參考文獻 |
[1] Black, C.A., A brief history of the discovery of the immunoglobulins and the origin of the modern immunoglobulin nomenclature. Immunology and cell biology, 1997. 75(1): p. 65-68.
[2] 潘品憲, 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 112.
[3] Krishna, T.C., et al., Influence of Ultra-Heat Treatment on Properties of Milk Proteins. Polymers, 2021. 13(18).
[4] Tan, Y.H., et al., A nanoengineering approach for investigation and regulation of protein immobilization. ACS nano, 2008. 2(11): p. 2374-2384.
[5] Chiu, M.L. and G.L. Gilliland, Engineering antibody therapeutics. Current Opinion in Structural Biology, 2016. 38: p. 163-173.
[6] Bardeen, J. and W.H. Brattain, The transistor, a semi-conductor triode. Physical Review, 1948. 74(2): p. 230.
[7] Atalla, M.M., E. Tannenbaum, and E. Scheibner, Stabilization of silicon surfaces by thermally grown oxides. Bell System Technical Journal, 1959. 38(3): p. 749-783.
[8] Cui, Y., et al., Doping and electrical transport in silicon nanowires. The journal of physical chemistry B, 2000. 104(22): p. 5213-5216.
[9] Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science, 2001. 293(5533): p. 1289-1292.
[10] Paghi, A., S. Mariani, and G. Barillaro, 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. Small, 2023: p. 2206100.
[11] Cho, S.K. and W.J. Cho, Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors, 2021. 21(12).
[12] Khan, M., et al., Vertically oriented zinc oxide nanorod-based electrolyte-gated field-effect transistor for high-performance glucose sensing. Analytical Chemistry, 2022. 94(25): p. 8867-8873.
[13] Wu, C.-R., et al., Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sensors and Actuators B: Chemical, 2021. 334: p. 129567.
[14] Macchia, E., et al., Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chemical Reviews, 2022. 122(4): p. 4636-4699.
[15] Mishra, A.K., et al., CuO nanowire-based extended-gate field-effect-transistor (FET) for pH sensing and enzyme-free/receptor-free glucose sensing applications. IEEE Sensors Journal, 2020. 20(9): p. 5039-5047.
[16] Sarangadharan, I., et al., Single drop whole blood diagnostics: portable biomedical sensor for cardiac troponin I detection. Analytical chemistry, 2018. 90(4): p. 2867-2874.
[17] Pan, T.M., et al., Rapid and label-free detection of the troponin in human serum by a TiN-based extended-gate field-effect transistor biosensor. Biosensors & Bioelectronics, 2022. 201.
[18] Cho, S.-K. and W.-J. Cho, Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors, 2021. 21(12): p. 4213.
[19] Islam, S., et al., A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosensors and Bioelectronics, 2019. 126: p. 792-799.
[20] Zafar, S., et al., Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface. Nanotechnology, 2011. 22(40).
[21] Chakraborty, B., D. Mondal, and C. Roychaudhuri, ZnO nanorod FET biosensors with enhanced sensing performance: design issues for rational geometry selection. IEEE Sensors Journal, 2020. 20(22): p. 13451-13460.
[22] Kim, S., et al., Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst, 2011. 136(23): p. 5012-5016.
[23] Sinha, S. and T. Pal, A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling. Electrochemical Science Advances, 2022. 2(5): p. e2100147.
[24] Parizi, K.B., et al. Exceeding Nernst limit (59mV/pH): CMOS-based pH sensor for autonomous applications. in 2012 International Electron Devices Meeting. 2012. IEEE.
[25] Wu, C.C. and M.R. Wang, Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. Sensors, 2021. 21(14).
[26] Falina, S., et al., Role of carboxyl and amine termination on a boron-doped diamond solution gate field effect transistor (SGFET) for pH sensing. Sensors, 2018. 18(7): p. 2178.
[27] Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today, 2011. 6(2): p. 131-154.
[28] Mu, L., et al., Silicon nanowire field-effect transistors—A versatile class of potentiometric nanobiosensors. Ieee Access, 2015. 3: p. 287-302.
[29] Lu, N., et al., Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS applied materials & interfaces, 2014. 6(22): p. 20378-20384.
[30] Kutovyi, Y., et al., Origin of noise in liquid-gated Si nanowire troponin biosensors. Nanotechnology, 2018. 29(17).
[31] Cheng, S.S., et al., Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials, 2014. 7(4): p. 2490-2500.
