博碩士論文 110827004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.17.78.167
姓名 李冠霖(Kuan-Lin Li)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 開發人工利基應用於常溫細胞儲存和運輸
(To Establish an Artificial Niche for Facile Cell Storage and Transportation under Ambient Temperature)
相關論文
★ 開發具有骨引導性之仿生凝膠應用於固定永久性硬骨植入物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 醫學領域快速發展促使人類平均壽命延長,進而大幅提升老年人口比例,當世界全面進入超高齡化社會,人類將面臨一系列與醫療相關的挑戰。傳統的手術治療及藥物療法已不再能滿足需求,再生醫學透過替代已受損細胞或組織的方式,成為一項重要策略。在多個再生醫學領域中,細胞治療作為其中規模最大的發展項目之一,具有顯著的前景;而細胞治療的成功關鍵,在於確保細胞保存及運輸過程中,維持細胞的活性及功能性。冷凍保存技術(cryopreservation)為現行的細胞保存技術主要方法,然而冷凍過程會導致細胞內水分形成冰晶,引發細胞結構性破壞,需要藉由冷凍保護劑(cryoprotective agents,CPA)來防止細胞受損,臨床實際應用卻發現,部分患者在治療後出現低血壓、心律失常等嚴重反應,研究顯示與冷凍保護劑無法完全去除有關。有鑑於此,本研究開發高度生物相容性之人工利基(artificial niche)「Traveling Pearl」。Traveling Pearl具有殼/核結構,外層使用海藻酸(alginate),能與二價陽離子迅速交聯,細胞運輸過程具有保護功能;而內層則選用具有黏滯性的明膠溶液(gelatin solution),這有助於在細胞保存時提供緩衝作用,確保細胞穩定。本研究設計不同溫度條件參數,包括常溫(ambient temperature,AT,泛指15-30℃)、37℃、4℃以及液態氮冷凍(liquid nitrogen,LN2)組,也模擬保存及運輸時差異,分為靜態(static)及動態(dynamic)。實驗結果證實,在AT組別,細胞在經過3天和7天保存後仍然保持良好的細胞活性及貼附能力,且保存效果穩定。綜上所述,本研究開發Traveling Pearl,旨在解決冷凍保存衍生的問題,並提高生物相容性來強化細胞治療的成功率,期許這項研究成果能為再生醫療提供新工具。
摘要(英) Rapid advancements in the field of medicine have led to an extended average human lifespan, resulting in a substantial increase in the proportion of elderly individuals within the population. As global society transitions into a super-aged demographic, humanity is poised to confront an array of medical challenges. Conventional surgical interventions and pharmaceutical therapies are no longer adequate to meet these demands; thus, regenerative medicine has emerged as a pivotal strategy for cell and tissue replacement of damaged constituents. Among the myriad domains of regenerative medicine, cell therapy stands out as one of the most expansive avenues, exhibiting considerable promise. The success of cell therapy depends critically on the preservation of cellular viability and functionality during storage and transport. Cryopreservation, currently the predominant method for cell preservation, entails freezing procedures that, unfortunately, engender intracellular ice crystal formation, thereby inducing structural detriment. Cryoprotective agents (CPAs) are employed to mitigate cellular damage caused by freezing; however, clinical application has revealed instances of severe post-treatment patient reactions, such as hypotension and arrhythmia, indicating residual issues independent of CPA usage. In light of these challenges, this study introduces the development of a highly biocompatible artificial niche termed "Traveling Pearl." The Traveling Pearl is characterized by a shell/core architecture, where the outer layer employs alginate derived from brown algae, exhibiting rapid crosslinking with divalent cations to confer protective attributes during cellular transport. The inner layer comprises a viscous gelatin solution that serves as a buffering agent during cell preservation, thereby ensuring stability. Various temperature conditions were investigated in this study, including ambient temperature (AT, encompassing 15-30°C), 37°C, 4°C, and liquid nitrogen freezing (LN2), in addition to static and dynamic simulations, to mimic disparities during storage and transportation. Experimental findings revealed that within the AT group, cells exhibited sustained viability and adhesive capabilities following 3-day and 7-day preservation periods, thereby underscoring the stability of the preservation effects. In summary, this study presents the development of the Traveling Pearl as a strategic intervention aimed at addressing complications arising from cryopreservation techniques, while enhancing biocompatibility to bolster the success rate of cell therapy. The results of this study may provide a novel tool for augmenting the domain of regenerative medicine.
