博碩士論文 110324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:18.217.252.194
姓名 蘇良益(Su, Liang-Yi)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用三塔真空變壓吸附程序捕獲燃煤電廠煙道氣中二氧化碳之實驗設計分析
(Analysis of design of experiments for three bed vacuum pressure swing adsorption for carbon dioxide capture in coal-fired power plant)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 減碳已成為國際趨勢,因此碳捕獲、利用與封存 (Carbon Capture, Utilization and Storage, CCUS) 之相關技術至為關鍵,而碳捕獲占了CCUS技術中最大宗之成本。變壓吸附程序(Pressure Swing Adsorption, PSA)為其中一種捕獲二氧化碳之技術,其具有能耗低、操作成本低等優點,故該技術具備商轉化之潛力。本研究採用此技術進行捕獲台中發電廠燃煤機組排放之煙道氣中二氧化碳之實驗,而研究目標為使捕獲之二氧化碳純度達95%。
本研究利用台灣電力公司綜合研究所提供之三塔式變壓吸附設備,以COSMO 13X 沸石作為吸附劑,進行三塔十二步驟真空變壓吸附程序捕獲燃煤電廠煙道氣中二氧化碳之實驗。經預處理之煙道氣中二氧化碳濃度約為10.48%至13.35%。而三塔十二步驟程序由高壓吸附、壓力平衡、同向減壓、逆向減壓與靜置等程序步驟組成。本研究採用實驗設計法規劃並進行實驗,目標為分析出各響應之顯著因子,並找出最適化操作條件。本研究採用兩水準三因子之全因子實驗設計,選擇以步驟3/7/11時間(A因子)、進料壓力(B因子)、同向減壓壓力(C因子)為探討之因子。
分別建立塔底二氧化碳純度、回收率、能耗之迴歸模型。再藉由確認各響應之相對誤差皆不大,推測迴歸模型應具有不錯的預測能力。
接著由變異數分析之結果,分析出各響應之顯著因子或交互作用。對塔底二氧化碳純度而言,僅主效用B(進料壓力)與主效用C(同向減壓壓力)為顯著因子; 對塔底二氧化碳回收率而言,僅主效用A(步驟3/7/11時間)與主效用C(同向減壓壓力)為顯著因子; 對能耗而言,僅主效用B(進料壓力)與交互作用BC(進料壓力同&向減壓壓力)為顯著因子或顯著之交互作用。
以各響應之迴歸模型找出最適化操作條件,得當步驟3/7/11時間為200秒、進料壓力為3.50 bar,以及同向減壓壓力為0.30 bar時,最適化實驗結果為塔底二氧化碳純度達95.26 %、回收率達65.33 %,以及能耗為 1.33 GJ/tonne of CO2。
最後,將吸附劑COSMO 13X 沸石在經以燃煤電廠煙道氣為進料之長時間真空變壓吸附程序操作後,取少量樣品並以高壓氣體吸附分析儀進行二氧化碳等溫吸附測試,由數據趨勢可推測: 吸附劑13X的吸附量,隨著歷經長時間真空變壓吸附程序之次數增加有持續下降之趨勢。
摘要(英) Carbon reduction has become a global trend, therefore, technologies related to Carbon Capture, Utilization and Storage(CCUS) are very important. Carbon capture accounts for the most costs in the Carbon Capture, Utilization and Storage(CCUS). Pressure Swing Adsorption(PSA) is one of the technologies to capture carbon dioxide and has great potential to be operated industrially due to its lower energy consumption and lower operational costs. The research aims to capture carbon dioxide in flue gas at Taichung coal-fired power plant with CO2 product purity reaching 95% by pressure swing adsorption.
