博碩士論文 110324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.222.78.65
姓名 王煦宸(Hsu-Chen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 1,5-二氨基蒽醌與左氧氟沙星 於超臨界二氧化碳中之溶解度量測
(Measurement and Correlation of 1,5-Diaminoanthraquinone and Levofloxacin Solubility in Supercritical Carbon Dioxide)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2033-6-30以後開放)
摘要(中) 本研究利用一組半流動式實驗裝置,測量1,5-二氨基蒽醌與左氧氟沙星於超臨界二氧化碳中之溶解度。其中,1,5-二氨基蒽醌量測條件為溫度353.2 K、373.2 K、 393.2 K壓力從17 MPa到27 MPa,而左氧氟沙星的量測條件則為溫度313.2 K、 323.2 K、333.2 K壓力從12 MPa到24 MPa。每個條件下的量測均進行了三次獨立實驗,確保其實驗結果的再現性,並取其平均值為該條件之結果。並且,為確保每次取樣的溶解度均為飽和溶解度,實驗首先進行了取樣流量測試,確認兩種溶質各自的取樣流量範圍。經實驗結果得知,1,5-二氨基蒽醌的取樣流量範圍為4~24 L/h,而左氧氟沙星的取樣流量範圍則為1.8~9 L/h。
本次量測的1,5-二氨基蒽醌與左氧氟沙星於超臨界二氧化碳中之莫耳分率介於9.81×10-7~1.29×10-6和1.34×10-7~2.71×10-6之間,兩者實驗數據之變異係數均小於4%。取得實驗數據後,本研究使用四種半經驗式模型: Chrastil模型、Mendez-Santiago and Teja(MST)模型、Kumar and Johnston(K-J)模型以及Bartle模型,對溶解度數據進行迴歸以及一致性檢測。其1,5-二氨基蒽醌與左氧氟沙星的迴歸結果之平均相對標準誤差(average absolute relative deviation)分別為4.97% (K-J)至7.44% (MST)與2.67% (MST)至12.73% (K-J),並且皆在一致性檢測中皆呈現優良的線性關係,足以佐證本研究溶解度實驗數據量測的可靠度。
摘要(英) In this study, the solubility of 1,5-Diaminoanthraquinone (C.I. DRII), and Levofloxacin in supercritical carbon dioxide was investigated. The solubility was measured by utilizing a semi-flow type apparatus. The measured conditions for C.I. DRII were at 353.2 K, 373.2K, and 393.2 K within a pressure range from 17 to 27 MPa, and for Levofloxacin were at 313.2 K, 323.2 K, and 333.2K. Three independent experiments were conducted for each condition to ensure the repeatability of the results. The average value was taken as the result of the condition. Additionally, a sampling flow rate test was applied to ensure that the solubility of each measurement was saturated. The results showed that the sampling flow rate of 1,5-diamino anthraquinone ranged from 4 to 24 L/h, while the sampling flow rate of levofloxacin ranged from 1.8 to 9 L/h.
In this study, the measured solubility of C.I. DRII and Levofloxacin in supercritical carbon dioxide was in the range of 9.81×10-8~1.29×10-7 and 1.34×10-7~2.71×10-6 in mole fraction. The coefficients of variation of both experimental data were less than 4%. Four semi-empirical models were then utilized for the correlation and the self-consistency tests, which were Chrastil model, Mendez-Santiago and Teja model (MST), Kumar and Johnston model (K-J). The average absolute relative deviations (AARD) for the correlation results were within 4.97% (K-J) ~7.44% (MST) for C.I. DRII, and 2.67% (MST)~12.73% (K-J) for Levofloxacin. Last but not least, the self-consistency tests were considered passed because almost all solubility data collapse into a single line, which indicated a good reliability of experimental measurements.
