參考文獻 |
[1] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, jul 2014.
[2] F. Ambrogi, C. Arina, M. Backovi´c, J. Heisig, F. Maltoni, L. Mantani, O. Mattelaer, and G. Mohlabeng. MadDM v.3.0: A comprehensive tool for dark matter studies. Physics of the Dark Universe, 24:100249, mar 2019.
[3] V. S. Berezinsky, P. Blasi, and V. S. Ptuskin. Clusters of Galaxies as Storage Room for Cosmic Rays. ApJ, 487(2):529–535, Oct. 1997.
[4] G. Bertone and T. M. P. Tait. A new era in the search for dark matter. Nature, 562(7725):51–56, 2018.
[5] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, Apr. 2010.
[6] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, 2010.
[7] I. Boriev. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of planck’s constant. Journal of Physics: Conference Series, 996:012017, 03 2018.
[8] U. G. Briel, J. P. Henry, M. Arnaud, and D. Neumann. The Coma Cluster of Galaxies Observed by XMM-Newton. In S. Borgani, M. Mezzetti, and R. Valdarnini, editors, Tracing Cosmic Evolution with Galaxy Clusters, volume 268 of Astronomical Society of the Pacific Conference Series, page 203, Jan. 2002.
[9] C. L. Carilli and G. B. Taylor. Cluster Magnetic Fields. ARA&A, 40:319–348, Jan. 2002.
[10] Y. Chen, T. H. Reiprich, H. B¨ohringer, Y. Ikebe, and Y. Y. Zhang. Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters. A&A, 466(3):805–812, May 2007.
[11] H.-C. Cheng, K. T. Matchev, and M. Schmaltz. Bosonic supersymmetry? getting fooled at the cern lhc. Phys. Rev. D, 66:056006, Sep 2002.
[12] M. Cirelli, G. Corcella, A. Hektor, G. H¨utsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia. PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2011(03):051–051, mar 2011.
[13] A. S. Cohen, W. M. Lane, W. D. Cotton, N. E. Kassim, T. J. W. Lazio, R. A. Perley, J. J. Condon, and W. C. Erickson. The vla low-frequency sky survey. The Astronomical Journal, 134(3):1245, jul 2007.
[14] S. Colafrancesco, S. Profumo, and P. Ullio. Multi-frequency analysis of neutralino dark matter annihilations in the coma cluster. A&A, 455(1):21 43, jul 2006.
[15] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick. The NRAO VLA Sky Survey. AJ, 115(5):1693 1716, May 1998.
[16] C. J. Conselice and I. Gallagher, John S. Galaxy aggregates in the Coma cluster. MNRAS.
17] J. M. Cornell, S. Profumo, and W. Shepherd. Dark matter in minimal universal extra dimensions with a stable vacuum and the “right” higgs boson. Phys. Rev. D, 89:056005, Mar 2014.
[18] W. B. Dapp, S. Basu, and M. W. Kunz. Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation. A&A, 541:A35, May 2012.
[19] A. Datta, K. Kong, and K. T. Matchev. Discrimination of supersymmetry and universal extra dimensions at hadron colliders. Phys. Rev. D, 72:096006, Nov 2005.
[20] N. Deutschmann, T. Flacke, and J. S. Kim. Current LHC constraints on minimal universal extra dimensions. Physics Letters B, 771:515–520, aug 2017.
[21] K. Dolag, S. Schindler, F. Govoni, and L. Feretti. Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters. A&A, 378:777–786, Nov. 2001.
[22] D. Farnsworth, L. Rudnick, S. Brown, and G. Brunetti. Discovery of megaparsecscale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope. The Astrophysical Journal, 79(2):189, dec 2013.
[23] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, and M. Zaro. The complete NLO corrections to dijet hadroproduction. JHEP, 2017(4), apr 2017.
[24] G. Ghisellini, P. W. Guilbert, and R. Svensson. The Synchrotron Boiler. ApJ, 334:L5, Nov. 1988.