關鍵字(中) ★ 細胞保存
★ 細胞運輸
★ Traveling Pearl載體
★ 常溫
關鍵字(英) ★ cell preservation
★ cell transportation
★ Traveling Pearl
★ ambient temperature
論文目次 摘要 i
ABSTRACT ii
符號縮寫說明 x
第一章 研究背景暨文獻回顧 1
1-1 再生醫學 1
1-1-1細胞治療流程 2
1-1-2細胞治療市場 3
1-2 細胞運輸保存 4
1-2-1冷凍保存 4
1-2-2細胞冰損傷 5
1-2-3冷凍保護劑 6
1-2-4 冷凍保護劑不良反應 7
1-3 競品比較 7
1-4 材料選用 9
1-4-1海藻酸 9
1-4-2海藻酸的交聯 10
1-4-3海藻酸細胞包覆 11
1-4-4明膠 12
第二章 研究動機與實驗目的 13
2-1研究動機 13
2-2研究目的 13
第三章 材料與方法 16
3-1 使用儀器與耗材 16
3-1-1藥品清單 16
3-1-2耗材清單 17
3-1-3設備器材清單 17
3-2 實驗架構 18
3-3 實驗選用細胞 20
3-3-1小鼠纖維母細胞 20
3-4 Traveling Pearl製作 21
3-4-1海藻酸鈉以及明膠製備 21
3-4-2注射幫浦參數設定 21
3-4-3熱板攪拌器參數設定 22
3-4-4細胞包覆效率分析 22
3-4-5生物相容性測試 23
3-5 Traveling Pearl內細胞分析 24
3-5-1 Traveling Pearl細胞死活染色分析 24
3-5-2 Traveling Pearl細胞團分析 24
3-6 Traveling Pearl材料去除及後續實驗 24
3-6-1材料去除 24
3-6-2粒線體活性檢測 25
3-6-3細胞貼附性測試 25
3-7 細胞運輸碰撞測試 26
3-8 細胞週期測試 26
3-9 Traveling Pearl細胞團包覆 27
第四章 結果與討論 28
4-1 Traveling Pearl製作 28
4-1-1 Traveling Pearl分層結構 28
4-1-2置於不同環境下之細胞觀察 29
4-1-3細胞包覆效率分析 30
4-1-4生物相容性分析 31
4-2 Traveling Pearl細胞存活率測試 32
4-2-1 Traveling Pearl包裹分析 32
4-2-2 Traveling Pearl細胞保存率 33
4-2-3細胞團觀察 35
4-3 Traveling Pearl包裹後細胞觀察 35
4-4 Traveling Pearl包裹後粒線體活性檢測 38
4-5 Traveling Pearl包裹後細胞貼附分析 40
4-6 Traveling Pearl運輸碰撞測試 40
4-7 細胞週期分析 42
4-8 Traveling Pearl細胞團包裹 46
4-8-1 Traveling Pearl細胞團包裹分析 46
4-8-2 Traveling Pearl細胞團保存率 47
4-8-3 Traveling Pearl包裹後細胞團貼附情況 48
第五章 結論 49
第六章 參考文獻 50
參考文獻 1.Berthiaume, F., T.J. Maguire, and M.L. Yarmush, Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, 2011. 2: p. 403-30.
2.Imran, S.A.M., M.H. MHA, A.A.N. Khairul Bariah, W.S. Wan Kamarul Zaman, and F. Nordin, Regenerative Medicine Therapy in Malaysia: An Update. Front Bioeng Biotechnol, 2022. 10: p. 789644.
3.Edgar, L., T. Pu, B. Porter, J.M. Aziz, C. La Pointe, A. Asthana, and G. Orlando, Regenerative medicine, organ bioengineering and transplantation. Br J Surg, 2020. 107(7): p. 793-800.
4.Terzic, A., M.A. Pfenning, G.J. Gores, and C.M. Harper, Jr., Regenerative Medicine Build-Out. Stem Cells Transl Med, 2015. 4(12): p. 1373-9.
5.Schnitzler, A.C., A. Verma, D.E. Kehoe, D. Jing, J.R. Murrell, K.A. Der, M. Aysola, P.J. Rapiejko, S. Punreddy, and M.S. Rook, Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochemical Engineering Journal, 2016. 108: p. 3-13.
