博碩士論文 109229604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.133.140.88
姓名 李琦雅(Zuhairini Rizqiyah)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 對 Kaluza-Klein 粒子作為星系團中潛在冷暗物質候選者的約束
(Constraints on the Kaluza-Klein Particles as Potential Cold Dark Matter Candidates in Galaxy Clusters)
相關論文
★ 亮紅外線星系ARP 55的CO(J=2-1)和CO(J=1-0)之譜線研究★ 合併中之明亮紅外線星系的次毫米波段觀測
★ 后髮座星系團內相對論性電子能譜的數值計算★ 萊曼α吸收雲的運動學SZ效應所引起之宇宙背景輻射非均向性
★ 類星體-星系對 0248+430 中的原子與分子氣體★ 亮紅外星系 NGC 6090 中分子氣體之研究
★ X射線背景輻射對星系團質量-溫度關係之限制★ AM CVn系統之可見光觀測
★ 利用電波與近紅外線觀測資料研究活躍星系核的性質★ 具有偏極化寬譜線與不具有偏極化寬譜線的西佛二型星系之塵埃型態
★ On the Origin of the Radio Emission of Ultraluminous Infrared Galaxies★ 使用近紅外波段搜尋高質量X射線雙星的光學對應體
★ 窄線西佛I型星系之電波及紅外線性質★ 合併星系的快速搜尋法
★ 活躍星系中分子雲之物理特性★ 伽瑪射線爆周圍環境探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這項研究計算了星系團中暗物質湮滅的無線電通量密度。該研究假設這些星團中的暗物質由卡魯扎-克萊因粒子 (KKDM) 組成。 KKDM 指的是在宇宙額外維度中運動的粒子,是冷暗物質候選者之一。 KKDM 的自湮滅會導致相對論性電子-正電子對,這會在具有高磁場的星系團中產生顯著的同步輻射射電輻射。為了對這些漫射無線電發射設置下限約束,我們分析了產生費米子對的通道中的通量密度,例如 e+e-、μ+μ- 和 τ+τ-。該研究發現,如果 KKDM 是這些星團中的主要暗物質,那麼富星團(例如 Abell 119 和 Abell 2029)可能會從 KKDM 湮滅中產生可檢測的漫射無線電發射。這項研究為了解星系團中 KKDM 的特性提供了寶貴的見解,並進一步了解了宇宙學和暗物質搜索的意義。
摘要(英) This study calculates the radio flux density from dark matter annihilations in galaxy clusters. The research assumes that the dark matter in these clusters is composed of Kaluza-Klein particles (KKDM). KKDM refers to particles moving in the universal extra dimensions and is one of the cold dark matter candidates. Self-annihilation of KKDM could result in relativistic electron-positron pairs, which can generate significant synchrotron radio emission in galaxy clusters with high magnetic fields. To set the lower limit constraints on these diffuse radio emissions, we analyzed the flux density in channels producing fermion pairs, such as e+e-, μ+μ-, and τ+τ-. The study found that a rich cluster, such as the Abell 119 and Abell 2029 might create possible detectable diffuse radio emission from KKDM annihilation if the KKDM is the main dark matter in these clusters. This research offers valuable insights into the properties of KKDM in galaxy clusters and provides further understanding of the implications of cosmology and dark matter searches.
關鍵字(中) ★ Kaluza-Klein
★ 冷暗物質
★ 星系團
★ 同步加速器發射
★ 冷卻功能
關鍵字(英) ★ Kaluza-Klien
★ Cold Dark Matter
★ Galaxy Clusters
★ Synchrotron Emission
★ Cooling Function
論文目次 電子論文授權書 Authorisation of the Electronic Thesis i
指導教授推薦書 Recommendation Letter from the Thesis Advisor iii
口試委員審定書 Verification from the Oral Examination Committee v
英文摘要 Abstract in English vii
中文摘要 Abstract in Chinese viii
誌謝 Acknowledgements ix
List of Figures xiii
List of Tables xv
1 Introduction 1
2 Kaluza-Klein particles and Characteristics of clusters 5
2.1 Kaluza-Klein dark matter (KKDM) annihilations . . . . . . . . . . . . . . 5
2.2 Characteristics of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Synchrotron Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Source Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Cooling Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Radio Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 NVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 VLSSr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Free Parameters Scan of Minimal Universal Extra Dimensions (MUEDs) . 15
3 Results and Discussions 17
3.1 Abell 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Abell 2029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Abell 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Other Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Influence of magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Summary 39
A MadDM 47
B Upper limits constraints of target galaxy clusters 51
C Free scan parameters MUED (Minimal Universal Extra dimensions) of
target galaxy clusters 61
D Flux density on target clusters 67
E Fitting parameter on target clusters 77
參考文獻 [1] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, jul 2014.