關鍵字(中) ★ 超臨界二氧化碳
★ 1,5-二氨基蒽醌
★ 溶解度
★ 左氧佛沙星
關鍵字(英) ★ ScCO2
★ Solubility
★ C.I. DRII
★ Levofloxacin
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of contents iv
List of Figures vi
List of Tables viii
Chapter 1 Background 1
1-1 Introduction of Supercritical Fluid 1
1-2 Application of Supercritical Carbon Dioxide 5
1-3 Motivations 7
Chapter 2 Experimental 8
2-1 Experimental Materials 8
2-2 Experimental Device 10
2-3 Experimental Procedure 15
2-4 Chemical Analysis and Calibration Curve 18
Chapter 3 Data Correlation and Quality Assessments 22
3-1 Date Processing and Solubility Calculation 22
3-2 Data Correlation 29
3-3 Semi-empirical Models 30
(1) Chrastil model 35 30
(2) Méndez-Santiago and Teja model (MST model) 36 31
(3) Kumar and Johnston model (K-J model) 37 31
(4) Bartle model 38 31
3-4 Self-Consistency Test 33
Chapter 4 Result and Discussion 34
4-1 Reliability Test 34
4-2 The Effect of CO2 Flow Rates 35
4-3 Solubility of Solid Solutes in Supercritical Carbon Dioxide 37
4-4 Data Correlation 43
4-5 Self-Consistency Tests 50
Chapter 5 Conclusion 55
Reference 56
參考文獻 1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. Revista Brasileira De Ensino De Fisica 2009, 31 (2).
2. Subra, P.; Jestin, P., Powders elaboration in supercritical media: comparison with conventional routes. Powder technology 1999, 103 (1), 2-9.
3. Jia, J.-f.; Zabihi, F.; Gao, Y.-h.; Zhao, Y.-p., Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent. Journal of Chemical & Engineering Data 2015, 60 (6), 1744-1749.
4. Gupta, R. B.; Shim, J.-J., Solubility in supercritical carbon dioxide. CRC press: 2006.
5. Ruhan, A.; Motonobu, G.; Mitsuru, S., Supercritical Fluid Extraction in Food Analysis. In Handbook of Food Analysis Instruments, CRC Press: 2008.
6. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
7. Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Hrnčič, M. K., Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification 2019, 141, 107532.
8. DeSimone, J. M.; Tumas, W., Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press: 2003.
9. Sihvonen, M.; Järvenpää, E.; Hietaniemi, V.; Huopalahti, R., Advances in supercritical carbon dioxide technologies. Trends in Food Science & Technology 1999, 10 (6-7), 217-222.
10. Lack, E.; Seidlitz, H., Commercial scale decaffeination of coffee and tea using supercritical CO 2. Extraction of natural products using near-critical solvents 1993, 101-139.
11. Saus, W.; Knittel, D.; Schollmeyer, E., Dyeing of textiles in supercritical carbon dioxide. Textile Research Journal 1993, 63 (3), 135-142.
12. Zheng, H.; Zhang, J.; Yan, J.; Zheng, L., An industrial scale multiple supercritical carbon dioxide apparatus and its eco-friendly dyeing production. Journal of CO2 Utilization 2016, 16, 272-281.
13. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2011.
14. Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J., Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005, 301 (1-2), 199-208.
15. Miguel, F.; Martin, A.; Gamse, T.; Cocero, M. J., Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. J. Supercrit. Fluids 2006, 36 (3), 225-235.
16. Charoenchaitrakool, M.; Dehghani, F.; Foster, N. R.; Chan, H. K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39 (12), 4794-4802.
17. Turk, M.; Hils, P.; Helfgen, B.; Schaber, K.; Martin, H. J.; Wahl, M. A., Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002, 22 (1), 75-84.
18. MacEachern, L.; Kermanshahi-pour, A.; Mirmehrabi, M., Supercritical Carbon Dioxide for Pharmaceutical Co-Crystal Production. Crystal Growth & Design 2020, 20 (9), 6226-6244.
19. Padrela, L.; Rodrigues, M. A.; Tiago, J. o.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents. Crystal Growth & Design 2015, 15 (7), 3175-3181.
20. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. European Journal of Pharmaceutical Sciences 2009, 38 (1), 9-17.
21. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
22. Ribas, M. M.; Sakata, G. S.; Santos, A. E.; Dal Magro, C.; Aguiar, G. P. S.; Lanza, M.; Oliveira, J. V., Curcumin cocrystals using supercritical fluid technology. The Journal of supercritical fluids 2019, 152, 104564.
23. Long, J.-J.; Ma, Y.-Q.; Zhao, J.-P., Investigations on the level dyeing of fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2011, 57 (1), 80-86.
24. Penthala, R.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis of azo and anthraquinone dyes and dyeing of nylon-6, 6 in supercritical carbon dioxide. Journal of CO2 Utilization 2020, 38, 49-58.
25. Salisu, Z. M.; Yakubu, M. K.; Nkeonye, P. O.; Abba, H., The synthesis of diaminoanthraquinone coloured cross linked epoxy resins and their application in paint and selected polymers. Open Journal of Applied Sciences 2014, 2014.
26. Drlica, K., Mechanism of fluoroquinolone action. Current opinion in microbiology 1999, 2 (5), 504-508.
27. Shinozaki, T.; Ono, M.; Higashi, K.; Moribe, K., A novel drug-drug cocrystal of levofloxacin and metacetamol: Reduced hygroscopicity and improved photostability of levofloxacin. Journal of Pharmaceutical Sciences 2019, 108 (7), 2383-2390.
28. Islam, N. U.; Umar, M. N.; Khan, E.; Al-Joufi, F. A.; Abed, S. N.; Said, M.; Ullah, H.; Iftikhar, M.; Zahoor, M.; Khan, F. A., Levofloxacin cocrystal/salt with phthalimide and Caffeic acid as promising solid-state approach to improve antimicrobial efficiency. Antibiotics 2022, 11 (6), 797.
29. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data 1996, 25 (6), 1509-1596.
30. 100:2008, J., Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). 1 ed.; Joint Committee for Guides in Metrology: 2008.
31. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. U.S. Government Printing Office: Washington, DC, 1994.
32. Ellison, S. L. R.; Williams, A., Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3 ed.; 2012.
33. Kragten, J., Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
34. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, Anaheim, CA, January 18-19, 2001; National Institute of Standards and Technology (NIST): Anaheim, CA, 2001.
35. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
36. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158, 501-510.
37. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
38. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
39. de la Fuente, J. C.; Oyarzún, B.; Quezada, N.; del Valle, J. M., Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibria 2006, 247 (1-2), 90-95.
40. Lee, C.-A.; Tang, M.; Chen, Y.-P., Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide. Fluid Phase Equilib. 2014, 367, 182-187.
41. Manna, L.; Banchero, M., Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide. Journal of Chemical & Engineering Data 2018, 63 (5), 1745-1751.
42. Li, Q.; Pan, P.; Lu, T.; Blackburn, S.; Leeke, G. A., Solubility of Azoxystrobin and Benflumetol in Compressed CO2—Measured by the Static Precise Mass Measuring Method. J. Chem. Eng. Data 2019, 64 (1), 9-15.
43. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. J. Supercrit. Fluids 2019, 152, 104498.
44. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. J. Chem. Eng. Data 2019, 64 (12), 5338-5348.
45. Li, B.; Guo, W.; Ramsey, E. D., Solubility Measurements of Chloramphenicol in Supercritical Fluid CO2 Using Static Solubility Apparatus Interfaced with Online Supercritical Fluid Chromatography. J. Chem. Eng. Data 2020, 65 (1), 153-159.
46. 陳昱銘. 氟哌啶醇與分散藍14於超臨界二氧化碳中之溶解度. 國立中央大學, 桃園縣, 2022.
47. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
48. Huang, Z.; Guo, Y.-H.; Sun, G.-B.; Chiew, Y. C.; Kawi, S., Representing dyestuff solubility in supercritical carbon dioxide with several density-based correlations. Fluid phase equilibria 2005, 236 (1-2), 136-145.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明