105110.
[17] L. Pan, F. Wang, Y. Cheng, W. R. Leow, Y.-W. Zhang, M. Wang, P. Cai, B. Ji, D. Li, X. Chen, Nature Communications 2020, 11, 1332.
[18] M. Su, J. Brugger, B. Kim, International Journal of Precision Engineering and Manufacturing-Green Technology 2020, 7, 683.
[19] S. K. Ghosh, J. Kim, M. P. Kim, S. Na, J. Cho, J. J. Kim, H. Ko, ACS Nano 2022, 16, 11415.
[20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[21] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Materials Today 2017, 20, 116.
[22] C. Wu, T. W. Kim, J. H. Park, H. An, J. Shao, X. Chen, Z. L. Wang, ACS Nano 2017, 11, 8356.
[23] T. I. Kim, I.-J. Park, S. Kang, T.-S. Kim, S.-Y. Choi, ACS Applied Materials & Interfaces 2021, 13, 21299.
[24] M. Seol, S. Kim, Y. Cho, K. E. Byun, H. Kim, J. Kim, S. K. Kim, S. W. Kim, H. J. Shin, S. Park, Adv Mater 2018, 30, e1801210.
[25] J. Yang, Q. Tian, Z. Chen, X. Xu, L. Zha, Materials Letters 2012, 67, 32.
[26] N. K. Das, S. Veeralingam, S. Badhulika, ACS Applied Energy Materials 2023, 6, 6732.
[27] L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O′Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, A. Walsh, Journal of Materials Chemistry A 2016, 4, 1312.
[28] P. Shinde, C. S. Rout, Materials Chemistry Frontiers 2021, 5, 516.
[29] J. Liu, C. Xia, H. Li, A. Pan, Nanotechnology 2016, 27, 34LT01.
[30] Y. Liu, X. Mi, J. Wang, M. Li, D. Fan, H. Lu, X. Chen, Inorganic Chemistry Frontiers 2019, 6, 948.
[31] R.-J. Chang, Y. Sheng, T. Chen, N. Mkhize, Y. Lu, H. Bhaskaran, J. H. Warner, ACS Applied Nano Materials 2019, 2, 4222.
[32] R. W. Johnson, A. Hultqvist, S. F. Bent, Materials Today 2014, 17, 236.
[33] N. Lee, G. Lee, H. Choi, H. Park, Y. Choi, H. Seo, H. Ju, S. Kim, O. Sul, J. Lee, Nanotechnology 2019, 30, 405707.
[34] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, M. Ijaz, in Chemistry of Nanomaterials, (Eds: T. I. Awan, A. Bashir, A. Tehseen), Elsevier, 2020, 51.
[35] C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Thin Solid Films 2012, 520, 4898.
[36] H. Ying, X. Li, Y. Wu, Y. Yao, J. Xi, W. Su, C. Jin, M. Xu, Z. He, Q. Zhang, Nanoscale Advances 2019, 1, 3973.
[37] H. Tian, C. Fan, G. Liu, Y. Zhang, M. Wang, E. Li, Journal of Materials Science 2019, 54, 2059.
[38] Q. Zheng, B. Shi, Z. Li, Z. L. Wang, Advanced Science 2017, 4, 1700029.
[39] Y. P. Lim, J. S. C. Koay, J. Zhao, S. Huang, B. T. Goh, K. C. Aw, B. Chen, C. Y. Haw, W. C. Gan, Advanced Functional Materials 2022, 32, 2206750.
[40] W. Tang, Y. Han, C. B. Han, C. Z. Gao, X. Cao, Z. L. Wang, Advanced Materials 2015, 27, 272.
[41] X. Wang, S. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9, 4553.
[42] Y. Bian, T. Jiang, T. Xiao, W. Gong, X. Cao, Z. Wang, Z. L. Wang, Advanced Materials Technologies 2018, 3, 1700317.
[43] Y. Mao, D. Geng, E. Liang, X. Wang, Nano Energy 2015, 15, 227.
[44] C. Cui, X. Wang, Z. Yi, B. Yang, X. Wang, X. Chen, J. Liu, C. Yang, ACS Applied Materials & Interfaces 2018, 10, 3652.
[45] R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim, Science 2019, 365, 491.
[46] S. Wang, X. Wang, Z. L. Wang, Y. Yang, ACS Nano 2016, 10, 5696.
[47] Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z.-H. Lin, Y. Su, P. Bai, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 9461.
[48] R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai, X. Liang, L. Xu, T. Jiang, X. Chen, Z. L. Wang, Advanced Materials Technologies 2019, 4, 1800514.