[32] Pan, T.-M., et al., Development of high-κ HoTiO3 sensing membrane for pH detection and glucose biosensing. Sensors and Actuators B: Chemical, 2010. 144(1): p. 139-145.
[33] Yang, C.-M., et al., Drift and hysteresis effects improved by RTA treatment on hafnium oxide in pH-sensitive applications. Journal of the Electrochemical Society, 2008. 155(11): p. J326.
[34] Pan, T.-M., et al., Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection. Sensors and Actuators B: Chemical, 2009. 138(2): p. 619-624.
[35] Pan, T.-M., C.-H. Cheng, and C.-D. Lee, Yb2O3 thin films as a sensing membrane for pH-ISFET application. Journal of the Electrochemical Society, 2009. 156(5): p. J108.
[36] Elnathan, R., et al., Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Letters, 2012. 12(10): p. 5245-5254.
[37] Liu, N., R. Chen, and Q. Wan, Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. Sensors, 2019. 19(15).
[38] Parizi, K.B., et al., ISFET pH Sensitivity: Counter-Ions Play a Key Role. Scientific Reports, 2017. 7.
[39] Chang, Y., et al., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir, 2010. 26(5): p. 3522-3530.
[40] Bag, M.A. and L.M. Valenzuela, Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review. International journal of molecular sciences, 2017. 18(8): p. 1422.
[41] Li, K.J., et al., Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13(4).
[42] Zalipsky, S. and J.M. Harris, Introduction to chemistry and biological applications of poly (ethylene glycol). 1997, ACS Publications.
[43] Pasche, S., et al., Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. Journal of Physical Chemistry B, 2005. 109(37): p. 17545-17552.
[44] Sharma, S., R.W. Johnson, and T.A. Desai, XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics, 2004. 20(2): p. 227-239.
[45] Carrara, S., et al., New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosensors & Bioelectronics, 2009. 24(12): p. 3425-3429.
[46] Ren, C.L., et al., Molecular and Thermodynamic Factors Explain the Passivation Properties of Poly(ethylene glycol)-Coated Substrate Surfaces against Fluorophore-Labeled DNA Oligonucleotides. Langmuir, 2015. 31(42): p. 11491-11501.
[47] Rush, M.N., K.E. Coombs, and E.L. Hedberg-Dirk, Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta Biomaterialia, 2015. 28: p. 76-85.
[48] Howarter, J.A. and J.P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 2006. 22(26): p. 11142-11147.
[49] Singh, M., N. Kaur, and E. Comini, The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 2020. 8(12): p. 3938-3955.
[50] Kim, J.P., et al., Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Analytical Biochemistry, 2008. 381(2): p. 193-198.
[51] Ikeda, T., et al., Oriented immobilization of antibodies on a silicon wafer using Si-tagged protein A. Analytical Biochemistry, 2009. 385(1): p. 132-137.
[52] Kim, H.H., et al., Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sensors and Actuators B: Chemical, 2015. 221: p. 1372-1383.
[53] Hussain, F.A., et al., Adsorption of perfluorooctanoic acid from water by pH-modulated Bronsted acid and base sites in mesoporous hafnium oxide ceramics. Iscience, 2022. 25(4).
[54] Du, H.W., et al., Electric double-layer transistors: a review of recent progress. Journal of Materials Science, 2015. 50(17): p. 5641-5673.
[55] Ameri, S.K., P.K. Singh, and S.R. Sonkusale, Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media. Analytica chimica acta, 2016. 934: p. 212-217.
[56] Lin, C.H., et al., Surface composition and interactions of mobile charges with immobilized molecules on polycrystalline silicon nanowires. Sensors and Actuators B-Chemical, 2015. 211: p. 7-16.
[57] Schindler, F., et al., Hall mobility in multicrystalline silicon. Journal of Applied Physics, 2011. 110(4): p. 043722.
[58] Knopfmacher, O., et al., Silicon-Based Ion-Sensitive Field-Effect Transistor Shows Negligible Dependence on Salt Concentration at Constant pH. Chemphyschem, 2012. 13(5): p. 1157-1160.
[59] Nguyen, T., Y. Seol, and N.-E. Lee, Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing. Organic Electronics, 2011. 12(11): p. 1815-1821.
[60] Regonda, S., et al., Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosensors and Bioelectronics, 2013. 45: p. 245-251. |