博碩士論文 110223064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.133.139.164
姓名 黃文翰(Wen-Han Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型光聚合燃料電池質子交換膜
(New photopolymerization-based proton exchange membranes for fuel cells)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 中文摘要
目前,大部分燃料電池薄膜的製作方式都採用溶液澆鑄法(Solution Casting)。然而,這種方法在製作過程中常常使用對環境具有高度危害性的溶劑,例如NMP,這與綠色和永續發展的目標相違背。為了符合這些目標,需要開發新的製程,以減少製作時間並更換為無毒的溶劑,同時能夠生產符合燃料電池基本要求的材料。
本研究的主要目標是尋找同時具有光交聯和製膜性質的小分子材料。我們選擇了具有雙丙烯酸酯官能基的線性親水性小分子作為主要材料結構,並與具有路易士鹼特性的1-乙烯基咪唑作為氫離子傳導劑,以及帶有磷酸根的酸修飾甲基丙烯酸酯(EDM),作為構成整個薄膜的成分。在混合分散的過程中,我們僅使用乙醇。光固化過程中,我們使用單一365nm紫外光源並加入相應的光引發劑,以實現快速製膜,完整的薄膜製作僅需20秒。
在主結構材料的使用方面,包括Tetra(ethylene glycol)diacrylate(QEGDA)、Tetra(ethylene glycol)diacrylate(QEGDMA)和Tri(proplene glycol)diacrylate(TPGDA)。只要整體重量比不超過40wt%,就有足夠的咪唑分子和EDM來促進整體薄膜的傳導性。在主材料相對比例無法形成足夠網狀結構的情況下,可以通過調整照光時間和光引發劑的使用量,實現傳導性和薄膜強度之間的綜合平衡。使用QEGDA製作的薄膜表面非常均勻,當水吸收與咪唑的物質摩爾比為1:1時,在80℃時薄膜的導電率達到4.5×10¯²S/cm。其他薄膜在升溫過程中的導電率也都在1.0~3.5×10¯²S/cm之間。特別是通過光交聯製備的薄膜,在高吸水量條件下仍能保持低膨脹(體積比約為10~20%)的優勢,同時具有一定的化學穩定性。
摘要(英) Abstract
Currently, the majority of fuel cell membrane production relies on the solution casting method, which often involves the use of environmentally harmful solvents such as NMP. In order to align with green and sustainable goals, it is necessary to develop new manufacturing processes that reduce production time and replace toxic solvents, while still producing materials that meet the basic requirements for fuel cell applications.
This study focuses on finding small molecule materials that possess both photo-crosslinking and film-forming properties. Linear hydrophilic small molecules with dual acrylate functional groups are chosen as the main material structure. These molecules are combined with 1-vinylimidazole, which acts as a proton conductor, and Acid Modify Methylacrylate (EDM) with phosphate groups, serving as the constituents of the entire film. The mixing dispersion is achieved using only ethanol. During the photo-curing process, a single UV light source with a wavelength of 365 nm is used, along with corresponding photo-initiators, enabling rapid film formation with a complete film being produced in just 20 seconds.
In the utilization of the main structural materials, namely Tetra(ethylene glycol)diacrylate (QEGDA), Tetra(ethylene glycol)diacrylate (QEGDMA), and Tri(proplene glycol)diacrylate (TPGDA), a sufficient amount of imidazole molecules and EDM is present to facilitate overall film conductivity, as long as the total weight ratio does not exceed 40wt%. In cases where the proportion of the main material forming a network structure is relatively low, a balance between conductivity and film strength is achieved by adjusting the light exposure time and the amount of photo-initiator used. Films produced using QEGDA exhibit a highly uniform surface. When the molar ratio of water uptake to imidazole is 1:1, the film demonstrates a conductivity of 4.51-2S/cm at 80℃. Other films also exhibit conductivity levels ranging from 1.0 to 3.51-2 S/cm during the temperature ramp-up process. Notably, films created through photo crosslinking display advantages such as maintaining low volume swelling (10-20%) under high water uptake conditions and possessing a certain degree of chemical stability.