[2] F. Ambrogi, C. Arina, M. Backovi´c, J. Heisig, F. Maltoni, L. Mantani, O. Mattelaer, and G. Mohlabeng. MadDM v.3.0: A comprehensive tool for dark matter studies. Physics of the Dark Universe, 24:100249, mar 2019.
[3] V. S. Berezinsky, P. Blasi, and V. S. Ptuskin. Clusters of Galaxies as Storage Room for Cosmic Rays. ApJ, 487(2):529–535, Oct. 1997.
[4] G. Bertone and T. M. P. Tait. A new era in the search for dark matter. Nature, 562(7725):51–56, 2018.
[5] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, Apr. 2010.
[6] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, 2010.
[7] I. Boriev. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of planck’s constant. Journal of Physics: Conference Series, 996:012017, 03 2018.
[8] U. G. Briel, J. P. Henry, M. Arnaud, and D. Neumann. The Coma Cluster of Galaxies Observed by XMM-Newton. In S. Borgani, M. Mezzetti, and R. Valdarnini, editors, Tracing Cosmic Evolution with Galaxy Clusters, volume 268 of Astronomical Society of the Pacific Conference Series, page 203, Jan. 2002.
[9] C. L. Carilli and G. B. Taylor. Cluster Magnetic Fields. ARA&A, 40:319–348, Jan. 2002.
[10] Y. Chen, T. H. Reiprich, H. B¨ohringer, Y. Ikebe, and Y. Y. Zhang. Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters. A&A, 466(3):805–812, May 2007.
[11] H.-C. Cheng, K. T. Matchev, and M. Schmaltz. Bosonic supersymmetry? getting fooled at the cern lhc. Phys. Rev. D, 66:056006, Sep 2002.
[12] M. Cirelli, G. Corcella, A. Hektor, G. H¨utsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia. PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2011(03):051–051, mar 2011.
[13] A. S. Cohen, W. M. Lane, W. D. Cotton, N. E. Kassim, T. J. W. Lazio, R. A. Perley, J. J. Condon, and W. C. Erickson. The vla low-frequency sky survey. The Astronomical Journal, 134(3):1245, jul 2007.
[14] S. Colafrancesco, S. Profumo, and P. Ullio. Multi-frequency analysis of neutralino dark matter annihilations in the coma cluster. A&A, 455(1):21 43, jul 2006.
[15] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick. The NRAO VLA Sky Survey. AJ, 115(5):1693 1716, May 1998.
[16] C. J. Conselice and I. Gallagher, John S. Galaxy aggregates in the Coma cluster. MNRAS.
17] J. M. Cornell, S. Profumo, and W. Shepherd. Dark matter in minimal universal extra dimensions with a stable vacuum and the “right” higgs boson. Phys. Rev. D, 89:056005, Mar 2014.
[18] W. B. Dapp, S. Basu, and M. W. Kunz. Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation. A&A, 541:A35, May 2012.
[19] A. Datta, K. Kong, and K. T. Matchev. Discrimination of supersymmetry and universal extra dimensions at hadron colliders. Phys. Rev. D, 72:096006, Nov 2005.
[20] N. Deutschmann, T. Flacke, and J. S. Kim. Current LHC constraints on minimal universal extra dimensions. Physics Letters B, 771:515–520, aug 2017.
[21] K. Dolag, S. Schindler, F. Govoni, and L. Feretti. Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters. A&A, 378:777–786, Nov. 2001.
[22] D. Farnsworth, L. Rudnick, S. Brown, and G. Brunetti. Discovery of megaparsecscale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope. The Astrophysical Journal, 79(2):189, dec 2013.
