博碩士論文 110324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.217.252.194
姓名 彭昱琨(Yu-Kun Peng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Process and Product Development for Chemical Recycling of Poly(ethylene terephthalate) by Glycolysis)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 寶特瓶 (poly(ethylene terephthalate)的廣泛使用及其不可生物降解的特性,使得寶特瓶的回收已經成當代重要的議題。根據文獻,寶特瓶被乙二醇解 (Glycolysis of PET)後,可得到單體雙(2-羥乙基)對苯二甲酸酯 (Bis(2-hydroxyethyl) terephthalate)。由於乙二醇醇解需依賴催化劑,所以先前的文獻都較注重在催化劑的選擇和反應參數優化,來達
到單體之高產率,但由於完整的乙二醇解製程也同時需要用到過濾、結晶、烘乾等單元操作,這些單元操作在製程上對產品的影響也值得被探討。因此,本研究主要為探討乙二醇解反應、過濾、結晶和烘乾,每一個步驟對於整個乙二醇醇解製程上的影響。首先,將 10 g 寶特瓶碎片、乙二醇 (30 及 60 mL)及碳酸鈉 (0.0276、0.0555 及 0.111 g) (催化劑) 加入至附有100mL聚醚醚酮杯(PEEK cup)的高壓釜反應器中,攪拌速率為550rpm,在乙二醇醇解反應中探討不同反應溫度 (165 °、185 °或 195°C)、反應時間 (1、2 或 3h)、不同重量催化劑 (0.0276、0.0555 及 0.111 g) 以及不同體積的乙二醇 (30 及 60 mL)所造成的影響,反應結束後,將高壓釜自然降溫至室溫,加入熱水並保持溫度在 65 °C 一個
小時,並過濾掉殘留的固體或是不純物並乾燥,其中探討不同體積熱水(60、120 及 240 mL)所造成的影響,之後將濾液從 65 °C 冷卻降溫至 25 °C,析出白色的雙(2-羥乙基)對苯二甲酸酯結晶,在結晶過程中,探討不同攪拌速率(0 及 600 rpm)、結晶時間(4、8及 16h)、降溫速率(5 °C/h 或 80 °C/h)以及溶液起始濃度(110.24、73.49 及 44.10 mg/mL)
所造成的影響。因為產品具有多晶型,在結晶過程中也對控制多晶型進行討論。最後將雙(2-羥乙基)對苯二甲酸酯結晶過濾並且在 40°C 的烘箱烤乾。並探討多晶型對過濾及烘乾影響。雙(2-羥乙基)對苯二甲酸酯結晶進行從篩網、光學顯微鏡(OM)、傅立葉轉換紅外線光譜儀(FT-IR)、粉末 X 射線繞射儀(PXRD)、差示掃描量熱儀(DSC)、核磁共振儀(NMR)和液相層析儀(HPLC)的檢測結果分別確認雙(2-羥乙基)對苯二甲酸酯的物理化學特性與結構。
摘要(英) Recycling poly(ethylene terephthalate) (PET) bottles has been discussed widely since its omnipresence and non-biodegradable characteristics. It has been reported that PET can be chemically recycled by glycolysis. The bis(2-hydroxyethyl) terephthalate monomer was the desired product of glycolysis of PET. Previous studies mainly focused on reaction parameters such as catalyst type, amount of catalyst, reaction temperature, reaction time, stirring rate and volume of ethylene glycol (EG) to achieved the high yield of product.However, there were also other processing steps after glycolysis, BHET dimer filtration, crystallization, BHET monomer filtration and drying. The development of those steps is essential because each step can affect the product quality and the process efficiency. Therefore, the aim of my research is to explore the influence of each step from glycolysis to BHET dimer filtration to crystallization to BHET monomer filtration and finally to drying on the whole glycolysis process. Firstly, 10 g of PET flakes, EG (30 and 60 mL) and Na2CO3(0.0276, 0.0555 and 0.111 g) as catalyst were added into an autoclave containing a 100 mL of PEEK cup size and heated a given temperature with a stirring rate of 550 rpm. Then, the autoclave was cooled to room temperature overnight by turning off the autoclave. In glycolysis, the effects of the reaction temperature (165 °, 185 ° and 195 °C), reaction time (1, 2 and 3h), amount of catalyst (0.0276, 0.0555 and 0.111 g) and volume of EG (30 and 60 mL) on the yield of BHET monomer would be studied. After glycolysis, hot water was added and the product medium was kept at 65 °C for 1h and then filtered to separate BHET
monomer from dimer. In filtration, the effect of the different amount of hot water added (60, 120 and 240 mL) in filtration would be investigated. The filtrate was cooled form 65 ° to 25 °C, and white BHET monomer were crystallized. In crystallization, the effect of different stirring rates of 0 and 600 rpm, crystallization time of 4, 8 and 16h, cooling rate of 80 °C/h and 5 °C/h and initial of concentration of 110.24, 73.49 and 44.10 mg/mL of filtrate on yield, purity, polymorphism and crystal size distribution of BHET monomer. Finally, BHET monomer were filtered and oven dried at 40 °C. The characterizations for all BHET monomer by sieving, optical microscope (OM), Fourier transform infrared spectroscopy(FT-IR), powder X-ray diffractometer (PXRD), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) to ascertain their physicochemical and structural properties.
關鍵字(中) ★ 寶特瓶回收
★ 雙(2-羥乙基)對苯二甲酸酯
★ 製程發展
關鍵字(英) ★ poly(ethylene terephthalate) recycling
★ bis(2-hydroxyethyl) terephthalate,
★ process development
論文目次 摘要.............................................................................................................................................i
Abstract......................................................................................................................................iii
Acknowledgement......................................................................................................................v
Table of Contents......................................................................................................................vii
List of Figures.............................................................................................................................x
List of Tables ...........................................................................................................................xiii
List of Schemes ........................................................................................................................xv