關鍵字(中) ★ 燃料電池 關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1前言 1
1-2 實驗目標 4
第二章 文獻回顧 5
2-1 燃料電池交換薄膜的種類及介紹 5
2-2 質子電池交換薄膜介紹 7
2-3 質子電池交換薄膜傳遞機制 9
2-4 光聚合製成質子交換膜的發展 11
2-4-1 光固化隔離膜材料與製作 12
2-4-1-a 光起始劑的選擇 13
2-4-1-b 光交聯聚合官能基-乙烯基 18
2-4-2 薄膜離子導電性材料 23
2-4-2-a 傳遞質子的鹼性分子-Imidazole 24
2-4-2-b 親水性的凝膠材料 30
2-5實驗動機 34
第三章 實驗方法與原理 38
3-1 實驗藥品 38
3-2 薄膜的製備程序 39
3-2-1 小分子材料混合順序 39
3-2-2 光固化交聯薄膜製備 40
3-3 實驗儀器 41
3-4 實驗儀器與技術原理 42
3-4-1 差式掃描量熱分析(Differential scanning calorietry,DSC) 42
3-4-2 衰減全反射傅立葉紅外光譜儀(ATR-FTIR) 43
原理 43
3-4-3 熱重分析儀(TGA) 44
3-4-4 掃描電子顯微鏡(SEM) 45
3-4-5 薄膜吸水率(Water Uptake)及薄膜膨潤率(Swelling Ratio) 46
3-4-6 薄膜機械強度測試 47
3-4-7 化學穩定性測試 48
3-4-8 離子傳導度測試 49
3-5 樣品命名規則 50
第四章 結果與討論 51
4-1 光聚合燃料電池薄膜結構的結構與狀況探討 55
4-1-1 衰減全反射傅立葉紅外光譜儀(ATR-FTIR) 56
4-1-2 不同Glycol Diacrylate及DSC測試含水量 61
4-1-3 薄膜拉伸測試 63
4-1-4 SEM表面微結構分析 65
4-2 光聚合燃料電池薄膜的效能與性質分析 73
4-2-1 TGA熱穩定性測試 73
4-2-2 變溫導電度測試 74
4-2-3 化學穩定性測試 77
第五章 未來展望 78
5-1 結論 78
5-2 未來展望與研究方向建議 79
1. 材料結構的挑選: 79
2. 光起始劑的挑選: 79
3. 主材料與導電材料的混合均勻性 79
參考文獻 81
參考文獻 參考文獻
[1] https://www.thfcp.org.tw/xmdoc/cont 台灣氫能與燃料電池夥伴
[2] https://www.tri.org.tw/per/doc/台灣綜合研究院
[3] https://www.jendow.com.tw質子交換膜燃料電池
[4] https://www.pengky.cn/hydrogen_energy/11-hydrogen-fuel-cell/hydrogen-fuel-cell.html
[5] T. Ueki, M. Watanabe.” Macromolecules in ionic liquids : Progress, challenages, and opportunities”.Macromolecules.41,3739-3749.(2008)
[6] L. Jheng, W. Chang, S, Hsua, P. Cheng,” Durability of symmetrically and asymmetrically porous poly benzimidazole membranes for high temperature proton exchange membrane fuel cell. ” Journal of Power Sourses, 323, pp57-66,(2016)
[7] Z. Roswitha. ” Materials and characterization techniques for high temperature polymer electrolyte membrane fuel cell”. Beilstein journal of nanotechnology,6.1:68-83.(2015)
[8] H. Zhang. “Recent Development of Polymer Electrolyte Membranes for Fuel Cells”. Chem. Rev. vol. 112, no. 5, pp. 2780–2832. 2012.
[9] D. Aili. “From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides.” J. Mater. Chem. A, vol.8, pp. 12854-12886. (2020)
[10] https://www.hangjianet.com/topic/ UV塗料配方中引發劑的選擇思路
[11] E. G. Leggesse, W. R. Tong, S. Nachimuthu, T.Y. Chen, J. C. Jiang ”Theoretical Study on Photochemistry of Irgacure 907 and Newly Designed Photoinitiators.” Volume 347, 1 October, Pages 78-85. (2017)
[12] Q. Elliott. “AIBN as an Electrophilic Reagent for Cyano Group Transfer.” The Journal of Organic Chemistry. vol. 88, no. 4, pp. 2648–2654.(2023)
[13] S. Kodama. “A Benzoyl Peroxide/Diphenyl Diselenide Binary System for Functionalization of Alkynes Leading to Alkenyl and Alkynyl Selenides.” The Journal of Organic Chemistry. vol. 82, no. 23, pp. 12477–12484.(2017)
[14] B. Lin. “Cross-Linked Alkaline Ionic Liquid-Based Polymer Electrolytes for Alkaline Fuel Cell Applications.” Chem. Mater. 22, 6718–6725.(2010)
[15] Y. C. lin. “Self-Assembly and Emulsification of Poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}.” Langmuir. Vol. 28, no. 25, pp. 9211–9222. (2012)
[16] S. Y. Oh “Effect of Zinc Chloride on the Thermal Stability of Styrene—Acrylonitrile Copolymers.” ACS Symposium Series. Vol. 599, pp 136-158. (1995)
[17] H. LUIS, A. E. HAMIELEC, J. F. MACGREGOR.” UV Spectrophotometers as Detectors for Size Exclusion Chromatography of Styrene—Acrylonitrile (SAN) Copolymers” ACS Symposium Series. Vol. 197, pp 151-183. (1982)
[18] P. Moni. “Growth Rate and Cross-Linking Kinetics of Poly(divinyl benzene) Thin Films Formed via Initiated Chemical Vapor Deposition.” Langmuir. Vol. 34, no. 23, 6687–6696.(2018)
[19] Y. Yagci. “Initiation of Cationic Polymerization by Addition-Fragmentation Reactions: Bifunctional Addition-Fragmentation Agents as Photoinitiators for Cationic Polymerization.” ACS Symposium Series. 847,187-201. (2003)
[20] H. Diao “High Performance Cross-Linked Poly(2-acrylamido-2-Methylpropanesulfonic acid)-Based Proton Exchange Membranes for Fuel Cells.” Macromolecules. 43, 6398–6405. (2010)
[21] P. Ivopoulos. “Water-Soluble Hydrogen-Bonding Interpolymer Complex Formation between Poly(ethylene glycol) and Poly(acrylic acid) Grafted with Poly(2-acrylamido-2-methylpropanesulfonic acid)” Langmuir. Vol. 22, no. 22, pp. 9181–9186. (2006)
[22] https://pslc.ws/macrog/acrylate.htm Polyacrylate Basics.
