參考文獻 |
參考文獻
[1] https://www.thfcp.org.tw/xmdoc/cont 台灣氫能與燃料電池夥伴
[2] https://www.tri.org.tw/per/doc/台灣綜合研究院
[3] https://www.jendow.com.tw質子交換膜燃料電池
[4] https://www.pengky.cn/hydrogen_energy/11-hydrogen-fuel-cell/hydrogen-fuel-cell.html
[5] T. Ueki, M. Watanabe.” Macromolecules in ionic liquids : Progress, challenages, and opportunities”.Macromolecules.41,3739-3749.(2008)
[6] L. Jheng, W. Chang, S, Hsua, P. Cheng,” Durability of symmetrically and asymmetrically porous poly benzimidazole membranes for high temperature proton exchange membrane fuel cell. ” Journal of Power Sourses, 323, pp57-66,(2016)
[7] Z. Roswitha. ” Materials and characterization techniques for high temperature polymer electrolyte membrane fuel cell”. Beilstein journal of nanotechnology,6.1:68-83.(2015)
[8] H. Zhang. “Recent Development of Polymer Electrolyte Membranes for Fuel Cells”. Chem. Rev. vol. 112, no. 5, pp. 2780–2832. 2012.
[9] D. Aili. “From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides.” J. Mater. Chem. A, vol.8, pp. 12854-12886. (2020)
[10] https://www.hangjianet.com/topic/ UV塗料配方中引發劑的選擇思路
[11] E. G. Leggesse, W. R. Tong, S. Nachimuthu, T.Y. Chen, J. C. Jiang ”Theoretical Study on Photochemistry of Irgacure 907 and Newly Designed Photoinitiators.” Volume 347, 1 October, Pages 78-85. (2017)
[12] Q. Elliott. “AIBN as an Electrophilic Reagent for Cyano Group Transfer.” The Journal of Organic Chemistry. vol. 88, no. 4, pp. 2648–2654.(2023)
[13] S. Kodama. “A Benzoyl Peroxide/Diphenyl Diselenide Binary System for Functionalization of Alkynes Leading to Alkenyl and Alkynyl Selenides.” The Journal of Organic Chemistry. vol. 82, no. 23, pp. 12477–12484.(2017)
[14] B. Lin. “Cross-Linked Alkaline Ionic Liquid-Based Polymer Electrolytes for Alkaline Fuel Cell Applications.” Chem. Mater. 22, 6718–6725.(2010)
[15] Y. C. lin. “Self-Assembly and Emulsification of Poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}.” Langmuir. Vol. 28, no. 25, pp. 9211–9222. (2012)
[16] S. Y. Oh “Effect of Zinc Chloride on the Thermal Stability of Styrene—Acrylonitrile Copolymers.” ACS Symposium Series. Vol. 599, pp 136-158. (1995)
[17] H. LUIS, A. E. HAMIELEC, J. F. MACGREGOR.” UV Spectrophotometers as Detectors for Size Exclusion Chromatography of Styrene—Acrylonitrile (SAN) Copolymers” ACS Symposium Series. Vol. 197, pp 151-183. (1982)
[18] P. Moni. “Growth Rate and Cross-Linking Kinetics of Poly(divinyl benzene) Thin Films Formed via Initiated Chemical Vapor Deposition.” Langmuir. Vol. 34, no. 23, 6687–6696.(2018)
[19] Y. Yagci. “Initiation of Cationic Polymerization by Addition-Fragmentation Reactions: Bifunctional Addition-Fragmentation Agents as Photoinitiators for Cationic Polymerization.” ACS Symposium Series. 847,187-201. (2003)
[20] H. Diao “High Performance Cross-Linked Poly(2-acrylamido-2-Methylpropanesulfonic acid)-Based Proton Exchange Membranes for Fuel Cells.” Macromolecules. 43, 6398–6405. (2010)
[21] P. Ivopoulos. “Water-Soluble Hydrogen-Bonding Interpolymer Complex Formation between Poly(ethylene glycol) and Poly(acrylic acid) Grafted with Poly(2-acrylamido-2-methylpropanesulfonic acid)” Langmuir. Vol. 22, no. 22, pp. 9181–9186. (2006)
[22] https://pslc.ws/macrog/acrylate.htm Polyacrylate Basics.
[23] S. Ito. “Investigation of Fluorinated (Meth)Acrylate Monomers and Macromonomers Suitable for a Hydroxy-Containing Acrylate Monomer in UV Nanoimprinting.” Langmuir. Vol. 30, no. 24, pp. 7127–7133. (2014)
[24] J. Y. Chen. “The Investigation of Physical Degradation Properties of Biodegradable, Photocurable Copolymers, PGSA, PEGDA and PCLDA.” National Tsing Hua University.
