參考文獻 |
1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. Revista Brasileira De Ensino De Fisica 2009, 31 (2).
2. Subra, P.; Jestin, P., Powders elaboration in supercritical media: comparison with conventional routes. Powder technology 1999, 103 (1), 2-9.
3. Jia, J.-f.; Zabihi, F.; Gao, Y.-h.; Zhao, Y.-p., Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent. Journal of Chemical & Engineering Data 2015, 60 (6), 1744-1749.
4. Gupta, R. B.; Shim, J.-J., Solubility in supercritical carbon dioxide. CRC press: 2006.
5. Ruhan, A.; Motonobu, G.; Mitsuru, S., Supercritical Fluid Extraction in Food Analysis. In Handbook of Food Analysis Instruments, CRC Press: 2008.
6. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
7. Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Hrnčič, M. K., Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification 2019, 141, 107532.
8. DeSimone, J. M.; Tumas, W., Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press: 2003.
9. Sihvonen, M.; Järvenpää, E.; Hietaniemi, V.; Huopalahti, R., Advances in supercritical carbon dioxide technologies. Trends in Food Science & Technology 1999, 10 (6-7), 217-222.
10. Lack, E.; Seidlitz, H., Commercial scale decaffeination of coffee and tea using supercritical CO 2. Extraction of natural products using near-critical solvents 1993, 101-139.
11. Saus, W.; Knittel, D.; Schollmeyer, E., Dyeing of textiles in supercritical carbon dioxide. Textile Research Journal 1993, 63 (3), 135-142.
12. Zheng, H.; Zhang, J.; Yan, J.; Zheng, L., An industrial scale multiple supercritical carbon dioxide apparatus and its eco-friendly dyeing production. Journal of CO2 Utilization 2016, 16, 272-281.
13. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2011.
14. Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J., Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005, 301 (1-2), 199-208.
15. Miguel, F.; Martin, A.; Gamse, T.; Cocero, M. J., Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. J. Supercrit. Fluids 2006, 36 (3), 225-235.
16. Charoenchaitrakool, M.; Dehghani, F.; Foster, N. R.; Chan, H. K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39 (12), 4794-4802.
17. Turk, M.; Hils, P.; Helfgen, B.; Schaber, K.; Martin, H. J.; Wahl, M. A., Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002, 22 (1), 75-84.
18. MacEachern, L.; Kermanshahi-pour, A.; Mirmehrabi, M., Supercritical Carbon Dioxide for Pharmaceutical Co-Crystal Production. Crystal Growth & Design 2020, 20 (9), 6226-6244.
19. Padrela, L.; Rodrigues, M. A.; Tiago, J. o.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents. Crystal Growth & Design 2015, 15 (7), 3175-3181.
20. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. European Journal of Pharmaceutical Sciences 2009, 38 (1), 9-17.
21. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
22. Ribas, M. M.; Sakata, G. S.; Santos, A. E.; Dal Magro, C.; Aguiar, G. P. S.; Lanza, M.; Oliveira, J. V., Curcumin cocrystals using supercritical fluid technology. The Journal of supercritical fluids 2019, 152, 104564.
23. Long, J.-J.; Ma, Y.-Q.; Zhao, J.-P., Investigations on the level dyeing of fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2011, 57 (1), 80-86.
24. Penthala, R.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis of azo and anthraquinone dyes and dyeing of nylon-6, 6 in supercritical carbon dioxide. Journal of CO2 Utilization 2020, 38, 49-58.
25. Salisu, Z. M.; Yakubu, M. K.; Nkeonye, P. O.; Abba, H., The synthesis of diaminoanthraquinone coloured cross linked epoxy resins and their application in paint and selected polymers. Open Journal of Applied Sciences 2014, 2014.
26. Drlica, K., Mechanism of fluoroquinolone action. Current opinion in microbiology 1999, 2 (5), 504-508.
27. Shinozaki, T.; Ono, M.; Higashi, K.; Moribe, K., A novel drug-drug cocrystal of levofloxacin and metacetamol: Reduced hygroscopicity and improved photostability of levofloxacin. Journal of Pharmaceutical Sciences 2019, 108 (7), 2383-2390.
28. Islam, N. U.; Umar, M. N.; Khan, E.; Al-Joufi, F. A.; Abed, S. N.; Said, M.; Ullah, H.; Iftikhar, M.; Zahoor, M.; Khan, F. A., Levofloxacin cocrystal/salt with phthalimide and Caffeic acid as promising solid-state approach to improve antimicrobial efficiency. Antibiotics 2022, 11 (6), 797.
29. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data 1996, 25 (6), 1509-1596.
30. 100:2008, J., Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). 1 ed.; Joint Committee for Guides in Metrology: 2008.
31. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. U.S. Government Printing Office: Washington, DC, 1994.
32. Ellison, S. L. R.; Williams, A., Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3 ed.; 2012.
33. Kragten, J., Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
34. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, Anaheim, CA, January 18-19, 2001; National Institute of Standards and Technology (NIST): Anaheim, CA, 2001.
35. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
36. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158, 501-510.
37. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
38. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
39. de la Fuente, J. C.; Oyarzún, B.; Quezada, N.; del Valle, J. M., Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibria 2006, 247 (1-2), 90-95.
40. Lee, C.-A.; Tang, M.; Chen, Y.-P., Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide. Fluid Phase Equilib. 2014, 367, 182-187.
41. Manna, L.; Banchero, M., Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide. Journal of Chemical & Engineering Data 2018, 63 (5), 1745-1751.
42. Li, Q.; Pan, P.; Lu, T.; Blackburn, S.; Leeke, G. A., Solubility of Azoxystrobin and Benflumetol in Compressed CO2—Measured by the Static Precise Mass Measuring Method. J. Chem. Eng. Data 2019, 64 (1), 9-15.
43. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. J. Supercrit. Fluids 2019, 152, 104498.
44. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. J. Chem. Eng. Data 2019, 64 (12), 5338-5348.
45. Li, B.; Guo, W.; Ramsey, E. D., Solubility Measurements of Chloramphenicol in Supercritical Fluid CO2 Using Static Solubility Apparatus Interfaced with Online Supercritical Fluid Chromatography. J. Chem. Eng. Data 2020, 65 (1), 153-159.
46. 陳昱銘. 氟哌啶醇與分散藍14於超臨界二氧化碳中之溶解度. 國立中央大學, 桃園縣, 2022.
47. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
48. Huang, Z.; Guo, Y.-H.; Sun, G.-B.; Chiew, Y. C.; Kawi, S., Representing dyestuff solubility in supercritical carbon dioxide with several density-based correlations. Fluid phase equilibria 2005, 236 (1-2), 136-145. |