參考文獻 |
1 Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and
Opportunities. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2009, 364 (1526),
2115-2126.
2 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
Eng. Chem. Res. 1997, 36 (4), 1373-1383
3 Global Polyethylene Terephthalate (PET) Resin Market to Boost in Coming Years –
Projected to Reach Worth 114.7 Million Tons in 2028 | BlueWeave Consulting
https://www.globenewswire.com, (accessed 2023/05/04)
4 Nisticò, R. Polyethylene Terephthalate (PET) in The Packaging Industry. Polym.
Test. 2020, 90, 106707.
5 US PET Bottle Recycling Rate Jumps 1.5% After Years of Decline
https://www.icis.com, (accessed 2023/05/04)
6 Report: PET Recycling Improving in EU
https://resource-recycling.com, (accessed 2023/05/04)
7 Expert’s talk: The Big Decryption of Waste Bottles Being Reproduced Into
Eco-Friendly Clothing
https://r-paper.epa.gov.tw, (accessed 2023/04/05)
8 Recycling Polyethylene Terephthalate https://www.liveabout.com/, (accessed 2023/04/05)
9 Elisha, O. D. Moving Beyond Take-Make-Dispose to Take-Make-Use for
Sustainable Economy. Int. J. Sci. Res. Educ. 2020, 13 (3), 497-516.
10 Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic
Solid Waste (PSW): A Review. Waste Manage. 2009, 29 (10), 2625-2643.
11 Rahimi, A.; García, J. M. Chemical Recycling of Waste Plastics for New Materials
Production. Nat. Rev. Chem. 2017, 1 (6), 0046.
12 Primary, Secondary and Tertiary Recycling Explained
https://www.recyclingconsortium.org.uk/, (accessed 2023/4/20)
13 Ignatyev, I. A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A
Review. ChemSusChem. 2014, 7 (6), 1579-1593.
14 Choi, J. S.; Youn, H. K.; Kwak, B. H.; Wang, Q.; Yang, K. S.; Chung, J. S.
Preparation and Characterization of TiO2-Masked Fe3O4 Nano Particles for
Enhancing Catalytic Combustion of 1, 2-Dichlorobenzene and Incineration of
Polymer Wastes. Appl. Catal. B. 2009, 91 (1-2), 210-216.
15 Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of
Solid Plastic Waste. Waste Manage. 2017, 69, 24-58.
16 Schyns, Z. O.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A
review. Macromol. Rapid. Commun. 2021, 42 (3), 2000415
17 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
18 Wu, H.-S. Strategic Possibility Routes of Recycled PET. Polymers. 2021, 13 (9),
1475.
19 Islam, M. S.; Islam, Z.; Hasan, R.; Islam Molla Jamal, A. S. Acidic Hydrolysis of
Recycled Polyethylene Terephthalate Plastic for The Production of Its Monomer
Terephthalic Acid. Prog. Rubber. Plast. Recycl. Tech. 2023, 39 (1), 12-25.
20 Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from
Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv.
2021, 5, 100079.
21 Grigore, M. E. Methods of Recycling, Properties and Applications of Recycled
Thermoplastic Polymers. Recycling. 2017, 2 (4), 24.
22 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
Eng. Chem. Res. 1997, 36 (4), 1373-1383.
23 Yang, Y.; Lu, Y.; Xiang, H.; Xu, Y.; Li, Y. Study on Methanolytic
Depolymerization of PET with Supercritical Methanol for Chemical Recycling.
Polym. Degrad. Stab. 2002, 75 (1), 185-191.
24 Pudack, C.; Stepanski, M.; Fässler, P. PET Recycling–Contributions of
Crystallization to Sustainability. Chem. Ing. Tech. 2020, 92 (4), 452-458.
25 Gupta, P.; Bhandari, S. Chemical Depolymerization of PET Bottles via
Ammonolysis and Aminolysis. In Recycling of Polyethylene Terephthalate Bottles,
Elsevier, 2019; pp 109-134.
26 Blackmon, K. P.; Fox, D. W.; Shafer, S. J. Process for Converting PET Scrap to
Diamide Monomers. Eur. Patent 365,842, 1988
27 Beneš, H.; Rösner, J.; Holler, P.; Synková, H.; Kotek, J.; Horák, Z. Glycolysis of
Flexible Polyurethane Foam in Recycling of Car Seats. Polym. Adv. Technol. 2007,
18 (2), 149-156.
28 Imran, M.; Kim, B.-K.; Han, M.; Cho, B. G. Sub-and Supercritical Glycolysis of
Polyethylene Terephthalate (PET) Into The Monomer Bis (2-Hydroxyethyl)
Terephthalate (BHET). Polym. Degrad. Stab. 2010, 95 (9), 1686-1693.