[25] S. Ghizzardi, S. De Grandi, and S. Molendi. Metal distribution in sloshing galaxy clusters: the case of A496. A&A, 570:A117, Oct. 2014.
[26] G. Giovannini, L. Feretti, T. Venturi, K. T. Kim, and P. P. Kronberg. The Halo Radio Source Coma C and the Origin of Halo Sources. ApJ, 406:399, Apr. 1993.
[27] A. M. Groener, D. M. Goldberg, and M. Sereno. The galaxy cluster concentrationmass scaling relation. MNRAS, 455(1):892–919, Jan. 2016.
[28] A. Hayakawa, T. Furusho, N. Y. Yamasaki, M. Ishida, and T. Ohashi. Inhomogeneity in the hot intracluster medium of abell 1060 observed with chandra. PASJ, 56(5):743–752, oct 2004.
[29] T. KALUZA. On the unification problem in physics. IJMPD, 27(14):1870001, oct 2018.
[30] C.-Y. Kiew, C.-Y. Hwang, and Z. Zainal Abibin. Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters. MNRAS, 467(3):2924–2933, 02 2017.
[31] O. Klein. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys., 37:895–906, 1926.
[32] W. M. Lane, W. D. Cotton, J. F. Helmboldt, and N. E. Kassim. VLSS redux: Software improvements applied to the very large array low-frequency sky survey. Radio Science, 47, jun 2012.
[33] W. M. Lane, W. D. Cotton, S. van Velzen, T. E. Clarke, N. E. Kassim, J. F. Helmboldt, T. J. W. Lazio, and A. S. Cohen. The Very Large Array Low-frequency Sky Survey Redux (VLSSr). MNRAS, 440(1):327–338, May 2014.
[34] F. Massaro, D. E. Harris, E. Liuzzo, M. Orienti, R. Paladino, A. Paggi, G. R. Tremblay, B. J. Wilkes, J. Kuraszkiewicz, S. A. Baum, and C. P. O’Dea. The chandra survey of extragalactic sources in the 3cr catalog: X-ray emission from nuclei, jets, and hotspots in the chandra archival observations. ApJ, 220, sep 2015.
[35] O. Mattelaer. On the maximal use of monte carlo samples: re-weighting events at NLO accuracy. EPJ C, dec 2016.
[36] H. Mo, F. C. van den Bosch, and S. White. Galaxy Formation and Evolution. 2010.
[37] J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. ApJ, 490(2), 1997.
38] V. C. Rubin and J. Ford, W. Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. ApJ, 159:379, Feb. 1970.
[39] L. Rudnick and J. A. Lemmerman. An Objective Survey of Mpc-scale Radio Emission in 0.03 ¡ z ¡ 0.3 Bright X-ray Clusters. ApJ, 697(2):1341–1357, June 2009.
[40] C. L. Sarazin. The energy spectrum of primary cosmic-ray electrons in clusters of galaxies and inverse compton emission. ApJ.
[41] G. Servant and T. M. Tait. Is the lightest kaluza–klein particle a viable dark matter candidate? Nuclear Physics B, 650(1-2):391–419, feb 2003.
[42] G. Servant and T. M. P. Tait. Elastic scattering and direct detection of kaluza-klein dark matter. Nuclear Physics B, dec 2002.
[43] E. Storm, T. E. Jeltema, S. Profumo, and L. Rudnick. Constraints on dark matter annihilation in clusters of galaxies from diffuse radio emission. ApJ, 768(2):106, apr 2013.
[44] V. Vacca, M. Murgia, F. Govoni, L. Feretti, G. Giovannini, R. A. Perley, and G. B. Taylor. The intracluster magnetic field power spectrum in A2199. A&A, 540:A38, Apr. 2012.
[45] D. Volpi, L. Del Zanna, E. Amato, and N. Bucciantini. Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. A&A, 485(2):337–349, July 2008.
[46] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, Jan. 1933 |