參考文獻 |
1. https://zh.wikipedia.org/zh-tw/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0, solar cell. 2023.
2. Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X., Solar cell efficiency tables (Version 61). Progress in Photovoltaics 2023, 31 (1), 3-16.
3. https://www.nrel.gov/pv/cell-efficiency.html, Best Research-Cell Efficiencies. 2023.
4. Green, M. A.; Wenham, S. R.; Sproul, A. B.; Edmiston, S. A., Modelling of thin-film crystalline silicon parallel multi-junction solar cells. Progress in Photovoltaics 1995, 3 (5), 333.
5. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐nJunction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677.
6. Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J., Solution-processed small-molecule solar cells with 6.7% efficiency. Nature materials 2011, 11 (1), 44-48.
7. Yuze, L.; Fuwen, Z.; Qiao, H.; Lijun, H.; Yang, W.; Parker, T. C.; Wei, M.; Yanming, S.; Chunru, W.; Daoben, Z.; Heeger, A. J.; Marder, S. R.; Xiaowei, Z., High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society 2016, 138 (14), 4955-4961.
8. Kayes, B. M.; Nie, H.; Twist, R.; Spruytte, S. G.; Reinhardt, F.; Kizilyalli, I. C.; Higashi, G. S., 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 2011 37th IEEE Photovoltaic Specialists Conference 2011, 000004-000008.
9. Hollemann, C.; Haase, F.; Rienäcker, M.; Barnscheidt, V.; Krügener, J.; Folchert, N.; Brendel, R.; Richter, S.; Großer, S.; Sauter, E.; Hübner, J.; Oestreich, M.; Peibst, R., Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell. Sci Rep 2020, 10 (1), 658.
10. Radue, C.; van Dyk, E. E., A comparison of degradation in three amorphous silicon PV module technologies. Solar Energy Materials & Solar Cells 2010, 94 (3), 617-622.
11. https://zh.wikipedia.org/zh-tw/%E9%88%A3%E9%88%A6%E7%A4%A6, Perovskite. 2023.
12. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.
13. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
14. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S., Perovskite solar cells with atomically coherent interlayers on SnO 2 electrodes. Nature 2021, 598 (7881), 444-450.
15. George, J.; Joseph, A. P.; Balachandran, M., Perovskites: Emergence of highly efficient third‐generation solar cells. International Journal of Energy Research 2022, 1.
16. Xiao, Z.; Song, Z.; Yan, Y., From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Advanced materials (Deerfield Beach, Fla.) 2019, 31 (47), 1803792.
17. Imran, T.; Rauf, S.; Raza, H.; Aziz, L.; Chen, R.; Liu, S.; Wang, J.; Ahmad, M. A.; Zhang, S.; Zhang, Y.; Liu, Z.; Chen, W., Methylammonium and Bromide‐Free Tin‐Based Low Bandgap Perovskite Solar Cells. Advanced Energy Materials 2022, 12 (27), 1-36.
18. Ke, W.; Kanatzidis, M. G., Prospects for low-toxicity lead-free perovskite solar cells. Nature communications 2019, 10 (1), 965.
19. Chen, B.; Yang, M.; Priya, S.; Zhu, K., Origin of J-V Hysteresis in Perovskite Solar Cells. The journal of physical chemistry letters 2016, 7 (5), 905-917.
20. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced materials (Deerfield Beach, Fla.) 2013, 25 (27), 3727-3732.
21. Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R. A.; Dunfield, S. P.; Xiao, C.; Scheidt, R. A.; Kuciauskas, D.; Wang, X.; Hautzinger, M. P.; Tirawat, R.; Beard, M. C.; Fenning, D. P.; Berry, J. J.; Larson, B. W.; Yan, Y.; Zhu, K., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611 (7935), 278-283.
22. Zhen, L.; Bo, L.; Xin, W.; Sheppard, S. A.; Shoufeng, Z.; Danpeng, G.; Long, N. J.; Zonglong, Z., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376 (6591), 416-420.