29 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
30 Ghaemy, M.; Mossaddegh, K. Depolymerisation of Poly (Ethylene Terephthalate)
Fibre Wastes Using Ethylene Glycol. Polym. Degrad. Stab. 2005, 90 (3), 570-576.
31 Sheel, A.; Pant, D. Chemical Depolymerization of PET Bottles via Glycolysis. In
Recycling of polyethylene terephthalate bottles, Elsevier, 2019; pp 61-84
32 Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic Depolymerisation of PET:
A Review. Green. Chem. 2021, 23 (11), 3765-3789.
33 Karayannidis, G.; Chatziavgoustis, A.; Achilias, D. Poly (Ethylene Terephthalate)
Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv.
Polym. Technol. 2002, 21 (4), 250-259.
34 Han, M. Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In
Recycling of Polyethylene Terephthalate Bottles, Elsevier, 2019; pp 85-108
35 Ju, Z.; Xiao, W.; Lu, X.; Liu, X.; Yao, X.; Zhang, X.; Zhang, S. Theoretical
Studies on Glycolysis of Poly (Ethylene Terephthalate) in Ionic Liquids. RSC. Adv.
2018, 8 (15), 8209-8219.
36 Geng, Y.; Dong, T.; Fang, P.; Zhou, Q.; Lu, X.; Zhang, S. Fast and Effective
Glycolysis of Poly (Ethylene Terephthalate) Catalyzed by Polyoxometalate. Polym.
Degrad. and Stabil. 2015, 117, 30-36.
37 Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu, X.; Zhang, S. Deep Eutectic Solvents
as Highly Active Catalysts for The Fast and Mild Glycolysis of Poly (Ethylene
Terephthalate) (PET). Green. Chem. 2015, 17 (4), 2473-2479.
38 Zhao, Y.; Liu, M.; Zhao, R.; Liu, F.; Ge, X.; Yu, S. Heterogeneous CaO (SrO,
BaO)/MCF as Highly Active and Recyclable Catalysts for The Glycolysis of Poly
(Ethylene Terephthalate). Res. Chem. Intermed. 2018, 44, 7711-7729.
39 López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.;
Gutiérrez-Ortiz, J. I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium
Carbonate. Chem. Eng. J. 2011, 168 (1), 312-320.
40 Yue, Q. F.; Xiao, L. F.; Zhang, M. L.; Bai, X. F. The Glycolysis of Poly (Ethylene
Terephthalate) Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts.
Polymers. 2013, 5 (4), 1258-1271.
41 Shukla, S.; Palekar, V.; Pingale, N. Zeolite Catalyzed Glycolysis of Poly (Ethylene
Terephthalate) Bottle Waste. J. Appl. Polym. Sci. 2008, 110 (1), 501-506.
42 Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K.
Depolymerization of Poly (Ethylene Terephthalate) Waste with Biomass-Waste
Derived Recyclable Heterogeneous Catalyst. Waste Manage. 2021, 126, 1-10.
43 Xin, J.; Zhang, Q.; Huang, J.; Huang, R.; Jaffery, Q. Z.; Yan, D.; Zhou, Q.; Xu, J.;
Lu, X. Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. J. Environ.
Manage. 2021, 296, 113267.
44 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol .Sci.
A. 2020, 57 (6), 430-438.
45 Huang, J.; Yan, D.; Dong, H.; Li, F.; Lu, X.; Xin, J. Removal of Trace Amount
Impurities in Glycolytic Monomer of Polyethylene Terephthalate by Recrystallization.
J. Environ. Chem. Eng. 2021, 9 (5), 106277.
46 Zhang, Q.; Huang, R.; Yao, H.; Lu, X.; Yan, D.; Xin, J. Removal of Zn2+ from
Polyethylene Terephthalate (PET) Glycolytic Monomers by Sulfonic Acid Cation
Exchange Resin. J. Environ. Chem. Eng. 2021, 9 (4), 105326.
47 Leal Filho, W.; Ellams, D.; Han, S.; Tyler, D.; Boiten, V. J.; Paço, A.; Moora, H.;Balogun, A.-L. A Review of The Socio-Economic Advantages of Textile Recycling. J.
Clean. Prod. 2019, 218, 10-20.
