博碩士論文 110324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.118.142.125
姓名 陳怡均(Yi-Chun Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以 Lactobacillus buchneri 發酵南瓜汁之 抑制 α-澱粉酶活性與抗氧化活性之研究
(Explores the influence of antidiabetic and antioxidant activity of pumpkin fermented by Lactobacillus buchneri)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 糖尿病(diabetes)是一種代謝性疾病,被分為多種類型,在其中最常見的是第一型糖尿病及第二型糖尿病,前者屬於自體免疫性疾病,是因為身體無法產生足夠的胰島素,甚至完全無法產生胰島素所導致,而後者則是因為體內對胰島素產生阻抗,導致細胞對於正常的胰島素無法正常反應。糖尿病至今仍然無法被完全治癒,只能通過藥物、飲食、運動來控制病情。而患有糖尿病的患者當中,約有九成屬於第二型糖尿病,在這當中 acarbose和 miglitol……等醫療藥物是時常被使用來控制血糖的,但隨著藥物使用量的增加,一些無法避免的副作用也隨之而來的,例如:腸胃脹氣、腹瀉……等等。因此開始嘗試另一種替代藥物的實驗是具可行性的方向。
在過去已有多項研究證明傳統植物作為藥用替代方面的一些功效,而在治療多種疾病(抗菌、抗高血壓、抗糖尿病、抗高膽固醇血症、抗腫瘤……)方面已有多篇文獻證明其功效。南瓜對降血糖的功效中,若是針對第二型糖尿病,控制其餐後的高血糖是非常重要的,在這當中我們可以通過抑制 α-澱粉酶,即可以抑制澱粉和雙醣被分解成單醣,使身體對葡萄糖的吸收下降,延緩血糖上升的速度。
多年以來,發酵一直被作為一項可以保持和改善食品特性的生物技術,同時我們嘗試通過乳酸菌發酵以提升其抑制 α-澱粉酶的效果,進而延緩葡萄糖的吸收,作為一項天然且無甚副作用之降血糖的替代藥物策略,發酵南瓜飲品將是一項具有潛力的功能性飲品,本研究將探討各種發酵條件—超音波預處理、低溫超音波處理、發酵溫度、起始 pH 值,並依菌種生長情形、α-澱粉酶抑制活性、總多酚含和 DPPH 自由基清除能力進行最適化討論。經過不同條件探討後,最終可得 α -澱粉酶的抑制活性64.6%,總多酚351.1 mg GA/L、DPPH自由基清除能力87.2 %。其綜合上述結果, L. buchneri BCE119151 菌種發酵南瓜具有高生物活性的發酵飲品,可將其往保健食品的方向進行開發研究。
摘要(英) Diabetes is a metabolic disease which is divided into many types, the most common types are Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM). The former is an autoimmune disease. It is caused by the body that failure in produce enough insulin. The latter is due to the body′s resistance to insulin. That causes cells to fail to respond normally to produce insulin. Diabetes managed with medication, diet and exercise because Diabetes is still can not cure at present .
Research has confirmed some of use of traditional medicinal plants. In order to control T2D, some drugs such as acarbose and miglitol are commonly used to reduce blood glucose by inhibiting enzymes from hydrolysing carbohydrate. But, the drugs would result in some side effects such as flatulence, diarrhoea and abdominal dilatation. Postprandial hyperglycaemia can be reduceed by inhibiting carbohydrate digesting enzymes in the T2DM. The carbohydrate digesting enzymes is include α-amylase and α-glucosidase. By inhibiting α-amylase, we can control starch and disaccharide which are not break down to monosaccharides. So the absorption of glucose could be lowered. At the same time, the ascending velocity of blood glucose would be delayed.
Lactic acid bacteria have significant functionality and potential as probiotics. In this study, we try to promote the inhibition of α-amylase by Lactobacillus buchneri BCE119151 fermented with pumpkin. In the study, trying to improve the inhibition of α-amylase and antioxidant activity while fermenting pumpkin juice as a healthy alternative functional food containing probiotics. And, we discussed the fermentation condition—Ultrasonic in the room temperature, Ultrasonic in the low temperature, initial pH value, and fermentation temperature. At the results, that shows the inhibition of α-amylase 64.6%, 351.1mg GA/L TPC, and 87.2% DPPH scavenging activity.