Chapter 1 Introduction ........................................................................................................1
1.1. Poly(ethylene terephthalate) (PET) ............................................................................1
1.2. Chemical Recycling of PET .......................................................................................3
1.3. Glycolysis of PET.....................................................................................................10
1.4. Polymorphism of BHET Monomer..........................................................................14
1.5. Concept of Work.......................................................................................................16
Chapter 2 Experimental Section........................................................................................18
2.1. Materials...................................................................................................................18
2.2. Experimental Methods..............................................................................................20
2.2.1. Glycolysis of PET.........................................................................................20
2.2.2. Separation .....................................................................................................21
viii
2.2.3. Crystallization of BHET Monomer by Cooling ...........................................21
2.2.4. Filtration and Drying ....................................................................................22
2.2.5. Initial solvent selection of BHET Monomer ................................................22
2.2.6. Small Scale Recrystallization of BHET Monomer.......................................23
2.2.7. Filterability and Drying rate of α- and δ- form BHET Monomer ................23
2.2.8. Carr’s Index ..................................................................................................24
2.2.9. Sieving Analysis...........................................................................................24
2.2.10. Solubility Measurements of BHET Monomer..............................................25
2.2.11. Calibration Curve of mechanical mixture of synthesized α- and δ- form
BHET monomer .......................................................................................................26
2.2.12. Glycolysis of BHET dimer...........................................................................26
2.3. Analytical Instrument ...............................................................................................28
2.3.1. Optical Microscopy (OM)............................................................................28
2.3.2. Powder X-ray Diffraction (PXRD)...............................................................28
2.3.3. Fourier Transform Infrared (FT-IR) Spectroscopy.......................................28
2.3.4. Differential Scanning Calorimetry (DSC)....................................................29
2.3.5. Nuclear Magnetic Resonance (NMR) ..........................................................30
2.3.6. High Performance Liquid Chromatographic Analyzer (HPLC)...................30
Chapter 3 Results and Discussion .....................................................................................31
ix
3.1. Glycolysis of PET.....................................................................................................31
3.2. Initial Solvent Screening ..........................................................................................40
3.3. Solubility Curve of BHET Monomer by HPLC method..........................................42
3.4. Crystallization of BHET Monomer..........................................................................45
3.5. Separation of BHET Monomer from Dimer.............................................................55
3.6. Polymorph BHET Monomer from glycolysis..........................................................58
3.6.1. Polymorph BHET Monomer from Glycolysis .............................................58
3.6.2. Polymorph screening by Recrystallization BHET Monomer in Mixture of
Water and EG............................................................................................................64
3.7. Characteristics of α and δ - Form BHET Monomers................................................68
3.8. Glycolysis of BHET dimer.......................................................................................72
Chapter 4 Conclusion and Future Works ..........................................................................73
Appendices ...............................................................................................................................75
References ................................................................................................................................81
參考文獻 1 Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and
Opportunities. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2009, 364 (1526),
2115-2126.
