博碩士論文 110324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:3.133.152.26
姓名 張書鈞(Shu-Jun Zhang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附法純化甲烷重組氣得到高純度之氫氣
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在全球追求淨零碳排的目標下,尋找新能源成為了一個必然的問題,氫氣的能源重要性是當前的研究議題,但如果要將氫用於燃料電池等用途,則需要極高的純度。
本研究模擬變壓吸附法(pressure swing adsorption, PSA)純化甲烷水蒸氣重組氣(steam methane reforming, SMR),以活性碳及沸石5A作為吸附劑。甲烷水蒸氣重組氣之氣體組成為75.26%氫氣、22.68%二氧化碳及2.06%一氧化碳,其中沸石5A對於二氧化碳的選擇率較沸石13X更高,且文獻搜尋都是使用活性碳-沸石之雙層吸附劑來做為吸附床,因此本研究使用活性碳-沸石5A雙層吸附劑來探討各程序所獲得之氫氣純度及回收率。
本研究為獲得高純度之氫氣,利用實驗設計(design of experiments, DOE)來找尋符合PSA程序之最適化操作條件,進行多因子兩水準之全因子設計,經由計算所得到之迴歸模型可得到三塔九步驟之結果為氫氣99.12%之純度且回收率為63.08%,及三塔十五步驟之結果為99.999%之純度且回收率為44.19%。
三塔九步驟程序之結果雖氫氣純度只到達99%,只能應用於較基礎之化學反應如石化業、製造氨氣、製造甲醇等,但回收率較三塔十五步驟更佳。
三塔十五步驟程序之結果雖氫氣回收率僅到達44.1981%,但相較三塔九步驟之氫氣純度明顯提升許多,因此此程序能應用在更精密之產業,如燃料電池、半導體產業等。
摘要(英) Under the global pursuit of the goal of net zero carbon emissions, searching for new energy sources has become an inevitable issue. The energy importance of hydrogen is current research topic, but if hydrogen is to be used in fuel cells or other purposes, extremely high purity is required.
In this study, the simulation of pressure swing adsorption (PSA) was used to purify hydrogen from steam methane reforming gas (SMR) , and activated carbon and zeolite 5A were used as adsorbents.The gas composition of methane steam reforming gas is 75.26% hydrogen, 22.68% carbon dioxide and 2.06% carbon monoxide. Among adsorbents, zeolite 5A has a higher selectivity for carbon dioxide than zeolite 13X, and the literature survey shows activated carbon-zeolite layered adsorbent in adsorption bed is usually used. Therefore, this study uses activated carbon-zeolite 5A layered bed to investigate the hydrogen purity and recovery obtained by PSA.
In order to obtain high-purity hydrogen, this study uses design of experiments (DOE) to find the optimal operating conditions in line with the PSA processes, and conducts a two-level full factorial design. The regression model obtained through calculation can be obtained. The purity of hydrogen by a three-bed nine-step PSA is 99.12% with a recovery of 63.08%, and the purity of hydrogen by a three-bed fifteen-step PSA is 99.999% with a recovery of 44.19%.
As a result of the three-bed nine-step process, although the hydrogen purity reaches only 99%, it can only be applied to relatively basic chemical reactions such as petrochemical industry, ammonia production, methanol production, etc., but the recovery is better than the three-bed fifteen-step procedure.
Although the hydrogen recovery of the three-bed fifteen-step procedure is only 44.1981%, the hydrogen purity is significantly improved compared to the three-bed nine-step process. Therefore, this process can be applied to more sophisticated industries, such as fuel cells and semiconductor industries.