關鍵字(中) ★ 南瓜
★ 抑制 α-澱粉酶活性
★ 抗氧化活性
關鍵字(英) ★ pumpkin
★ inhibition of α-amylase
★ antioxidant
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 南瓜 (PUMPKIN) 3
2-1-1 南瓜的基本介紹 3
2-1-2 南瓜的產地與分布 3
2-1-3 南瓜的藥理研究 6
2-1-4 乳酸菌發酵南瓜 8
2-2 乳酸菌 9
2-2-1 乳酸菌的基本介紹 9
2-2-2 乳酸菌發酵優勢 13
2-2-3 Lactobacillus buchneri 14
2-3 糖尿病 15
2-3-1 糖尿病的基本介紹 15
2-3-2 糖尿病的類型 16
2-3-3 第二型糖尿病的治療方法 18
2-4 胰島素 21
2-4-1 胰島素的發現 21
2-4-2 胰島素作用 22
2-4-3 胰島素阻抗 23
三、 材料與方法 25
3-1 實驗規劃 25
3-2 實驗材料 27
3-2-1 實驗菌株 27
3-2-2 實驗藥品 28
3-2-3 實驗儀器與設備 30
3-3 實驗方法 32
3-3-1 菌種保存及培養方式 32
3-3-2 菌種液態種瓶培養 35
3-3-3 乳桿菌發酵動力曲線測試 35
3-3-4 南瓜液態發酵最適化發酵條件探討 36
3-4 分析方法 39
3-4-1 還原糖濃度分析 39
3-4-2 pH值分析 41
3-4-3 DPPH自由基清除能力分析 41
3-4-4 總多酚含量分析 42
3-4-5 α-澱粉酶抑制能力分析 43
四、 結果與討論 45
4-1 菌種生長曲線 45
4-1-1 Lactobacillus buchneri BCE119151 之生長曲線 45
4-1-2 Lactobacillus plantarum BCRC15478 之生長曲線 46
4-2 菌種的篩選 47
4-3 預處理對發酵南瓜的影響 49
4-3-1 預處理對Lactobacillus buchneri 生長的影響 49
4-3-2 預處理對發酵南瓜之抗氧化物質及活性之影響 50
4-3-3 預處理對發酵南瓜之α -澱粉酶的抑制能力之影響 52
4-3-4 預處理對發酵南瓜影響之結論 53
4-4 低溫預處理功率100%對發酵南瓜的影響 54
4-4-1 低溫預處理功率100%對Lactobacillus buchneri 生長的影響 54
4-4-2 低溫預處理功率100%對發酵南瓜之抗氧化物質及活性之影響 56
4-4-3 低溫預處理功率100%對發酵南瓜之α -澱粉酶抑制能力之影響 58
4-4-4 低溫預處理功率100%對發酵南瓜影響之結論 60
4-5 不同功率低溫預處理對發酵南瓜的影響 61
4-5-1 不同功率低溫預處理對Lactobacillus buchneri 生長的影響 61
4-5-2 不同功率低溫預處理對發酵南瓜之抗氧化物質及活性之影響 63
4-5-3 不同功率低溫預處理對發酵南瓜之α -澱粉酶抑制能力之影響 65
4-5-4 不同功率低溫預處理對發酵南瓜影響之結論 67
4-6 發酵溫度對發酵南瓜的影響 68
4-6-1 發酵溫度對Lactobacillus buchneri 生長的影響 68
4-6-2 發酵溫度對發酵南瓜之抗氧化物質及活性之影響 70
4-6-3 發酵溫度對發酵南瓜之α -澱粉酶抑制能力之影響 72
4-6-4 發酵溫度對發酵南瓜影響之結論 74
4-7 不同起始 PH值對發酵南瓜的影響 75
4-7-1 不同起始 pH值對Lactobacillus buchneri 生長的影響 75
4-7-2 不同起始 pH值對發酵南瓜之抗氧化物質及活性之影響 77
4-7-3 不同起始 pH值對發酵南瓜之α -澱粉酶抑制能力之影響 79
4-7-4 不同起始 pH值對發酵南瓜影響之結論 80
五、 結論與建議 81
六、 參考文獻 83
參考文獻 [1] Fu Caili 1, Shi Huan, Li Quanhong , “A review on pharmacological activities and utilization technologies of pumpkin,” Plant Foods Hum Nutr, 2006.
[2] Monir Hosen 1,2,Mohd Y. Rafii 1,3,*ORCID,Norida Mazlan 4ORCID,Mashitah Jusoh 3,Yusuff Oladosu 1ORCID,Mst. Farhana Nazneen Chowdhury 3,5ORCID,Ismaila Muhammad 1ORCID andMd Mahmudul Hasan Khan 1,6ORCID, “Pumpkin (Cucurbita spp.): A Crop to Mitigate Food and Nutritional Challenges,” Horticulturae , 2021.
[3] Anju K Dhiman1*, Sharma KD2, “Functional constituents and processing of pumpkin: A review,” J Food Sci Technol, 2009 .
[4] K. L. Simpson, “Relative value of carotenoids as precursors of vitamin A,” Proceedings of the Nutrition Society , Jan 2007.