2 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
Eng. Chem. Res. 1997, 36 (4), 1373-1383
3 Global Polyethylene Terephthalate (PET) Resin Market to Boost in Coming Years –
Projected to Reach Worth 114.7 Million Tons in 2028 | BlueWeave Consulting
https://www.globenewswire.com, (accessed 2023/05/04)
4 Nisticò, R. Polyethylene Terephthalate (PET) in The Packaging Industry. Polym.
Test. 2020, 90, 106707.
5 US PET Bottle Recycling Rate Jumps 1.5% After Years of Decline
https://www.icis.com, (accessed 2023/05/04)
6 Report: PET Recycling Improving in EU
https://resource-recycling.com, (accessed 2023/05/04)
7 Expert’s talk: The Big Decryption of Waste Bottles Being Reproduced Into
Eco-Friendly Clothing
https://r-paper.epa.gov.tw, (accessed 2023/04/05)
8 Recycling Polyethylene Terephthalate https://www.liveabout.com/, (accessed 2023/04/05)
9 Elisha, O. D. Moving Beyond Take-Make-Dispose to Take-Make-Use for
Sustainable Economy. Int. J. Sci. Res. Educ. 2020, 13 (3), 497-516.
10 Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic
Solid Waste (PSW): A Review. Waste Manage. 2009, 29 (10), 2625-2643.
11 Rahimi, A.; García, J. M. Chemical Recycling of Waste Plastics for New Materials
Production. Nat. Rev. Chem. 2017, 1 (6), 0046.
12 Primary, Secondary and Tertiary Recycling Explained
https://www.recyclingconsortium.org.uk/, (accessed 2023/4/20)
13 Ignatyev, I. A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A
Review. ChemSusChem. 2014, 7 (6), 1579-1593.
14 Choi, J. S.; Youn, H. K.; Kwak, B. H.; Wang, Q.; Yang, K. S.; Chung, J. S.
Preparation and Characterization of TiO2-Masked Fe3O4 Nano Particles for
Enhancing Catalytic Combustion of 1, 2-Dichlorobenzene and Incineration of
Polymer Wastes. Appl. Catal. B. 2009, 91 (1-2), 210-216.
15 Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of
Solid Plastic Waste. Waste Manage. 2017, 69, 24-58.
16 Schyns, Z. O.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A
review. Macromol. Rapid. Commun. 2021, 42 (3), 2000415
17 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
18 Wu, H.-S. Strategic Possibility Routes of Recycled PET. Polymers. 2021, 13 (9),
1475.
19 Islam, M. S.; Islam, Z.; Hasan, R.; Islam Molla Jamal, A. S. Acidic Hydrolysis of
Recycled Polyethylene Terephthalate Plastic for The Production of Its Monomer
Terephthalic Acid. Prog. Rubber. Plast. Recycl. Tech. 2023, 39 (1), 12-25.
20 Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from
Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv.