48 Glycolysis of Waste PET Bottles Using Sodium Acetate and Calcium Carbonate as
Catalyst. Asian Dyer, 2022.
https://www.researchgate.net/profile/Harshal-Patil-7/publication/361668278_Glycolys
is_of_waste_PET_bottles_using_sodium_acetate_and_calcium_carbonate_as_catalyst
/links/62bef6760bf6950edea2121e/Glycolysis-of-waste-PET-bottles-using-sodium-ac
etate-and-calcium-carbonate-as-catalyst.pdf (accessed 2023/ 05/ 23)
49 Krisbiantoro, P. A.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto,
H.; Kamiya, Y.; Wu, K. C.-W. Catalytic Glycolysis of Polyethylene Terephthalate
(PET) by Solvent-Free Mechanochemically Synthesized MFe2O4 (M= Co, Ni, Cu and
Zn) Spinel. Chem. Eng. J. 2022, 450, 137926.
50 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol. Sci.
A. 2020, 57 (6), 430-438.
51 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254
52 Alzuhairi, M.; Khalil, B.; Hadi, R. Nano ZnO Catalyst for Chemical Recycling of
Polyethylene Terephthalate (PET). J. Eng. Technol. 2017, 35 (8), 831-837
53 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254.
54 Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A.-M. M.; Moustafa, M. E.; Eshaq, G.;
Rabie, A.-R. M.; ElMetwally, A. E. Glycolysis of Poly (Ethylene Terephthalate)
Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]. Ind. Eng. Chem. Res. 2014,
53 (48), 18443-18451.
55 Yue, Q.; Wang, C.; Zhang, L.; Ni, Y.; Jin, Y. Glycolysis of Poly (Ethylene
Terephthalate) (PET) Using Basic Ionic Liquids as Catalysts. Polym. Degrad. Stab.
2011, 96 (4), 399-403
56 Lalhmangaihzuala, S.; Laldinpuii, Z.; Lalmuanpuia, C.; Vanlaldinpuia, K.
Glycolysis of Poly (Ethylene Terephthalate) Using Biomass-Waste Derived
Recyclable Heterogeneous Catalyst. Polymers 2020, 13 (1), 37.
57 Kim, Y.; Kim, M.; Hwang, J.; Im, E.; Moon, G. D. Optimizing PET Glycolysis
with An Oyster Shell-Derived Catalyst Using Response Surface Methodology.
Polymers. 2022, 14 (4), 656.
58 Wang, R.; Wang, T.; Yu, G.; Chen, X. A New Class of Catalysts for The
Glycolysis of PET: Deep Eutectic Solvent@ ZIF-8 Composite. Polym. Degrad. Stab.
2021, 183, 109463.
59 Brittain, H. G. Polymorphism and Solvatomorphism 2010. J. Pharm. Sci. 2012,101 (2), 464-484.
60 Gu, C.-H.; Young Jr, V.; Grant, D. J. Polymorph Screening: Influence of Solvents
on The Rate of Solvent-Mediated Polymorphic Transformation. J. Pharm. Sci. 2001,
90 (11), 1878-1890.
61 Yang, X.; Wang, X.; Ching, C. B. Solubility of Form α and Form γ of Glycine in
Aqueous Solutions. J. Chem. Eng. Data. 2008, 53 (5), 1133-1137.
62 Ivanova, B. B.; Arnaudov, M. G. Solid State Linear-Dichroic Infrared Spectral and
Theoretical Analysis of Methionine-Containing Tripeptides. Spectrochim. Acta. A.
2006, 65 (1), 56-61.
63 Yu, L.; Ng, K. Glycine Crystallization During Spray Drying: the pH Effect on Salt
and Polymorphic Forms. J. Pharm. Sci. 2002, 91 (11), 2367-2375.
64 Kitamura, M. Controlling Factor of Polymorphism in Crystallization Process. J.
Cryst. Growth. 2002, 237, 2205-2214.
65 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
1975, 31 (7), 1819-1822.
66 Miyake, A. Polymorphism of Bis-β-hydroxyethyl Terephthalate. Bull. Chem. Soc.
Jpn. 1957, 30 (4), 361-363.
67 McDonald, W.; Lewis, E.; Bower, D. Structure of The γ Form of Bis(2-Hydroxyethyl) Terephthalate, C12H14O6. Acta. Crystallogr. C. 1983, 39 (3),
410-412.
68 Scé, F.; Cano, I.; Martin, C.; Beobide, G.; Castillo, O.; de Pedro, I. Comparing
Conventional and Microwave-Assisted Heating in PET Degradation Mediated by
Imidazolium-Based Halometallate Complexes. New J. Chem. 2019, 43 (8),
3476-3485.
69 Lee, T.; Kuo, C.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal
Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol.
2006, 30 (10), 72-92.
70 Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.;
Hu, J.-C.; Chen, L.-T. Stabilization and Spheroidization of Ammonium Nitrate:
Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent
Screening. Chem. Eng. J. 2013, 225, 809-817.