23. Diau, E. W.-G.; Jokar, E.; Rameez, M., Strategies To Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Letters 2019, 4 (8), 1930-1937.
24. Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical reviews 2019, 119 (5), 3418-3451.
25. Suragtkhuu, S.; Sunderiya, S.; Myagmarsereejid, P.; Purevdorj, S.; Bati, A. S. R.; Bold, B.; Zhong, Y. L.; Davaasambuu, S.; Batmunkh, M., Graphene‐Like Monoelemental 2D Materials for Perovskite Solar Cells. Advanced Energy Materials 2023, 13 (12), 1-24.
26. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591.
27. Khan, D.; Liu, X.; Qu, G.; Nath, A. R.; Xie, P.; Xu, Z.-X., Nexuses Between the Chemical Design and Performance of Small Molecule Dopant-Free Hole Transporting Materials in Perovskite Solar Cells. Small (Weinheim an der Bergstrasse, Germany) 2023, 19 (11), e2205926.
28. Zhou, X.; Qiu, L.; Fan, R.; Ye, H.; Tian, C.; Hao, S.; Yang, Y., Toward high-efficiency and thermally-stable perovskite solar cells: A novel metal-organic framework with active pyridyl sites replacing 4-tert-butylpyridine. Journal of Power Sources 2020, 473 (1).
29. Guo, P.; Dong, J.; Xu, C.; Yao, Y.; You, J.; Bian, H.; Zeng, W.; Zhou, G.; He, X.; Wang, M.; Zhou, X.; Wang, M.; Song, Q., Fabrication of an ultrathin PEG-modified PEDOT:PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching techniqueElectronic supplementary information (ESI) available. Journal of Materials Chemistry A 2023, 11 (13), 7246-7255.
30. Kuan, C.-H.; Luo, G.-S.; Narra, S.; Maity, S.; Hiramatsu, H.; Tsai, Y.-W.; Lin, J.-M.; Hou, C.-H.; Shyue, J.-J.; Wei-Guang Diau, E., How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chemical Engineering Journal 2022, 450, N.PAG-N.PAG.
31. Kim, S. G.; Zhu, K., Chemical Design of Organic Interface Modifiers for Highly Efficient and Stable Perovskite Solar Cells. 2023.
32. Ali, F.; Roldán‐Carmona, C.; Sohail, M.; Nazeeruddin, M. K., Applications of Self‐Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Advanced Energy Materials 2020, 10 (48), 1-24.
33. Kim, S. Y.; Cho, S. J.; Byeon, S. E.; He, X.; Yoon, H. J., Self‐Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (44), 1-21.
34. Hu, L.; Li, M.; Yang, K.; Xiong, Z.; Yang, B.; Wang, M.; Tang, X.; Zang, Z.; Liu, X.; Li, B.; Xiao, Z.; Lu, S.; Gong, H.; Ouyang, J.; Sun, K., PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cellsElectronic supplementary information (ESI) available: SEM of the perovskite film and AFM of the pristine PEDOT:PSS film, water rinsed PEDOT:PSS film and ITO. See DOI: 10.1039/c8ta05234d. Journal of Materials Chemistry A 2018, 6 (34), 16583-16589.
35. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparaviius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V.; Albrecht, S., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cellsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ee02268f. Energy & Environmental Science 2019, 12 (11), 3356-3369.
36. Li, E.; Liu, C.; Lin, H.; Xu, X.; Liu, S.; Zhang, S.; Yu, M.; Cao, X. M.; Wu, Y.; Zhu, W. H., Bonding Strength Regulates Anchoring‐Based Self‐Assembly Monolayers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials 2021, 31 (35), 1-9.
37. Wang, S.; Guo, H.; Wu, Y., Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Materials Futures 2023, 2 (1), 012105.
38. Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C., Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials & Solar Cells 2006, 90 (18/19), 2952-2959.
39. Boudreault, P.-L. T.; Najari, A.; Leclerc, M., Processable Low-Bandgap Polymers for Photovoltaic Applications†. Chemistry of Materials 2011, 23 (3), 456-469.
40. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials 2001, 11 (5), 374-380.
41. Yu, B. B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z., Heterogeneous 2D/3D Tin‐Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Advanced Materials 2021, 33 (36).
42. Jiang, W.; Li, F.; Li, M.; Qi, F.; Lin, F. R.; Jen, A. K. Y., π‐Expanded Carbazoles as Hole‐Selective Self‐Assembled Monolayers for High‐Performance Perovskite Solar Cells. Angewandte Chemie 2022, 134 (51), 1-6.
43. Nanjia, Z.; Kumaresan, P.; Byunghong, L.; Sheng Hsiung, C.; Harutyunyan, B.; Peijun, G.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A.; Vegiraju, S.; Shuehlin, Y.; Chun-Guey, W.; Chang, R. P. H.; Facchetti, A.; Ming-Chou, C.; Marks, T. J., Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2015, 137 (13), 4414-4423.
44. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.; Facchetti, A.; Guo, X., Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society 2020, 142 (39), 16632-16643.
45. Yalcin, E.; Can, M.; Rodriguez-Seco, C.; Aktas, E.; Pudi, R.; Cambarau, W.; Demic, S.; Palomares, E., Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cellsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee01831f. Energy & Environmental Science 2019, 12 (1), 230-237.
46. Zhang, S.; Wu, R.; Mu, C.; Wang, Y.; Han, L.; Wu, Y.; Zhu, W.-H., Conjugated Self-Assembled Monolayer as Stable Hole-Selective Contact for Inverted Perovskite Solar Cells. ACS Materials Letters 2022, 4 (10), 1976-1983.
47. Joseph, V.; Xia, J.; Sutanto, A. A.; Jankauskas, V.; Momblona, C.; Ding, B.; Rakstys, K.; Balasaravanan, R.; Pan, C.-H.; Ni, J.-S.; Yau, S.-L.; Sohail, M.; Chen, M.-C.; Dyson, P. J.; Nazeeruddin, M. K., Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS applied materials & interfaces 2022, 14 (19), 22053-22060.
48. Afraj, S. N.; Kuan, C. H.; Lin, J. S.; Ni, J. S.; Velusamy, A.; Chen, M. C.; Diau, E. W. G., Quinoxaline‐Based X‐Shaped Sensitizers as Self‐Assembled Monolayer for Tin Perovskite Solar cells. Advanced Functional Materials 2023, 33 (17), 1-10.
49. Afraj, S. N.; Zheng, D.; Velusamy, A.; Ke, W.; Cuthriell, S.; Zhang, X.; Chen, Y.; Lin, C.; Ni, J.-S.; Wasielewski, M. R.; Huang, W.; Yu, J.; Pan, C.-H.; Schaller, R. D.; Chen, M.-C.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J., 2,3-Diphenylthieno[3,4-b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. ACS Energy Letters 2022, 7 (6), 2118-2127.
50. Zhang, F.; Yi, C.; Wei, P.; Bi, X.; Luo, J.; Jacopin, G.; Wang, S.; Li, X.; Xiao, Y.; Zakeeruddin, S. M.; Grätzel, M., A Novel Dopant-Free Triphenylamine Based Molecular ′Butterfly′ Hole-Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (14), n/a-N.PAG.
51. Kim, G. W.; Choi, H.; Kim, M.; Lee, J.; Son, S. Y.; Park, T., Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future. Advanced Energy Materials 2020, 10 (8), 1-30.
52. Roquet, S.; Cravino, A.; Leriche, P.; Aléveque, O.; Frëre, P.; Roncali, J., Triphenylamine-Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells. Journal of the American Chemical Society 2006, 128 (10), 3459-3466.
53. Wang, X.; Zhang, J.; Yu, S.; Yu, W.; Fu, P.; Liu, X.; Tu, D.; Guo, X.; Li, C., Lowering Molecular Symmetry To Improve the Morphological Properties of the Hole‐Transport Layer for Stable Perovskite Solar Cells. Angewandte Chemie 2018, 130 (38), 12709-12713. |