2021, 5, 100079.
21 Grigore, M. E. Methods of Recycling, Properties and Applications of Recycled
Thermoplastic Polymers. Recycling. 2017, 2 (4), 24.
22 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
Eng. Chem. Res. 1997, 36 (4), 1373-1383.
23 Yang, Y.; Lu, Y.; Xiang, H.; Xu, Y.; Li, Y. Study on Methanolytic
Depolymerization of PET with Supercritical Methanol for Chemical Recycling.
Polym. Degrad. Stab. 2002, 75 (1), 185-191.
24 Pudack, C.; Stepanski, M.; Fässler, P. PET Recycling–Contributions of
Crystallization to Sustainability. Chem. Ing. Tech. 2020, 92 (4), 452-458.
25 Gupta, P.; Bhandari, S. Chemical Depolymerization of PET Bottles via
Ammonolysis and Aminolysis. In Recycling of Polyethylene Terephthalate Bottles,
Elsevier, 2019; pp 109-134.
26 Blackmon, K. P.; Fox, D. W.; Shafer, S. J. Process for Converting PET Scrap to
Diamide Monomers. Eur. Patent 365,842, 1988
27 Beneš, H.; Rösner, J.; Holler, P.; Synková, H.; Kotek, J.; Horák, Z. Glycolysis of
Flexible Polyurethane Foam in Recycling of Car Seats. Polym. Adv. Technol. 2007,
18 (2), 149-156.
28 Imran, M.; Kim, B.-K.; Han, M.; Cho, B. G. Sub-and Supercritical Glycolysis of
Polyethylene Terephthalate (PET) Into The Monomer Bis (2-Hydroxyethyl)
Terephthalate (BHET). Polym. Degrad. Stab. 2010, 95 (9), 1686-1693.
29 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
30 Ghaemy, M.; Mossaddegh, K. Depolymerisation of Poly (Ethylene Terephthalate)
Fibre Wastes Using Ethylene Glycol. Polym. Degrad. Stab. 2005, 90 (3), 570-576.
31 Sheel, A.; Pant, D. Chemical Depolymerization of PET Bottles via Glycolysis. In
Recycling of polyethylene terephthalate bottles, Elsevier, 2019; pp 61-84
32 Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic Depolymerisation of PET:
A Review. Green. Chem. 2021, 23 (11), 3765-3789.
33 Karayannidis, G.; Chatziavgoustis, A.; Achilias, D. Poly (Ethylene Terephthalate)
Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv.
Polym. Technol. 2002, 21 (4), 250-259.
34 Han, M. Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In
Recycling of Polyethylene Terephthalate Bottles, Elsevier, 2019; pp 85-108
35 Ju, Z.; Xiao, W.; Lu, X.; Liu, X.; Yao, X.; Zhang, X.; Zhang, S. Theoretical
Studies on Glycolysis of Poly (Ethylene Terephthalate) in Ionic Liquids. RSC. Adv.
2018, 8 (15), 8209-8219.
36 Geng, Y.; Dong, T.; Fang, P.; Zhou, Q.; Lu, X.; Zhang, S. Fast and Effective
Glycolysis of Poly (Ethylene Terephthalate) Catalyzed by Polyoxometalate. Polym.
Degrad. and Stabil. 2015, 117, 30-36.
37 Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu, X.; Zhang, S. Deep Eutectic Solvents
as Highly Active Catalysts for The Fast and Mild Glycolysis of Poly (Ethylene
Terephthalate) (PET). Green. Chem. 2015, 17 (4), 2473-2479.
38 Zhao, Y.; Liu, M.; Zhao, R.; Liu, F.; Ge, X.; Yu, S. Heterogeneous CaO (SrO,
BaO)/MCF as Highly Active and Recyclable Catalysts for The Glycolysis of Poly
(Ethylene Terephthalate). Res. Chem. Intermed. 2018, 44, 7711-7729.