[5] Hashash, M.M.; El-Sayed, M.M.; Abdel-Hady, A.A.; Hady, H.A.; Morsi, E.A. , “Nutritional potential, mineral composition and antioxidant activity squash (Curcurbita pepo L.) fruits grown in Egypt.,” Inflammation , 2017.
[6] H. S. Paris, “Summer Squash: History, Diversity, and Distribution,” HortTechnology, Jan 1996.
[7] “FAOSTAT Statistic Database.,” [線上]. [存取日期: 2021].
[8] Fu Caili 1, Shi Huan, Li Quanhong , “ A review on pharmacological activities and utilization technologies of pumpkin,” Plant Foods Hum Nutr., April 2006.
[9] Al-Zuhair H, Abd el-Fattah AA, Abd el Latif HA , “Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia,” Pharmacol Res, 2019.
[10] A. Sedigheh, “Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats,” African Journal of Pharmacy and Pharmacology, 2011.
[11] Tao Xia , Qin Wang , “Antihyperglycemic effect of Cucurbita ficifolia fruit extract in streptozotocin-induced diabetic rats,” ScienceDirect, Dec 2006.
[12] Quanhong, LI, Caili, F, Yukui, R, et al. , “Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats.,” Plant Food Hum Nutr, 2005.
[13] Fu Caili 1, Shi Huan, Li Quanhong, “A review on pharmacological activities and utilization technologies of pumpkin,” Plant Foods Hum Nutr, 2006.
[14] L. J. GALLIGAN, “Carotenoids Slow the Growth of Small Cell Lung Cancer Cells,” Annals of the New York Academy of Sciences, Dec 1993.
[15] X. GH, “A study of the possible antitumour effect and immunom petence of pumpkin polysaccharide,” J Wuhan Prof Med Coll., 2000.
[16] “衛生福利部國民健康署”.
[17] Aliaa E.M.K. El-Mosallamy, Amany A. Sleem, Omar M.E. Abdel-Salam, “Antihypertensive and Cardioprotective Effects of Pumpkin Seed Oil,” Journal of Medicinal Food, Jan 2012.
[18] Paul Z Zimmet 1, Dianna J Magliano 2, William H Herman 3, Jonathan E Shaw 2, “Diabetes: a 21st century challenge,” Lancet Diabetes Endocrinol, Jan 2014.
[19] W. Y. Koh, “Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach,” Food Science and Human Wellness, 2017.
[20] W. Koh, “Fermented pumpkin-based beverage inhibits key enzymes of carbohydrate digesting and extenuates postprandial hyperglycemia in type-2 diabetic rats,” Acta Alimentaria, 2018.
[21] E. Kwaw, “Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice,” Food Chem, 2018.
[22] F. J. Carr, “The Lactic Acid Bacteria: A Literature Survey,” Critical Reviews in Microbiology, Sep 2008.
[23] H. König, Biology of Microorganisms on Grapes, in Must and in Wine, 2017.
[24] F. Leroy, “Lactic acid bacteria as functional starter cultures for the food fermentation industry,” Trends in Food Science & Technology, pp. 67-78, February 2004.
[25] F. A. C. Martinez, “Lactic acid properties, applications and production: a review,” Trends in food science & technology, pp. 70-83, 2013.
[26] J. v. H. Vlieg, “Mining natural diversity of lactic acid bacteria for flavour and health benefits,” International Dairy Journal, pp. 1290-1297, Nov 2007.
[27] H. Mathur, “Health Benefits of Lactic Acid Bacteria (LAB) Fermentates,” Nutrients, Jun 2020.
[28] C. P. Barros, “Paraprobiotics and postbiotics: concepts and potential applications in dairy products,” Current Opinion in Food Science, pp. 1-8, Apr 2020.
[29] S. Heinl, “Systems biology of robustness and flexibility: Lactobacillus buchneri—A show case,” Journal of Biotechnology, pp. 61-69, Sep 2017.
[30] M. Holzer, “The role of Lactobacillus buchneri in forage preservation,” Trends in Biotechnology, pp. 282-287, Jun 2003.
[31] 中華民國糖尿病協會.
[32] A. D. Association, “2. Classification and Diagnosis of,” Diabetes Care, Jan 2015.
[33] A. Katsarou, “Type 1 diabetes mellitus,” Nature Reviews Disease Primers, 2017.
[34] “IDF Diabetes Atlas 2021,” [線上].
[35] R. A. DeFronzo, “” Type 2 diabetes mellitus” nature reviews,” Nature Reviews Disease Primers, 2015.
[36] Prof Michael Stumvoll MD a, Prof Barry J Goldstein MD b, Dr Timon W van Haeften MD, “Type 2 diabetes: principles of pathogenesis and therapy,” The Lancet, April 2005.
[37] G. Boden, “Role of fatty acids in the pathogenesis of insulin resistance and NIDDM,” Diabetes, Jan 1997.
