參考文獻 |
[1]. S. Kim, et al., “PubChem in 2021: new data content and improved web interfaces”, Nucleic Acids Res, Vol 49, pp. D1388-D1395, 2021.
[2]. J.D. Van Der Waals and J.S. Rowlinson, On the continuity of the gaseous and liquid states, Courier Corporation, 2004.
[3]. D.-Y. Peng and D.B. Robinson, “A new two-constant equation of state”, Industrial Engineering Chemistry Fundamentals, Vol 15, pp. 59-64, 1976.
[4]. O. Redlich and J.N. Kwong, “On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions”, Chemical Reviews, Vol 44, pp. 233-244, 1949.
[5]. G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical Engineering Science, Vol 27, pp. 1197-1203, 1972.
[6]. J. Gross and G. Sadowski, “Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Industrial & Engineering Chemistry Research, Vol 40, pp. 1244-1260, 2001.
[7]. J. Gross and G. Sadowski, “Application of the perturbed-chain SAFT equation of state to associating systems”, Industrial & Engineering Chemistry Research, Vol 41, pp. 5510-5515, 2002.
[8]. F. Tumakaka, et al., “Modeling of polymer phase equilibria using Perturbed-Chain SAFT”, Fluid Phase Equilibria, Vol 194, pp. 541-551, 2002.
[9]. I.A. Kouskoumvekaki, et al., “Novel method for estimating pure-component parameters for polymers: application to the PC-SAFT equation of state”, Industrial & Engineering Chemistry Research, Vol 43, pp. 2830-2838, 2004.
[10]. A. Tihic, et al., “A predictive group-contribution simplified PC-SAFT equation of state: application to polymer systems”, Industrial & Engineering Chemistry Research, Vol 47, pp. 5092-5101, 2008.
[11]. M.C. Kroon, et al., “Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state”, The Journal of Physical Chemistry B, Vol 110, pp. 9262-9269, 2006.
[12]. Y. Chen, et al., “Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state”, The Journal of Physical Chemistry B, Vol 116, pp. 14375-14388, 2012.
[13]. A.P. Carneiro, et al., “Solubility of sugars and sugar alcohols in ionic liquids: measurement and PC-SAFT modeling”, The Journal of Physical Chemistry B, Vol 117, pp. 9980-9995, 2013.
[14]. H. Renon and J.M. Prausnitz, “Local compositions in thermodynamic excess functions for liquid mixtures”, AIChE Journal, Vol 14, pp. 135-144, 1968.
[15]. D.S. Abrams and J.M. Prausnitz, “Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems”, AIChE Journal, Vol 21, pp. 116-128, 1975.
[16]. G.M. Wilson, “Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing”, Journal of the American Chemical Society, Vol 86, pp. 127-130, 1964.
[17]. S.-T. Lin and S.I. Sandler, “A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model”, Industrial & Engineering Chemistry Research, Vol 41, pp. 899-913, 2002.
[18]. K.G. Joback and R.C. Reid, “Estimation of pure-component properties from group-contributions”, Chemical Engineering Communications, Vol 57, pp. 233-243, 1987.
[19]. A. Fredenslund, et al., “Group‐contribution estimation of activity coefficients in nonideal liquid mixtures”, AIChE Journal, Vol 21, pp. 1086-1099, 1975.
[20]. J. Gmehling, et al., “A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties”, Industrial & Engineering Chemistry Research, Vol 32, pp. 178-193, 1993.
[21]. A. Klamt, “Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena”, The Journal of Physical Chemistry, Vol 99, pp. 2224-2235, 1995.
[22]. S. Gebreyohannes, et al., “A comparative study of QSPR generalized activity coefficient model parameters for vapor–liquid equilibrium mixtures”, Industrial & Engineering Chemistry Research, Vol 55, pp. 1102-1116, 2016.
[23]. S. Hu, et al., “A deep learning-based chemical system for QSAR prediction”, IEEE Journal of Biomedical Health Informatics, Vol 24, pp. 3020-3028, 2020.
[24]. H. Hayer, et al., “Support vector machine and CPA EoS for the prediction of high-pressure liquid densities of normal alkanols”, Journal of the Taiwan Institute of Chemical Engineers, Vol 45, pp. 2888-2898, 2014.
[25]. A.M. Abudour, et al., “Volume-translated Peng–Robinson equation of state for saturated and single-phase liquid densities”, Fluid Phase Equilibria, Vol 335, pp. 74-87, 2012.
[26]. S. Dick, “Artificial intelligence”, pp. 2019.
[27]. A. Abdallah el hadj, et al., “Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN)”, Neural Computing and Applications, Vol 28, pp. 87-99, 2015.
[28]. F. Gharagheizi, et al., “Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide”, Industrial & Engineering Chemistry Research, Vol 50, pp. 221-226, 2011.
[29]. B. Mehdizadeh and K. Movagharnejad, “A comparison between neural network method and semi empirical equations to predict the solubility of different compounds in supercritical carbon dioxide”, Fluid Phase Equilibria, Vol 303, pp. 40-44, 2011.
[30]. M. Abdi-Khanghah, et al., “Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN”, Journal of CO2 Utilization, Vol 25, pp. 108-119, 2018.
[31]. A. Aminian, “Estimating the solubility of different solutes in supercritical CO2 covering a wide range of operating conditions by using neural network models”, The Journal of Supercritical Fluids, Vol 125, pp. 79-87, 2017.