39 López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.;
Gutiérrez-Ortiz, J. I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium
Carbonate. Chem. Eng. J. 2011, 168 (1), 312-320.
40 Yue, Q. F.; Xiao, L. F.; Zhang, M. L.; Bai, X. F. The Glycolysis of Poly (Ethylene
Terephthalate) Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts.
Polymers. 2013, 5 (4), 1258-1271.
41 Shukla, S.; Palekar, V.; Pingale, N. Zeolite Catalyzed Glycolysis of Poly (Ethylene
Terephthalate) Bottle Waste. J. Appl. Polym. Sci. 2008, 110 (1), 501-506.
42 Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K.
Depolymerization of Poly (Ethylene Terephthalate) Waste with Biomass-Waste
Derived Recyclable Heterogeneous Catalyst. Waste Manage. 2021, 126, 1-10.
43 Xin, J.; Zhang, Q.; Huang, J.; Huang, R.; Jaffery, Q. Z.; Yan, D.; Zhou, Q.; Xu, J.;
Lu, X. Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. J. Environ.
Manage. 2021, 296, 113267.
44 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol .Sci.
A. 2020, 57 (6), 430-438.
45 Huang, J.; Yan, D.; Dong, H.; Li, F.; Lu, X.; Xin, J. Removal of Trace Amount
Impurities in Glycolytic Monomer of Polyethylene Terephthalate by Recrystallization.
J. Environ. Chem. Eng. 2021, 9 (5), 106277.
46 Zhang, Q.; Huang, R.; Yao, H.; Lu, X.; Yan, D.; Xin, J. Removal of Zn2+ from
Polyethylene Terephthalate (PET) Glycolytic Monomers by Sulfonic Acid Cation
Exchange Resin. J. Environ. Chem. Eng. 2021, 9 (4), 105326.
47 Leal Filho, W.; Ellams, D.; Han, S.; Tyler, D.; Boiten, V. J.; Paço, A.; Moora, H.;Balogun, A.-L. A Review of The Socio-Economic Advantages of Textile Recycling. J.
Clean. Prod. 2019, 218, 10-20.
48 Glycolysis of Waste PET Bottles Using Sodium Acetate and Calcium Carbonate as
Catalyst. Asian Dyer, 2022.
https://www.researchgate.net/profile/Harshal-Patil-7/publication/361668278_Glycolys
is_of_waste_PET_bottles_using_sodium_acetate_and_calcium_carbonate_as_catalyst
/links/62bef6760bf6950edea2121e/Glycolysis-of-waste-PET-bottles-using-sodium-ac
etate-and-calcium-carbonate-as-catalyst.pdf (accessed 2023/ 05/ 23)
49 Krisbiantoro, P. A.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto,
H.; Kamiya, Y.; Wu, K. C.-W. Catalytic Glycolysis of Polyethylene Terephthalate
(PET) by Solvent-Free Mechanochemically Synthesized MFe2O4 (M= Co, Ni, Cu and
Zn) Spinel. Chem. Eng. J. 2022, 450, 137926.
50 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol. Sci.
A. 2020, 57 (6), 430-438.
51 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254
52 Alzuhairi, M.; Khalil, B.; Hadi, R. Nano ZnO Catalyst for Chemical Recycling of
Polyethylene Terephthalate (PET). J. Eng. Technol. 2017, 35 (8), 831-837
53 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254.
54 Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A.-M. M.; Moustafa, M. E.; Eshaq, G.;
Rabie, A.-R. M.; ElMetwally, A. E. Glycolysis of Poly (Ethylene Terephthalate)
Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]. Ind. Eng. Chem. Res. 2014,
53 (48), 18443-18451.
55 Yue, Q.; Wang, C.; Zhang, L.; Ni, Y.; Jin, Y. Glycolysis of Poly (Ethylene
Terephthalate) (PET) Using Basic Ionic Liquids as Catalysts. Polym. Degrad. Stab.