關鍵字(中) ★ 變壓吸附
★ 氫氣純化
關鍵字(英) ★ Pressure Swing Adsorption
★ Hydrogen Purification
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
第二章 簡介及文獻回顧 3
2-1 吸附簡介 3
2-1-1 吸附基本原理 3
2-1-2 吸附劑與選擇率 4
2-1-3 物理吸附程序比較 6
2-1-4 突破曲線 8
2-2 變壓吸附程序 10
2-2-1 PSA程序起源及後續發展改進 10
2-2-2 理論回顧 14
2-3 文獻回顧 16
第三章 假設及理論 19
3-1 基本假設 19
3-2 統制方程式 20
3-3 吸附平衡關係式 24
3-3-1 等溫吸附平衡關係式 24
3-3-2 質傳驅動力模式(Driving force model) 25
3-3-3 吸附熱關係式 25
3-4 參數推導 26
3-4-1 軸向分散係數(Axial dispersion coefficient) 26
3-4-2 熱傳係數 28
3-4-3 線性驅動力質傳係數 30
3-5 邊界條件與流速 32
3-5-1 邊界條件與節點流速 32
3-5-2 閥公式 33
3-6 求解步驟 34
第四章 模擬程序驗證 37
4-1 等溫吸附實驗 37
4-1-1 實驗裝置 37
4-1-2 實驗步驟 41
4-1-3 天平校正 42
4-1-4 等溫吸附平衡曲線 43
4-2 突破曲線實驗 46
4-2-1 實驗裝置 46
4-2-2 突破實驗操作步驟 47
4-3 模擬驗證 48
4-4 單塔四步驟實驗與模擬驗證 50
第五章 甲烷重組氣多塔模擬 54
5-1 吸附劑能力及吸附劑選擇 54
5-2 兩塔六步驟模擬程序及模擬參數介紹 57
5-2-1 雙塔六步驟模擬結果 60
5-3 三塔九步驟模擬程序 62
5-3-1 程序介紹 62
5-3-2 三塔九步驟模擬結果 64
5-3-3 以實驗設計求三塔九步驟最佳化操作條件結果 66
5-3-4 變異數分析及因子探討 67
5-3-5 實驗設計最佳化結果與比較 72
5-4 三塔十五步驟模擬結果 73
5-4-1 程序介紹 73
5-4-2 三塔十五步驟模擬結果 75
5-4-3 以實驗設計求三塔十五步驟最佳化操作條件結果 76
5-4-4 變異數分析及因子探討 77
5-4-5 實驗設計最佳化結果與比較 84
5-5 能耗討論 85
5-5-1 能耗計算公式 85
5-5-2 能耗計算之結果 86
第六章 結論 87
符號說明 89
附錄A、流速之估算方法 93
參考資料 96
參考文獻 [1] M. Luberti and H. Ahn, Review of polybed pressure swing adsorption for hydrogen purification, International Journal of Hydrogen Energy, vol. 47, pp. 10911-10933, 2022.
[2] 吳明勳, 氫的顏色 - 綠氫、藍氫、灰氫、褐氫怎麼區分? 國立成功大學能源教育資源總中心, 2021.
https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=666&page=7
[3] R. T. Yang, Gas Separation by Adsorption Processes. vol. 1. World Scientific, London, 1997.
[4] R. T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons, New Jersey, 2003.
[5] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[6] A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[7] W. H. McAdams, Heat transfer, 3rd ed., McGraw-Hill, New York, 1954.
[8] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, U.S. Patent 2944627, 1960.
[9] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and technology, Kluwer Academic Publishers, Boston, 1988.
[10] W. Choi, W. Kwon, Y. Yeo, H. Lee, H. K. Song and B. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20(4), pp. 617-623, 2003.
[11] M. P. G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[12] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter and A. D. Ebner, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, vol. 193, pp.91-102, 2018.
[13] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & engineering chemistry research, vol. 41(22), pp. 5498-5503, 2002.
[14] R. Yang and S. Doong, Gas separation by pressure swing adsorption: A pore‐diffusion model for bulk separation, AIChE Journal, vol. 31(11), pp. 1829-1842, 1985.