6.細胞治療流程. Available from: https://www.imecint.com/en/imec-magazine/imec-magazine-february-2018/what-chip-technology-can-do-for-cell-therapy.
7.細胞治療市場. Available from: https://www.precedenceresearch.com/cell-therapy-market.
8.Pegg, D.E., Principles of cryopreservation.
Cryopreservation and freeze-drying protocols, 2007: p. 39-57.
9.Murray, K.A. and M.I. Gibson, Chemical approaches to cryopreservation. Nat Rev Chem, 2022. 6(8): p. 579-593.
10.冷凍細胞:過程概述. Available from: https://cytologicsbio.com/how-to-freeze-cells-3-essential-considerations/.
11.Han, B. and J.C. Bischof, Direct cell injury associated with eutectic crystallization during freezing. Cryobiology, 2004. 48(1): p. 8-21.
12.Fowler, A. and M. Toner, Cryo-injury and biopreservation. Ann N Y Acad Sci, 2005. 1066: p. 119-35.
13.Raju, R., S.J. Bryant, B.L. Wilkinson, and G. Bryant, The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj, 2021. 1865(1): p. 129749.
14.McLellan, M.R. and J.G. Day, Cryopreservation and freeze-drying protocols. Introduction. Methods Mol Biol, 1995. 38: p. 1-5.
15.Verheijen, M., M. Lienhard, Y. Schrooders, O. Clayton, R. Nudischer, S. Boerno, B. Timmermann, N. Selevsek, R. Schlapbach, H. Gmuender, S. Gotta, J. Geraedts, R. Herwig, J. Kleinjans, and F. Caiment, DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep, 2019. 9(1): p. 4641.
16.Shu, Z., S. Heimfeld, and D. Gao, Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant, 2014. 49(4): p. 469-76.
17.Maral, S., M. Albayrak, C. Pala, A. Yildiz, O. Sahin, and H.B. Ozturk, Dimethyl Sulfoxide-Induced Tonic-Clonic Seizure and Cardiac Arrest During Infusion of Autologous Peripheral Blood Stem Cells. Cell Tissue Bank, 2018. 19(4): p. 831-832.
18.Rowley, S., B. MacLeod, S. Heimfeld, L. Holmberg, and W. Bensinger, Severe central nervous system toxicity associated with the infusion of cryopreserved PBSC components. Cytotherapy, 1999. 1(4): p. 311-7.
19.Zenhäusern, R., A. Tobler, L. Leoncini, O.M. Hess, and P. Ferrari, Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol, 2000. 79(9): p. 523-6.
20.Benekli, M., B. Anderson, D. Wentling, S. Bernstein, M. Czuczman, and P. McCarthy, Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant, 2000. 25(12): p. 1299-301.
21.Zambelli, A., G. Poggi, G. Da Prada, P. Pedrazzoli, A. Cuomo, D. Miotti, C. Perotti, P. Preti, and G. Robustelli della Cuna, Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res, 1998. 18(6b): p. 4705-8.
22.Hoyt, R., J. Szer, and A. Grigg, Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant, 2000. 25(12): p. 1285-7.
23.Foïs, E., M. Desmartin, S. Benhamida, F. Xavier, V. Vanneaux, D. Rea, J.P. Fermand, B. Arnulf, N. Mounier, M. Ertault, J.P. Lotz, L. Galicier, E. Raffoux, M. Benbunan, J.P. Marolleau, and J. Larghero, Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant, 2007. 40(9): p. 831-5.
24.Best, B.P., Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res, 2015. 18(5): p. 422-36.
25.Heydarzadeh, S., S. Kheradmand Kia, S. Boroomand, and M. Hedayati, Recent developments in cell shipping methods. Biotechnol Bioeng, 2022. 119(11): p. 2985-3006.
26.Dewhurst, R.M., E. Molinari, and J.A. Sayer, Cell preservation methods and its application to studying rare disease. Mol Cell Probes, 2021. 56: p. 101694.
27.Kuo, C.-T., J.-Y. Wang, Y.-F. Lin, A.M. Wo, B.P. Chen, and H. Lee, Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Scientific reports, 2017. 7(1): p. 4363.
28.Aijian, A.P. and R.L. Garrell, Digital microfluidics for automated hanging drop cell spheroid culture. Journal of laboratory automation, 2015. 20(3): p. 283-295.