[38] H. David McIntyre1*, Patrick Catalano2, Cuilin Zhang3, Gernot Desoye4, Elisabeth R. Mathiesen5 and Peter Damm, “Gestational diabetes mellitus,” nature reviews disease primers 5, 2019.
[39] Thomas A. Buchanan, MD; Anny Xiang, PHD; Siri L. Kjos, MD; Richard Watanabe, PHD, “ What Is Gestational Diabetes,” ORIGINAL ARTICLES, 2007.
[40] D. R. Hadden, “Prediabetes and the big baby,” Diabetes UK, Jan 2008.
[41] H. D. McIntyre, “Gestational diabetes mellitus,” nature reviews disease primers , 2019.
[42] “El Camino Health,” [線上].
[43] F. Magkos, “Diet and exercise in the prevention and treatment of type 2 diabetes mellitus,” Nature Reviews Endocrinology, Jul 2020.
[44] J. M. MSc, “Inadequate Sleep as a Contributor to Obesity and Type 2 Diabetes,” Canadian Journal of Diabetes, pp. 103-108, Apr 2013.
[45] S. Balducci, “Exercise training can modify the natural history of diabetic peripheral neuropathy,” Journal of Diabetes and its Complications, pp. 216-223, Jul 2006.
[46] R. J. Sigal, “Physical Activity and Diabetes,” Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Apr 2013.
[47] J. J. Marín-Peñalver, “Update on the treatment of type 2 diabetes mellitus,” World J Diabetes, Sep 2016 .
[48] Bryan J, “ Insulin secretagogues, sulfonylurea receptors and K(ATP) channels,” Curr Pharm Des , p. 2699–2716, Nov 2005.
[49] S. E. Inzucchi, “Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD),” Diabetes Care, May 2012.
[50] J. Gerich, “PRESERVE-β: Two-year efficacy and safety of initial combination therapy with nateglinide or glyburide plus metformin,” Diabetes Care, Sep 2005.
[51] B. McIntosh, “Second-line therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a systematic review and mixed-treatment comparison meta-analysis,” Open Med., Mar 2011.
[52] C.-C. Kao, “Risk of liver injury after α-glucosidase inhibitor therapy in advanced chronic kidney disease patients,” Scientific Reports, Jan 2016.
[53] 劉水壽, “非胰島素注射型降血糖藥類升糖素肽-1受體,” 高雄醫師會誌, 2014.
[54] A. Mazur, “Why were "starvation diets" promoted for diabetes in the pre-insulin period?,” Nutrition Journal , Mar 2011.
[55] C. C. Quianzon, “History of insulin,” Journal of Community Hospital Internal Medicine Perspectives, Jun 2012.
[56] V. Lang, “The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes,” Pharmgenomics Pers Med , Nov 2010 .
[57] M. F. W. C. J. Rhodes, “Molecular insights into insulin action and secretion,” European Journal of Clinical Investigation, p. 3–13, May 2002.
[58] O. Jones, “Gestational diabetes,” TeachMe ObGyn, Jan 2017. [線上].
[59] H. E. Lebovitz, “Insulin resistance: definition and consequences,” Experimental and Clinical Endocrinology & Diabetes, Nov 2001.
[60] A. M. Freeman, “Insulin Resistance,” StatPearls, September 2022.
[61] K. F. P. MD, “Etiology of Insulin Resistance,” The American Journal of Medicine, pp. S10-S16, May 2006.
[62] X. Zhang, “Amino acids at the intersection of nutrition and insulin sensitivity,” Drug Discov Today, Feb 2019.
[63] G. Wilcox, “Insulin and Insulin Resistance,” Clin Biochem Rev., May 2005.
[64] G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical chemistry, 1959.
[65] P. Molyneux, Songklanakarin J. Sci. Technol, pp. 211--219, 2004.
[66] M. Massaro, “A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin,” Journal of Materials Chemistry B, 2016.
[67] M. L. Way, “A Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider,” Beverages, 6 2020.
[68] S. Hossain, “Antioxidative and anti-α-amylase activities of four wild plants consumed by pastoral nomads in Egypt,” Oriental Pharmacy and Experimental Medicine, pp. 217-224, 9 2009.
[69] J. Chandrapala, “Ultrasonics in food processing – Food quality assurance and food safety,” Trends in Food Science & Technology, pp. 88-98, Aug 2012.
[70] B. B. Ismail, “High-intensity ultrasound processing of baobab fruit pulp: Effect on quality, bioactive compounds, and inhibitory potential on the activity of α-amylase and α-glucosidase,” Food Chemistry, Nov 2021.
[71] A. Scalbert, “Polyphenols: antioxidants and beyond,” The American Journal of Clinical Nutrition, Jan 2005.
[72] A. Braca, “Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds,” Molecules , Nov 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明