2011, 96 (4), 399-403
56 Lalhmangaihzuala, S.; Laldinpuii, Z.; Lalmuanpuia, C.; Vanlaldinpuia, K.
Glycolysis of Poly (Ethylene Terephthalate) Using Biomass-Waste Derived
Recyclable Heterogeneous Catalyst. Polymers 2020, 13 (1), 37.
57 Kim, Y.; Kim, M.; Hwang, J.; Im, E.; Moon, G. D. Optimizing PET Glycolysis
with An Oyster Shell-Derived Catalyst Using Response Surface Methodology.
Polymers. 2022, 14 (4), 656.
58 Wang, R.; Wang, T.; Yu, G.; Chen, X. A New Class of Catalysts for The
Glycolysis of PET: Deep Eutectic Solvent@ ZIF-8 Composite. Polym. Degrad. Stab.
2021, 183, 109463.
59 Brittain, H. G. Polymorphism and Solvatomorphism 2010. J. Pharm. Sci. 2012,101 (2), 464-484.
60 Gu, C.-H.; Young Jr, V.; Grant, D. J. Polymorph Screening: Influence of Solvents
on The Rate of Solvent-Mediated Polymorphic Transformation. J. Pharm. Sci. 2001,
90 (11), 1878-1890.
61 Yang, X.; Wang, X.; Ching, C. B. Solubility of Form α and Form γ of Glycine in
Aqueous Solutions. J. Chem. Eng. Data. 2008, 53 (5), 1133-1137.
62 Ivanova, B. B.; Arnaudov, M. G. Solid State Linear-Dichroic Infrared Spectral and
Theoretical Analysis of Methionine-Containing Tripeptides. Spectrochim. Acta. A.
2006, 65 (1), 56-61.
63 Yu, L.; Ng, K. Glycine Crystallization During Spray Drying: the pH Effect on Salt
and Polymorphic Forms. J. Pharm. Sci. 2002, 91 (11), 2367-2375.
64 Kitamura, M. Controlling Factor of Polymorphism in Crystallization Process. J.
Cryst. Growth. 2002, 237, 2205-2214.
65 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
1975, 31 (7), 1819-1822.
66 Miyake, A. Polymorphism of Bis-β-hydroxyethyl Terephthalate. Bull. Chem. Soc.
Jpn. 1957, 30 (4), 361-363.
67 McDonald, W.; Lewis, E.; Bower, D. Structure of The γ Form of Bis(2-Hydroxyethyl) Terephthalate, C12H14O6. Acta. Crystallogr. C. 1983, 39 (3),
410-412.
68 Scé, F.; Cano, I.; Martin, C.; Beobide, G.; Castillo, O.; de Pedro, I. Comparing
Conventional and Microwave-Assisted Heating in PET Degradation Mediated by
Imidazolium-Based Halometallate Complexes. New J. Chem. 2019, 43 (8),
3476-3485.
69 Lee, T.; Kuo, C.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal
Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol.
2006, 30 (10), 72-92.
70 Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.;
Hu, J.-C.; Chen, L.-T. Stabilization and Spheroidization of Ammonium Nitrate:
Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent
Screening. Chem. Eng. J. 2013, 225, 809-817.
71 Hao, T. Understanding Empirical Powder Flowability Criteria Scaled by Hausner
Ratio or Carr Index with The Analogous Viscosity Concept. RSC. Adv. 2015, 5 (70),
57212-57215.
72 Guo, Z.; Lindqvist, K.; de la Motte, H. An Efficient Recycling Process of
Glycolysis of PET in The Presence of A Sustainable Nanocatalyst. J. Appl. Polym. Sci.
2018, 135 (21), 46285.73 Khoonkari, M.; Haghighi, A. H.; Sefidbakht, Y.; Shekoohi, K.; Ghaderian, A.
Chemical Recycling of PET Wastes with Different Catalysts. Int. J. Polym. Sci. 2015,
2015,124534.