[49] M. Xu, T. Zhao, C. Wang, S. L. Zhang, Z. Li, X. Pan, Z. L. Wang, ACS Nano 2019, 13, 1932.
[50] T. Tat, A. Libanori, C. Au, A. Yau, J. Chen, Biosensors and Bioelectronics 2021, 171, 112714.
[51] W. Ding, A. C. Wang, C. Wu, H. Guo, Z. L. Wang, Advanced Materials Technologies 2019, 4, 1800487.
[52] Y.-C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo, Z. L. Wang, Advanced Functional Materials 2017, 27, 1604462.
[53] M. Pan, C. Yuan, X. Liang, J. Zou, Y. Zhang, C. Bowen, iScience 2020, 23, 101682.
[54] Y. Luo, Z. Wang, J. Wang, X. Xiao, Q. Li, W. Ding, H. Fu, Nano Energy 2021, 89, 106330.
[55] S.-W. Chen, S.-M. Huang, H.-S. Wu, W.-P. Pan, S.-M. Wei, C.-W. Peng, I.-C. Ni, B. T. Murti, M.-L. Tsai, C.-I. Wu, P.-K. Yang, Advanced Science 2022, 9, 2201507.
[56] X. Li, P. Zhu, S. Zhang, X. Wang, X. Luo, Z. Leng, H. Zhou, Z. Pan, Y. Mao, ACS Nano 2022, 16, 5909.
[57] X. Pu, S. An, Q. Tang, H. Guo, C. Hu, iScience 2021, 24, 102027.
[58] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z. L. Wang, Science Advances 2017, 3, e1700015.
[59] C. Yang, J. He, Y. Guo, D. Zhao, X. Hou, J. Zhong, S. Zhang, M. Cui, X. Chou, Materials & Design 2021, 201, 109508.
[60] S. Shu, Z. Wang, P. Chen, J. Zhong, W. Tang, Z. L. Wang, Advanced Materials 2023, 2211385.
[61] D. M. Gooding, G. K. Kaufman, Encyclopedia of Inorganic and Bioinorganic Chemistry 2011, 1.
[62] C. Zhang, L. Zhou, P. Cheng, X. Yin, D. Liu, X. Li, H. Guo, Z. L. Wang, J. Wang, Applied Materials Today 2020, 18, 100496.
[63] H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, Z. L. Wang, Advanced Functional Materials 2015, 25, 5691.
[64] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Science Advances 2017, 3, e1700694.
[65] D. Bhatia, K.-S. Lee, M. U. K. Niazi, H.-S. Park, Nano Energy 2022, 97, 107179.
[66] A. Babu, P. Malik, N. Das, D. Mandal, Small 2022, 18, 2201331.
[67] J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, J. Chen, CrystEngComm 2012, 14, 1364.
[68] M. Tare, O. Puli, S. Oros, A. Singh, Population Data Information Service 2009, 92, 174.
[69] M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal, A. M. Aisiri, Nanomaterials 2011, 3, 43.
[70] A. A. KUMAR, NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL, 2017.
[71] P. Pandey, Silver nano polymer composite with Antimicrobial activity, 2021.
[72] N. Ishida, V. S. Craig, KONA Powder and Particle Journal 2019, 36, 187.
[73] C. Fan, Y. Li, F. Lu, H.-X. Deng, Z. Wei, J. Li, RSC advances 2016, 6, 422.
[74] X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Advanced Functional Materials 2016, 26, 4405.
[75] T. Duangchuen, A. Karaphun, L. Wannasen, I. Kotutha, E. Swatsitang, Applied Surface Science 2019, 487, 634.
[76] Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, Y. Liu, Nanoscale 2013, 5, 606.
[77] Y. Zhang, E. Ren, H. Tang, A. Li, C. Cui, R. Guo, M. Zhou, S. Jiang, H. Shen, Journal of Materials Science: Materials in Electronics 2020, 31, 14145.
[78] J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, P. S. Lee, Nature communications 2018, 9, 4280.
[79] H. H. Singh, N. Khare, Energy 2019, 178, 765.
[80] K. Shrestha, S. Sharma, G. B. Pradhan, T. Bhatta, P. Maharjan, S. S. Rana, S. Lee, S. Seonu, Y. Shin, J. Y. Park, Advanced Functional Materials 2022, 32, 2113005.
[81] W. Wang, R. Wang, Z. Chen, Z. Sang, K. Lu, F. Han, J. Wang, B. Ju, Sensors and Actuators A: Physical 2020, 316, 112431.
[82] W. Shin, S. Paria, S. Mondal, G.-B. Lee, H. Kim, C. Park, C. Nah, Journal of Materials Chemistry A 2023, 11, 11471.
指導教授 楊伯康 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明