COSMO zeolite 13X was used as adsorbent. Three-bed twelve-step vacuum pressure swing adsorption(VPSA) experiment to capture carbon dioxide in flue gas at coal-fired power plant was conducted by 3-bed pressure swing adsorption equipment provided by Taiwan Power Company. After pretreatment, the CO2 concentration of flue gas was about 10.48% to 13.35%. The whole process comprising of adsorption, pressure equalization, cocurrent depressurization, countercurrent depressurization and idle steps. Experiments were planed by design of experiments(DOE). The goal of DOE is to find the significant factors for each response and find the optimal operating conditions. Two-level three-factor full factorial design was used, and the factors studied were step 3/7/11 time(factor A)、adsorption pressure(factor B)、cocurrent depressurization pressure(factor C).
Regression model for bottom CO2 product purity, recovery and energy consumption were established. The prediction accuracy of regression model were presumed to be good because the relative error of each responses were not big.
Next, find the significant factors or interaction by analysis of variance(ANOVA). For the bottom CO2 product purity, main effect B and main effect C are significant. For bottom CO2 product recovery, main effect A and main effect C are significant. For energy consumption, main effect B and interaction BC are significant.
Then, the optimal operating conditions were predicted from regression models of design of experiments(DOE). The performance at optimal operating conditions is: the bottom CO2 product purity is 95.26 % with recovery 65.33 %, and energy consumption were measured to be 1.33 GJ/tonne of CO2 with step 3/7/11 time equaled to 200 s, adsorption pressure equaled to 3.50 bar and cocurrent depressurization pressure equaled to 0.30 bar.
Finally, the CO2 adsorption isotherms were measured for adsorbent after long-term VPSA operation. The data shows that the adsorption capacity of zeolite 13X seems to decay with the used times of long-term VPSA operation increases.
關鍵字(中) ★ 變壓吸附
★ 燃煤電廠
★ 二氧化碳捕獲
★ 實驗設計法
關鍵字(英) ★ pressure swing adsorption
★ coal-fired power plant
★ carbon dioxide capture
★ design of experiments
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章、 緒論 1
1-1 研究背景 1
1-2 研究目的 3
第二章、 吸附簡介與文獻回顧 4
2-1 吸附之簡介 4
2-1-1 吸附基本原理 4
2-1-2 吸附劑及其選擇率 5
2-2 文獻回顧 6
2-2-1 變壓吸附程序(PSA)之發展 6
2-2-2 有關二氧化碳捕捉之文獻回顧 9
第三章、 實驗設備與方法 12
3-1 實驗用吸附劑 12
3-2 實驗儀器 15
3-2-1 真空變壓吸附實驗 15
3-2-2 等溫吸附曲線實驗 22
3-3 程序實驗平台 24
3-4 製程描述 27
3-4-1 煙道氣預處理程序 27
3-4-2 三塔真空變壓吸附程序 27
3-5 實驗步驟 31
3-5-1 三塔真空變壓吸附實驗 31
3-5-2 等溫吸附曲線實驗 32
3-6 實驗設計(Design of Experiments) 33
3-7 實驗數據計算方式 35
第四章、 結果與討論 37
4-1 三塔十二步驟真空變壓吸附實驗結果 37
4-2 三塔十二步驟真空變壓吸附實驗之實驗設計分析 40
4-2-1 Effects plot之分析 40
4-2-2 變異數分析 44
4-2-3 迴歸模型與殘差分析 46
4-2-4 最適化結果 50
4-3 吸附劑降解測試 58
第五章、 結論 61
參考文獻 63
附錄一 基礎條件之實驗結果 66
附錄二F分布表 67
附錄三 各響應之柏拉圖 68
附錄四 變壓吸附設備命名原則 70
附錄五 人機介面之名詞對照表 71
參考文獻 [1] 行政院環境保護署氣候變遷辦公室, 立法院三讀修正通過氣候變遷因應法, 台北, 民國112年 01月.
https://enews.epa.gov.tw/Page/3B3C62C78849F32F/c7407c7d-70b6-48a0-ab2d-852f3067a556
[2] 談駿嵩, 王志盈, 二氧化碳捕獲, 科學發展, 510期, pp. 32-37, 2015.
