參考文獻 |
[1] P. Friedlingstein, M. W. Jones, M. O′Sullivan, R. M. Andrew, D. C. E. Bakker,J. Hauck, C. L. Quéré, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, P. Anthoni, N. R. Bates, M. Becker, N. Bellouin, L. Bopp, T. T. T. Chau, F. Chevallier, L. P. Chini, M. Cronin, K. I. Currie, B. Decharme, L. M. Djeutchouang, X. Dou, W. Evans, R. A. Feely, L. Feng, T. Gasser, D. Gilfillan, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö . Gürses, I. Harris, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, I. T. Luijkx, A. Jain, S. D. Jones, E. Kato, D. Kennedy, K. K. Goldewijk, J. Knauer, J. I. Korsbakken, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, S. Lienert, J. Liu, G. Marland, P. C. McGuire, J. R. Melton, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, T. Ono, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T. M. Rosan, J. Schwinger, C. Schwingshackl, R. Séférian, A. J. Sutton, C. Sweeney, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, F. Tubiello, G. R. V. D. Werf, N. Vuichard, C. Wada, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, C. Yue, X. Yue, S. Zaehle and J. Zeng, Global carbon budget 2021, Earth System Science Data, vol. 14, no. 4, pp. 1917-2005, 2022.
[2] International Energy Agency (IEA), CO2 Emissions in 2022, 2023. https://www.iea.org/reports/co2-emissions-in-2022
[3] 台灣電力股份有限公司, 火力發電結構比, 民國 111 年 05 月 05 日. https://www.taipower.com.tw/tc/page.aspx?mid=216
[4] M.M. F. Hasan, E. L. First, F. Boukouvala and C. A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU, Computers & Chemical Engineering, vol. 81, pp. 2-21, 2015.
[5] 談駿嵩,王志盈, 二氧化碳捕獲, 科學發展, 510 期, pp. 32-37, 2015.
[6] 張育誠、吳國光、焦鴻文、簡國祥、歐陽湘,富氧燃燒技術之應用與分析,台灣能源期刊, 第2卷3期, 頁323-331, 2015.
[7] R. T. Yang, Gas separation by adsorption processes, vol. 1, Imperial College Press, London, 1997.
[8] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation Science and Technology, vol. 36, no. 15, pp. 3355-3365, 2001.
[9] C.W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by
adsorption, US Patent 2944627, 1960.
[10] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and
Technology. Springer Science & Business Media, Berlin, 2012.
[11] W.-K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song and B. K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20, no. 4, pp. 617-623, 2003.
[12] Martunus, Z. Helwani, A. D. Wiheeb, J. Kim and M. R. Othman, In situ carbon dioxide capture and fixation from a hot flue gas, International Journal of Greenhouse Gas Control, Vol. 6, pp. 179-188, 2012.
[13] E. S. Kikkinides, R.T. Yang and S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol.32, pp.2714-2720, 1993.
[14] P. E. Jahromi, S. Fatemia, A. Vatania, J. A. Ritter and A. D. Ebnerb, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[15] M. P. G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[16] Michelle_Wu, 實驗設計 (DOE)入門:經典篩選設計與全因子設計, 2021. https://community.jmp.com/t5/JMP-Blog/DOE/ba-p/423195
[17] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學, 碩士論文, 2020.
[18] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41, no. 22, pp. 5498-5503, 2002.
[19] K. Chihara and M. Suzuki, Air drying by pressure swing adsorption, Journal of Chemical Engineering of Japan, vol. 16, no. 4, pp. 293-299, 1983.
[20] J. J. Collins, Air separation by adsorption, U.S. Patent 4026680, 1975.
[21] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6, no. 1, pp. 7-13, 1987.
[22] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50, no. 11, pp. 2904-2917, 2004.
[23] A. Fuderer and E. Rudelstorfer, Selective adsorption process, U.S. Patent no.3986849,1976.
[24] C. Shen, Z. Liu, P. Li and J. Yu, Two-Stage VPSA process for CO2 capture from flue gas using activated carbon beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011–5021, 2012.
[25] J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical analysis on the power
consumption of the PSA process for recovering CO2 from flue gas, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[26] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, Carbon dioxide–nitrogen separation through pressure swing adsorption, Chemical Engineering Journal, Vol. 172, pp. 698-704, 2011.
[27] L. Riboldi, O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol.39, pp 1-16, 2015.
[28] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24, no. 4, pp. 460-467, 2016.
[29] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[30] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2014.
[31] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學, 碩士論文, 2015.
[32] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New Jersey, 2017.
[33] 林耀庭, 利用全因子實驗設計進行三塔十二步驟真空變壓吸附法捕獲燃煤電廠 1-kW 煙道氣中二氧化碳之最適化研究, 國立中央大學, 碩士論文, 2022.
[34] 洪佳渝, 利用兩階段真空變壓吸附製程捕獲發電廠煙道氣中二氧化碳之實驗設計分析, 國立中央大學, 碩士論文, 2022.
[35] R. V. Lenth, Quick and easy analysis of unreplicated factorials, Technometrics, vol. 31, no. 4, pp. 469-473, 1989.
[36] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium, The effect of structure on collision cross sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[37] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption, Vol. 14, pp. 575-582, 2008.
[38] 李柏霖, 利用二階段真空變壓吸附程序捕獲發電廠煙道氣中二氧化碳之模
擬研究與實驗設計分析, 國立中央大學, 碩士論文, 2021.
[39] 郭家禎, 利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實
驗研究, 國立中央大學, 碩士論文, 2020.
[40] A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processess, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[41] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, New York, 2005.
[42] 台灣電力公司, 台電環境白皮書, 民國 108 年. https://www.taipower.com.tw/upload/1456/2020072311363049674.pdf
[43] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption: A Pilot Plant Study, AIChE Journal, vol. 60, pp. 1830-1842, 2014.
[44] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Marcel Dekker, New York, 1975.
[45] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd ed., Wiley, New York, 2007.
[46] E. N. Fuller, P. D. Schettler, and J. C. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[47] P. G. de Montgareuil and D. Domine, Process for separating a binary gaseous mixture by adsorption. US Patent 3155468, 1964.
[48] D. D. Do, Adsorption analysis: Equilibria and Kinetics, World Scientific, London, 1998.
[49] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18, no. 5-6, pp. 445-459, 2012.
[50] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.
[51] Minitab, Determining the weight in response optimization, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/determining-the-weight/
[52] Minitab, What is importance in response optimization, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/what-is-importance-in-response-optimization/
[53] Minitab, What are individual desirability and composite desirability, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/what-are-individual-desirability-and-composite-desirability/
[54] Minitab, Setting the Weight for the Desirability Function, 2023
https://www.pinzhi.org/Minitab/DOE/DOE_Resp_Opti/Setting_the_weight_for_the_desirability_function.htm
[55] Minitab, Composite desirability, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/how-to/response-optimizer/methods-and-formulas/composite-desirability/ |