[23] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, and M. Zaro. The complete NLO corrections to dijet hadroproduction. JHEP, 2017(4), apr 2017.
[24] G. Ghisellini, P. W. Guilbert, and R. Svensson. The Synchrotron Boiler. ApJ, 334:L5, Nov. 1988.
[25] S. Ghizzardi, S. De Grandi, and S. Molendi. Metal distribution in sloshing galaxy clusters: the case of A496. A&A, 570:A117, Oct. 2014.
[26] G. Giovannini, L. Feretti, T. Venturi, K. T. Kim, and P. P. Kronberg. The Halo Radio Source Coma C and the Origin of Halo Sources. ApJ, 406:399, Apr. 1993.
[27] A. M. Groener, D. M. Goldberg, and M. Sereno. The galaxy cluster concentrationmass scaling relation. MNRAS, 455(1):892–919, Jan. 2016.
[28] A. Hayakawa, T. Furusho, N. Y. Yamasaki, M. Ishida, and T. Ohashi. Inhomogeneity in the hot intracluster medium of abell 1060 observed with chandra. PASJ, 56(5):743–752, oct 2004.
[29] T. KALUZA. On the unification problem in physics. IJMPD, 27(14):1870001, oct 2018.
[30] C.-Y. Kiew, C.-Y. Hwang, and Z. Zainal Abibin. Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters. MNRAS, 467(3):2924–2933, 02 2017.
[31] O. Klein. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys., 37:895–906, 1926.
[32] W. M. Lane, W. D. Cotton, J. F. Helmboldt, and N. E. Kassim. VLSS redux: Software improvements applied to the very large array low-frequency sky survey. Radio Science, 47, jun 2012.
[33] W. M. Lane, W. D. Cotton, S. van Velzen, T. E. Clarke, N. E. Kassim, J. F. Helmboldt, T. J. W. Lazio, and A. S. Cohen. The Very Large Array Low-frequency Sky Survey Redux (VLSSr). MNRAS, 440(1):327–338, May 2014.
[34] F. Massaro, D. E. Harris, E. Liuzzo, M. Orienti, R. Paladino, A. Paggi, G. R. Tremblay, B. J. Wilkes, J. Kuraszkiewicz, S. A. Baum, and C. P. O’Dea. The chandra survey of extragalactic sources in the 3cr catalog: X-ray emission from nuclei, jets, and hotspots in the chandra archival observations. ApJ, 220, sep 2015.
[35] O. Mattelaer. On the maximal use of monte carlo samples: re-weighting events at NLO accuracy. EPJ C, dec 2016.
[36] H. Mo, F. C. van den Bosch, and S. White. Galaxy Formation and Evolution. 2010.
[37] J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. ApJ, 490(2), 1997.
38] V. C. Rubin and J. Ford, W. Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. ApJ, 159:379, Feb. 1970.
[39] L. Rudnick and J. A. Lemmerman. An Objective Survey of Mpc-scale Radio Emission in 0.03 ¡ z ¡ 0.3 Bright X-ray Clusters. ApJ, 697(2):1341–1357, June 2009.
[40] C. L. Sarazin. The energy spectrum of primary cosmic-ray electrons in clusters of galaxies and inverse compton emission. ApJ.
[41] G. Servant and T. M. Tait. Is the lightest kaluza–klein particle a viable dark matter candidate? Nuclear Physics B, 650(1-2):391–419, feb 2003.
[42] G. Servant and T. M. P. Tait. Elastic scattering and direct detection of kaluza-klein dark matter. Nuclear Physics B, dec 2002.
[43] E. Storm, T. E. Jeltema, S. Profumo, and L. Rudnick. Constraints on dark matter annihilation in clusters of galaxies from diffuse radio emission. ApJ, 768(2):106, apr 2013.
[44] V. Vacca, M. Murgia, F. Govoni, L. Feretti, G. Giovannini, R. A. Perley, and G. B. Taylor. The intracluster magnetic field power spectrum in A2199. A&A, 540:A38, Apr. 2012.
[45] D. Volpi, L. Del Zanna, E. Amato, and N. Bucciantini. Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. A&A, 485(2):337–349, July 2008.
[46] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, Jan. 1933
指導教授 黃崇源(Chorng-Yuan Hwang) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明