74 Viana, M. E.; Riul, A.; Carvalho, G. M.; Rubira, A. F.; Muniz, E. C. Chemical
Recycling of PET by Catalyzed Glycolysis: Kinetics of the Heterogeneous Reaction.
Chem. Eng. J. 2011, 173 (1), 210-219.
75 Chen, C. H.; Chen, C. Y.; Lo, Y. W.; Mao, C. F.; Liao, W. T. Studies of
Glycolysis of Poly (Ethylene Terephthalate) Recycled from Postconsumer Soft‐Drink
Bottles. I. Influences of Glycolysis Conditions. J. Appl. Polym. Sci. 2001, 80 (7),
943-948.
76 Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine,
H. P.; Knight, C.; Nagy, M. A.; Perry, D. A. Green Chemistry Tools to Influence A
Medicinal Chemistry and Research Chemistry Based Organisation. Green. Chem.
2008, 10 (1), 31-36.
77 CBD isolate crystallization FAQ
https://www.nitechsolutions.co.uk/applications/cbd-crystallization/cbd-isolate-crystall
ization-faq/ (accessed in 2023/05/30)
78 Duque‐Ingunza, I.; López‐Fonseca, R.; De Rivas, B.; Gutiérrez‐Ortiz, J. Processoptimization for catalytic glycolysis of post‐consumer PET wastes. J. Chem. Technol.
Biotechnol. 2014, 89 (1), 97-103.
79 Yuan, P.; Liu, B.; Sun, H. Optimization of the Crystallization Process of Bis (2‐
Hydroxyethyl) Terephthalate. Cryst. Res. Technol. 2021, 56 (11), 2100025.
80 Mullin, J. W. Nucleation In Crystallization 4th edition; Elsevier, 2001; pp 182 - 215
81 Bohne, D.; Fischer, S.; Obermeier, E. Thermal, Conductivity, Density, Viscosity,
and Prandtl‐Numbers of Ethylene Glycol‐Water Mixtures. Bunsenges. Phys. Chem.
1984, 88 (8), 739-742.
82 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
1975, 31 (7), 1819-1822
83 Dickinson, S. R.; McGrath, K. Quantitative Determination of Binary and Tertiary
Calcium Carbonate Mixtures Using Powder X-Ray Diffraction. Analyst 2001, 126 (7),
1118-1121.
84 Sundaram, M.; Natarajan, S.; Dikundwar, A. G.; Bhutani, H. Quantification of
Solid-State Impurity with Powder X-ray Diffraction Using Laboratory Source.
Powder Diffr. 2020, 35 (4), 226-232.
85 Moreno-Calvo, E.; Calvet, T.; Cuevas-Diarte, M. A.; Aquilano, D. Relationship
between The Crystal Structure and Morphology of Carboxylic Acid Polymorphs.
Predicted and Experimental Morphologies. Crystl. Growth Des. 2010, 10 (10), 4262-4271.
86 Radu, M.; Schilling, T. Solvent hydrodynamics Speed Up Crystal Nucleation in
Suspensions of Hard Spheres. EPL. 2014, 105 (2), 26001.
87 MacLeod, C. S.; Muller, F. L. On The Fracture of Pharmaceutical Needle-Shaped
Crystals During Pressure Filtration: Case Studies and Mechanistic Understanding.
Org. Process Res. Dev. 2012, 16 (3), 425-434.
88 Lee, T.; Yang, C. L.; Lee, H. L. Saving energy upon water removal in drying by
making the α-polymorph of L-glutamic acid. Sep. Sci. Technol. 2022, 57 (12),
1948-1965.
89 Park, G.; Bartolome, L.; Lee, K. G.; Lee, S. J.; Park, T. J. One-step sonochemical
synthesis of a graphene oxide–manganese oxide nanocomposite for catalytic glycolysis of
poly (ethylene terephthalate). Nanoscale 2012, 4 (13), 3879-3885
指導教授 李度(Tu Lee) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明