29.Foty, R., A simple hanging drop cell culture protocol for generation of 3D spheroids. JoVE (Journal of Visualized Experiments), 2011(51): p. e2720.
30.Jiang, B., L. Yan, Z. Miao, E. Li, K.H. Wong, and R.H. Xu, Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials, 2017. 133: p. 275-286.
31.Damala, M., S. Swioklo, M.A. Koduri, N.S. Mitragotri, S. Basu, C.J. Connon, and V. Singh, Encapsulation of human limbus-derived stromal/mesenchymal stem cells for biological preservation and transportation in extreme Indian conditions for clinical use. Sci Rep, 2019. 9(1): p. 16950.
32.Cuadros, T.R., A.A. Erices, and J.M. Aguilera, Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater, 2015. 46: p. 331-42.
33.Zimmermann, U., G. Klöck, K. Federlin, K. Hannig, M. Kowalski, R.G. Bretzel, A. Horcher, H. Entenmann, U. Sieber, and T. Zekorn, Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis, 1992. 13(5): p. 269-74.
34.Orive, G., S.K. Tam, J.L. Pedraz, and J.P. Hallé, Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials, 2006. 27(20): p. 3691-700.
35.Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
36.海藻酸鹽化學式. Available from: https://zh.wikipedia.org/wiki/%E6%B5%B7%E8%97%BB%E9%85%B8.
37.Hu, T. and A.C.Y. Lo, Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel), 2021. 13(11).
38.Sun, J. and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel), 2013. 6(4): p. 1285-1309.
39.Wang, X., J. Zhu, X. Liu, H.J. Zhang, and X. Zhu, Novel gelatin-based eco-friendly adhesive with a hyperbranched cross-linked structure. Industrial & Engineering Chemistry Research, 2020. 59(13): p. 5500-5511.
40.Zheng, Y., Y. Liang, D. Zhang, X. Sun, L. Liang, J. Li, and Y.N. Liu, Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega, 2018. 3(5): p. 4766-4775.
41.Wang, X., Q. Ao, X. Tian, J. Fan, H. Tong, W. Hou, and S. Bai, Gelatin-based hydrogels for organ 3D bioprinting. Polymers, 2017. 9(9): p. 401.
42.Foox, M. and M. Zilberman, Drug delivery from gelatin-based systems. Expert Opin Drug Deliv, 2015. 12(9): p. 1547-63.
43.明膠. Available from: https://chembam.com/resources-for-students/the-chemistry-of/gelatin/.
44.細胞保存市場. Available from: https://www.transparencymarketresearch.com/cell-tissue-preservation-market.html.
45.Andreazza, R., A. Morales, S. Pieniz, and J. Labidi, Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers (Basel), 2023. 15(4).
46.Adler, S., C. Pellizzer, M. Paparella, T. Hartung, and S. Bremer, The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro, 2006. 20(3): p. 265-71.
47.Murray, K.A., R.M.F. Tomás, and M.I. Gibson, Low DMSO Cryopreservation of Stem Cells Enabled by Macromolecular Cryoprotectants. ACS Appl Bio Mater, 2020. 3(9): p. 5627-5632.
48.Swioklo, S., A. Constantinescu, and C.J. Connon, Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Transl Med, 2016. 5(3): p. 339-49.
49.Kofanova, O.A., K. Davis, B. Glazer, Y. De Souza, J. Kessler, and F. Betsou, Viable mononuclear cell stability study for implementation in a proficiency testing program: impact of shipment conditions. Biopreserv Biobank, 2014. 12(3): p. 206-16.
50.Ke, C.-J., K.-H. Chiu, C.-Y. Chen, C.-H. Huang, and C.-H. Yao, Alginate-gelatin based core-shell capsule enhances the osteogenic potential of human osteoblast-like MG-63 cells. Materials & Design, 2021. 210: p. 110109.
51.SGS體外細胞毒性試驗報告. Available from: http://www.zigsheng.com/wpcontent/uploads/2021/11/SGS%E9%AB%94%E5%A4%96%E7%B4%B0%E8%83%9E%E6%AF%92%E6%80%A7%E8%A9%A6%E9%A9%97%E5%A0%B1%E5%91%8A.pdf.
指導教授 陳靖昀 柯承志(Ching-Yun Chen Cherng-Jyh Ke) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明