[25] H. R. Morris. “Fluorescence and Raman Chemical Imaging of Thermoplastic Olefin (TPO) Adhesion Promotion.” Langmuir. Vol. 14, no. 9, pp. 2426–2434. (1998)
[26] J. Zhao. “Studies on the Molecular Environment and Reaction Kinetics of Photo-Oligomerization in Langmuir−Blodgett Films of 4-(4-(2-(Octadecyloxycarbonyl)vinyl)- cinnamoylamino)benzoic Acid.” Langmuir. Vol. 16, no. 5, pp. 2275–2280. (2000)
[27] Z. Yue, Y. B. Cai, and S. Xu,” Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications.” Membrane Science. vol. 501, pp. 220-227.(2016)
[28] Y. Fu, W. Li, A. Manthiram, ”Sulfonated polysulfone with 1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells.” Membrane Science. vol. 310, no. 1-2, pp. 262-267.(2008)
[29] H. Zhang, X. Li , C. Zhao, T. Fu, Y. shi, H. Na, “Composite membranes based on highly sulfonated PEEK and PBI : Morphology characteristics and performance.” Membrane Scisence, vol. 308, no. 1, pp. 66-74, (2008)
[30] J. Yang. “Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells.” Journal of Power Sources, 205, 114-121. (2012)
[31] X. L. Wei. “Interactions between Solid Surfaces Mediated by Polyethylene Oxide Polymers: Effect of Polymer Concentration.” Langmuir. Vol. 29, no. 35, pp. 11038–11045. (2013)
[32] H. Li. “Poly(arylene ether sulfone) Statistical Copolymers Bearing Perfluoroalkylsulfonic Acid Moieties.” Macromolecules. Vol, 44, no. 4, pp, 694–702. (2011)
[33] M. Niwa. “Gas Separation of Asymmetric 6FDA Polyimide Membrane with Oriented Surface Skin Layer.” Macromolecules. Vol. 34, no. 26, pp. 9039–9044. (2001)
[34] G. Bhargava. “Imidazole−Fe Interaction in an Aqueous Chloride Medium: Effect of Cathodic Reduction of the Native Oxide.” Langmuir. Vol. 26, no. 1, pp. 215–219. (2010)
[35] M.R. Grimmett. “Imidazoles and their Benzo Derivatives: (iii) Synthesis and Applications.” Comprehensive Heterocyclic Chemistry. Vol. 5, p.457-498. (1984)
[36] https://zh.wikipedia.org/zh-tw/media/File:ImidazoleResonance.png.
[37] S. Pathreeker. “Vinylimidazole-Based Polymer Electrolytes with Superior Conductivity and Promising Electrochemical Performance for Calcium Batteries.” ACS Applied Polymer Materials. vol. 4, no. 10, pp, 6803-6811. (2022)
[38] R. Mondal. “Alkylated Imidazole Moieties in a Cross-Linked Anion Exchange Membrane Facilitate Acid Recovery with High Purity.” ACS Applied Polymer Materials. vol, 3. no. 3. pp, 1544-1554. (2021)
[39] S. S. Li. “Imidazole-Functionalized Multiquaternary Side Chain Polyethersulfone Anion-Exchange Membrane for Fuel Cell.” ACS Applications Energy Mater. vol, 5. pp, 10023−10033. (2022)
[40] S. Li. “Enhanced Proton Conductivity of Imidazole-Doped Thiophene Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation.” ACS Appl. Mater. Interfaces. vol, 12. pp, 22910−22916. (2022)
[41] A. Sharma. “Pervaporation from a Dense Membrane: Roles of Permeant−Membrane Interactions, Kelvin Effect, and Membrane Swelling.” Langmuir. Vol. 20, no. 11, pp 4708–4714. (2004)
[42] J. D. Moon. “Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks.” Macromolecules. vol, 54. pp, 866−873. (2021)
[43] K. Adjemian, S. Srinivasan, J. Benziger, A. Bocarsly, “Invesigation of PEMFC operation above 100℃ emempolying perfluorosulfonic acid scilicon oxide composite membranes.” Power Sources, vol. 109, no. 2,pp. 356-364, (2002)
[44] F. Haroun. “Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Copolymer 2D Single Network at the Air–Water Interface.” Langmuir. Vol. 36, no. 31, pp. 9142–9152. (2020)
[45] A. F. Visentin and M. J. Panzer. “Poly(Ethylene Glycol) Diacrylate-Supported Ionogels with Consistent Capacitive Behavior and Tunable Elastic Response.” ACS Applied Materials & Interfaces. vol, 4. no. 6. pp, 2836-2839. (2012)
[46] C. Liu. “Controllable Molecular Sieving by copoly(Poly(ethylene glycol)Acrylate/Poly(ethylene glycol) Diacrylate)-Based Hydrogels via Capillary Electrophoresis for DNA Fragments.” ACS Appl. Polym. Mater. vol, 2. pp, 3886−3893. (2020)
[47] http://nehrc.nhri.org.tw/toxic國家環境毒物研究中心
[48] https://imod-fms.csu.edu.tw/sysdata/doc/b/b0216b2533188139/ pdf
[49] https://cn.chem-station.com/reactions/2017/07/norrish-reaction.html |