71 Hao, T. Understanding Empirical Powder Flowability Criteria Scaled by Hausner
Ratio or Carr Index with The Analogous Viscosity Concept. RSC. Adv. 2015, 5 (70),
57212-57215.
72 Guo, Z.; Lindqvist, K.; de la Motte, H. An Efficient Recycling Process of
Glycolysis of PET in The Presence of A Sustainable Nanocatalyst. J. Appl. Polym. Sci.
2018, 135 (21), 46285.73 Khoonkari, M.; Haghighi, A. H.; Sefidbakht, Y.; Shekoohi, K.; Ghaderian, A.
Chemical Recycling of PET Wastes with Different Catalysts. Int. J. Polym. Sci. 2015,
2015,124534.
74 Viana, M. E.; Riul, A.; Carvalho, G. M.; Rubira, A. F.; Muniz, E. C. Chemical
Recycling of PET by Catalyzed Glycolysis: Kinetics of the Heterogeneous Reaction.
Chem. Eng. J. 2011, 173 (1), 210-219.
75 Chen, C. H.; Chen, C. Y.; Lo, Y. W.; Mao, C. F.; Liao, W. T. Studies of
Glycolysis of Poly (Ethylene Terephthalate) Recycled from Postconsumer Soft‐Drink
Bottles. I. Influences of Glycolysis Conditions. J. Appl. Polym. Sci. 2001, 80 (7),
943-948.
76 Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine,
H. P.; Knight, C.; Nagy, M. A.; Perry, D. A. Green Chemistry Tools to Influence A
Medicinal Chemistry and Research Chemistry Based Organisation. Green. Chem.
2008, 10 (1), 31-36.
77 CBD isolate crystallization FAQ
https://www.nitechsolutions.co.uk/applications/cbd-crystallization/cbd-isolate-crystall
ization-faq/ (accessed in 2023/05/30)
78 Duque‐Ingunza, I.; López‐Fonseca, R.; De Rivas, B.; Gutiérrez‐Ortiz, J. Processoptimization for catalytic glycolysis of post‐consumer PET wastes. J. Chem. Technol.
Biotechnol. 2014, 89 (1), 97-103.
79 Yuan, P.; Liu, B.; Sun, H. Optimization of the Crystallization Process of Bis (2‐
Hydroxyethyl) Terephthalate. Cryst. Res. Technol. 2021, 56 (11), 2100025.
80 Mullin, J. W. Nucleation In Crystallization 4th edition; Elsevier, 2001; pp 182 - 215
81 Bohne, D.; Fischer, S.; Obermeier, E. Thermal, Conductivity, Density, Viscosity,
and Prandtl‐Numbers of Ethylene Glycol‐Water Mixtures. Bunsenges. Phys. Chem.
1984, 88 (8), 739-742.
82 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
1975, 31 (7), 1819-1822
83 Dickinson, S. R.; McGrath, K. Quantitative Determination of Binary and Tertiary
Calcium Carbonate Mixtures Using Powder X-Ray Diffraction. Analyst 2001, 126 (7),
1118-1121.
84 Sundaram, M.; Natarajan, S.; Dikundwar, A. G.; Bhutani, H. Quantification of
Solid-State Impurity with Powder X-ray Diffraction Using Laboratory Source.
Powder Diffr. 2020, 35 (4), 226-232.
85 Moreno-Calvo, E.; Calvet, T.; Cuevas-Diarte, M. A.; Aquilano, D. Relationship
between The Crystal Structure and Morphology of Carboxylic Acid Polymorphs.
Predicted and Experimental Morphologies. Crystl. Growth Des. 2010, 10 (10), 4262-4271.
86 Radu, M.; Schilling, T. Solvent hydrodynamics Speed Up Crystal Nucleation in
Suspensions of Hard Spheres. EPL. 2014, 105 (2), 26001.
87 MacLeod, C. S.; Muller, F. L. On The Fracture of Pharmaceutical Needle-Shaped
Crystals During Pressure Filtration: Case Studies and Mechanistic Understanding.
Org. Process Res. Dev. 2012, 16 (3), 425-434.
88 Lee, T.; Yang, C. L.; Lee, H. L. Saving energy upon water removal in drying by
making the α-polymorph of L-glutamic acid. Sep. Sci. Technol. 2022, 57 (12),
1948-1965.
89 Park, G.; Bartolome, L.; Lee, K. G.; Lee, S. J.; Park, T. J. One-step sonochemical
synthesis of a graphene oxide–manganese oxide nanocomposite for catalytic glycolysis of
poly (ethylene terephthalate). Nanoscale 2012, 4 (13), 3879-3885 |