[32]. P. Santak and G. Conduit, “Predicting physical properties of alkanes with neural networks”, Fluid Phase Equilibria, Vol 501, pp. 2019.
[33]. Y.-L. Yang, et al., “Molecular structure incorporated deep learning approach for the accurate interfacial tension predictions”, Journal of Molecular Liquids, Vol 323, pp. 114571, 2021.
[34]. Z. Zhang, et al., “Machine learning predictive framework for CO2 thermodynamic properties in solution”, Journal of CO2 Utilization, Vol 26, pp. 152-159, 2018.
[35]. D.S. Palmer, et al., “Random forest models to predict aqueous solubility”, Journal of Chemical Information Modeling Vol 47, pp. 150-158, 2007.
[36]. R. Rajappan, et al., “Quantitative Structure− Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression”, Industrial & Engineering Chemistry Research, Vol 48, pp. 9708-9712, 2009.
[37]. J. Wang, et al., “Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors”, Green Chemical Engineering, Vol 2, pp. 431-440, 2021.
[38]. J.P.S. Aniceto, et al., “Machine learning models for the prediction of diffusivities in supercritical CO2 systems”, Journal of Molecular Liquids, Vol 326, pp. 2021.
[39]. H. Matsukawa, et al., “Estimation of pure component parameters of PC-SAFT EoS by an artificial neural network based on a group contribution method”, Fluid Phase Equilibria, Vol 548, pp. 2021.
[40]. J.P. Wolbach and S.I. Sandler, “Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures”, Industrial & Engineering Chemistry Research, Vol 37, pp. 2917-2928, 1998.
[41]. N. Ramírez-Vélez, et al., “Parameterization of SAFT models: analysis of different parameter estimation strategies and application to the development of a comprehensive database of PC-SAFT molecular parameters”, Journal of Chemical Engineering Data, Vol 65, pp. 5920-5932, 2020.
[42]. A. Klamt and G. Schüürmann, “COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, Journal of the Chemical Society, Perkin Transactions 2, pp. 799-805, 1993.
[43]. E. Mullins, et al., “Sigma-profile database for using COSMO-based thermodynamic methods”, Industrial & Engineering Chemistry Research, Vol 45, pp. 4389-4415, 2006.
[44]. B. Delley, “From molecules to solids with the DMol 3 approach”, The Journal of Chemical Physics, Vol 113, pp. 7756-7764, 2000.
[45]. S. Wang, et al., “Use of GAMESS/COSMO program in support of COSMO-SAC model applications in phase equilibrium prediction calculations”, Fluid Phase Equilibria, Vol 276, pp. 37-45, 2009.
[46]. F. Ferrarini, et al., “An open and extensible sigma‐profile database for COSMO‐based models”, AIChE Journal, Vol 64, pp. 3443-3455, 2018.
[47]. M. Frisch, et al., Gaussian 03, revision C. 02. 2004, Gaussian, Inc., Wallingford, CT.
[48]. T. Mu, et al., “Performance of COSMO-RS with sigma profiles from different model chemistries”, Industrial & Engineering Chemistry Research, Vol 46, pp. 6612-6629, 2007.
[49]. E. Paulechka, et al., “Reparameterization of COSMO-SAC for phase equilibrium properties based on critically evaluated data”, Journal of Chemical Engineering Data, Vol 60, pp. 3554-3561, 2015.
[50]. W.-L. Chen, et al., “A critical evaluation on the performance of COSMO-SAC models for vapor–liquid and liquid–liquid equilibrium predictions based on different quantum chemical calculations”, Industrial & Engineering Chemistry Research, Vol 55, pp. 9312-9322, 2016.
[51]. Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI”, Large-scale kernel machines, Vol 34, pp. 1-41, 2007.
[52]. K. Koh, et al., “An interior-point method for large-scale l1-regularized logistic regression”, Journal of Machine Learning Research, Vol 8, pp. 1519-1555, 2007.
[53]. D.E. Rumelhart, et al., “Learning representations by back-propagating errors”, Nature, Vol 323, pp. 533-536, 1986.
[54]. M.A. Nielsen, Neural networks and deep learning, Vol. 25. Determination press San Francisco, CA, USA, 2015.
[55]. Y. Bengio, et al., “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, Vol 5, pp. 157-166, 1994.
[56]. L. Breiman, “Random forests”, Machine Learning, Vol 45, pp. 5-32, 2001.
[57]. F. Pedregosa, et al., “Scikit-learn: Machine learning in Python”, The Journal of Machine Learning Research, Vol 12, pp. 2825-2830, 2011.
[58]. P.I. Frazier, Bayesian optimization, in Recent advances in optimization and modeling of contemporary problems. 2018, Informs. p. 255-278.
[59]. L. Constantinou and R. Gani, “New group contribution method for estimating properties of pure compounds”, AIChE Journal, Vol 40, pp. 1697-1710, 1994.
[60]. J. Marrero and R. Gani, “Group-contribution based estimation of pure component properties”, Fluid Phase Equilibria, Vol 183, pp. 183-208, 2001.
[61]. Y. Nannoolal, et al., “Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions”, Fluid Phase Equilibria, Vol 226, pp. 45-63, 2004.
[62]. Y. Nannoolal, et al., “Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution”, Fluid Phase Equilibria, Vol 252, pp. 1-27, 2007. |