[3] N. R. Sukor, A. H. Shamsuddin, T. M. I. Mahlia and M. F. M. Isa, Techno-economic analysis of CO2 Capture technologies in offshore natural gas field: Implications to carbon capture and storage in Malaysia, Processes, vol. 8(3), pp. 350, 2020.
[4] M. J. Tuinier, M. van S. Annaland, G. J. Kramer and J. A. M. Kuipers, Cryogenic CO2 capture using dynamically operated packed beds, Chemical Engineering Science, vol. 65(1), pp. 114-119, 2010.
[5] M. K. Lam, K. T. Lee and A. R. Mohamed, Current status and challenges on microalgae-based carbon capture, International Journal of Greenhouse Gas Control, vol. 10, pp. 456-469, 2012.
[6] C. A. Scholes, S. E. Kentish and G. W. Stevens, The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture, Energy Procedia, vol. 1(1), pp. 311-317, 2009.
[7] S. D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A. G. Russell, Q. Wei and M. Fan, Review of recent advances in carbon dioxide separation and capture, RSC Advances, vol. 3(45), pp. 22739-22773, 2013.
[8] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Advances in CO2 capture technology—the US Department of Energy′s Carbon Sequestration Program, International Journal of Greenhouse Gas Control, vol. 2(1), pp. 9-20, 2008.
[9] J. Kittel, R. Idem, D. Gelowitz, P. Tontiwachwuthikul, G. Parrain and A. Bonneau, Corrosion in MEA units for CO2 capture: pilot plant studies, Energy Procedia, vol. 1(1), pp. 791-797, 2009.
[10] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University Press, Pittsburgh, 2010.
[11] R. T. Yang, Gas Separation by Adsorption Process, Imperial College Press, Lodon, 1997.
[12] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[13] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, U.S. Patent 2944627, 1960.
[14] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Springer Science & Business Media, Berlin, 2012.
[15] W.-K. Choi, T.-I. Kwon, Y.-K. Yeo, H. Lee, H. K. Song and B.-K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20(4), pp. 617-623, 2003.
[16] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[17] G. D. M. Pierre and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[18] B.-K. Na, H. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41(22), pp. 5498-5503, 2002.
[19] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6(1), pp. 7-13, 1987.
[20] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50(11), pp. 2904-2917, 2004.
[21] E. S. Kikkinides, R. Yang and S. Cho, Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol. 32(11), pp. 2714-2720, 1993.
[22] J. Zhang, P. A. Webley and P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Conversion and Management, vol. 49(2), pp. 346-356, 2008.
[23] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu and A. E. Rodrigues, Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant, Industrial & Engineering Chemistry Research, vol. 51(21), pp. 7355-7363, 2012.
[24] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of one-and two-staged kinetically controlled CO2 capture processes from postcombustion flue gas on a carbon molecular sieve, Industrial & Engineering Chemistry Research, vol. 53(22), pp. 9186-9198, 2014.
[25] S. Sivakumar and D. Rao, Modified Duplex PSA. 1. Sharp separation and process intensification for CO2−N2−13X zeolite system, Industrial & Engineering Chemistry Research, vol. 50(6), pp. 3426-3436, 2011.
[26] S.-H. Cho, J.-H. Park, H.-T. Beum, S.-S. Han and J.-N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2004.
[27] G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, vol. 14, pp. 415-422, 2008.
[28] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18, pp. 445-459, 2012.
[29] H. Erden, A. D. Ebner and J. A. Ritter, Development of a pressure swing adsorption cycle for producing high purity CO2 from dilute feed streams. Part I: feasibility study, Industrial & Engineering Chemistry Research, vol. 57(23), pp. 8011-8022, 2018.
[30] L. Hauchhum and P. Mahanta, Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed, International Journal of Energy and Environmental Engineering, vol. 5, pp. 349-356, 2014.
[31] 林耀庭, 利用全因子實驗設計進行三塔十二步驟真空變壓吸附法捕獲燃煤電廠 1-kW 煙道氣中二氧化碳之最適化研究, 國立中央大學碩士論文, 民國111年 7月.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明