[15] L. Jiang, V. G. Fox and L.T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50(11), pp. 2904-2917, 1971.
[16] A. Fuderer and E. Rudelstorfer, Selective adsorption process, U.S. Patent 3986849, 1976.
[17] P. H. Turnock and R. H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE Journal, vol. 17(2), pp. 335-342, 1971.
[18] S. Farooq and D. M. Ruthven, Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model, Industrial & engineering chemistry research, vol. 29(6), pp. 1084-1090, 1990.
[19] E. Glueckauf and J. Coates, Theory of chromatography - Part IV : The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[20] S. I. Yang, D. Y. Choi, S. C. Jang, S. H. Kim and D. K. Choi, Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas, Adsorption, vol. 14(4-5), pp. 583-590, 2008.
[21] S. Ahn, Y. W. You, D. G. Lee, K. H. Kim, M. Oh and C. H. Lee, Layered two- and four-bed PSA processes for H2 recovery from coal gas, Chemical Engineering Science, vol. 68(1), pp. 413-423, 2012.
[22] C. H. Lee, J. Yang and H. Ahn, Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas, Adsorption, vol. 7, pp. 339–356, 2001.
[23] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea and C. A. Grande, Adsorption and Diffusion of H2, CO, CH4, and CO2 in BPL Activated Carbon and 13X Zeolite: Evaluation of Performance in Pressure Swing Adsorption Hydrogen Purification by Simulation, Industrial & Engineering Chemistry Research , vol.53, pp. 15414-15426 , 2014.
[24] P. Brea, J.A. Delgado, V. I. Águeda, P. Gutiérrez and M. A. Uguina, Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purification, Microporous and Mesoporous Materials, vol. 286, pp. 187-198, 2019.
[25] S. Sircar, R. Mohr, C. Ristic and M. B. Rao, Isosteric heat of adsorption: theory and experiment, The Journal of Physical Chemistry B, vol. 103(31), pp. 6539-6546, 1999.
[26] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Marcel Dekker, New york, 1975.
[27] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Polymeric liquids. Transport Phenomena, 2nd ed., John Wiley & Sons, New York, 2007.
[28] E. N. Fuller and J. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatographic Science, vol. 3(7), pp. 222-227, 1965.
[29]E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of halogenated hydrocarbons in helium, The effect of structure on collision cross sections, The Journal of Physical Chemistry, vol. 73(11), pp. 3679-3685, 1969.
[30] D. F. Fairbanks and C. R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42(3), pp. 471-475, 1950.
[31] W. L. McCabe, J.C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, New York, 2005.
[32] N. Wakao and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers, Chemical Engineering Science, vol. 33(10), pp. 1375-1384, 1978.
[33] G. Carta and A. Cincotti, Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, vol. 53(19), pp. 3483-3488, 1998.
[34] W. Schirmer, Diffusion in zeolites and other microporous solids, Zeitschrift für physikalische Chemie, vol. 186(2), pp. 269-270, 1994.
[35] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and ion exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[36] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular sieve carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[37] H. Qinglin, S. Sundaram and S. Farooq, Revisiting transport of gases in the micropores of carbon molecular sieves, Langmuir, vol. 19(2), pp. 393-405, 2003.
[38] P. V. Danckwerts, Continuous flow systems: distribution of residence times, Chemical engineering science, vol. 2(1), pp. 1-13, 1953.
[39] 陳芊涵, 利用變壓吸附從煉鋼廠尾氣中回收一氧化碳, 國立中央大學, 碩士論文, 2022.
[40] J. M. Smith and H. C. Ness, Introduction to chemical engineering thermodynamics, 4th ed., McGraw-Hill Inc., New York, 1987.
[41] 張鈞翔, 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究, 國立中央大學, 碩士論文, 2020.
[42] R. C. Patel and C. J. Karamchandani, Elements of heat engines, 8th ed., Vadodara Acharya, 1997.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明