[23] S. Ito. “Investigation of Fluorinated (Meth)Acrylate Monomers and Macromonomers Suitable for a Hydroxy-Containing Acrylate Monomer in UV Nanoimprinting.” Langmuir. Vol. 30, no. 24, pp. 7127–7133. (2014)
[24] J. Y. Chen. “The Investigation of Physical Degradation Properties of Biodegradable, Photocurable Copolymers, PGSA, PEGDA and PCLDA.” National Tsing Hua University.
[25] H. R. Morris. “Fluorescence and Raman Chemical Imaging of Thermoplastic Olefin (TPO) Adhesion Promotion.” Langmuir. Vol. 14, no. 9, pp. 2426–2434. (1998)
[26] J. Zhao. “Studies on the Molecular Environment and Reaction Kinetics of Photo-Oligomerization in Langmuir−Blodgett Films of 4-(4-(2-(Octadecyloxycarbonyl)vinyl)- cinnamoylamino)benzoic Acid.” Langmuir. Vol. 16, no. 5, pp. 2275–2280. (2000)
[27] Z. Yue, Y. B. Cai, and S. Xu,” Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications.” Membrane Science. vol. 501, pp. 220-227.(2016)
[28] Y. Fu, W. Li, A. Manthiram, ”Sulfonated polysulfone with 1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells.” Membrane Science. vol. 310, no. 1-2, pp. 262-267.(2008)
[29] H. Zhang, X. Li , C. Zhao, T. Fu, Y. shi, H. Na, “Composite membranes based on highly sulfonated PEEK and PBI : Morphology characteristics and performance.” Membrane Scisence, vol. 308, no. 1, pp. 66-74, (2008)
[30] J. Yang. “Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells.” Journal of Power Sources, 205, 114-121. (2012)
[31] X. L. Wei. “Interactions between Solid Surfaces Mediated by Polyethylene Oxide Polymers: Effect of Polymer Concentration.” Langmuir. Vol. 29, no. 35, pp. 11038–11045. (2013)
[32] H. Li. “Poly(arylene ether sulfone) Statistical Copolymers Bearing Perfluoroalkylsulfonic Acid Moieties.” Macromolecules. Vol, 44, no. 4, pp, 694–702. (2011)
[33] M. Niwa. “Gas Separation of Asymmetric 6FDA Polyimide Membrane with Oriented Surface Skin Layer.” Macromolecules. Vol. 34, no. 26, pp. 9039–9044. (2001)
[34] G. Bhargava. “Imidazole−Fe Interaction in an Aqueous Chloride Medium: Effect of Cathodic Reduction of the Native Oxide.” Langmuir. Vol. 26, no. 1, pp. 215–219. (2010)
[35] M.R. Grimmett. “Imidazoles and their Benzo Derivatives: (iii) Synthesis and Applications.” Comprehensive Heterocyclic Chemistry. Vol. 5, p.457-498. (1984)
[36] https://zh.wikipedia.org/zh-tw/media/File:ImidazoleResonance.png.
[37] S. Pathreeker. “Vinylimidazole-Based Polymer Electrolytes with Superior Conductivity and Promising Electrochemical Performance for Calcium Batteries.” ACS Applied Polymer Materials. vol. 4, no. 10, pp, 6803-6811. (2022)
[38] R. Mondal. “Alkylated Imidazole Moieties in a Cross-Linked Anion Exchange Membrane Facilitate Acid Recovery with High Purity.” ACS Applied Polymer Materials. vol, 3. no. 3. pp, 1544-1554. (2021)
[39] S. S. Li. “Imidazole-Functionalized Multiquaternary Side Chain Polyethersulfone Anion-Exchange Membrane for Fuel Cell.” ACS Applications Energy Mater. vol, 5. pp, 10023−10033. (2022)
[40] S. Li. “Enhanced Proton Conductivity of Imidazole-Doped Thiophene Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation.” ACS Appl. Mater. Interfaces. vol, 12. pp, 22910−22916. (2022)
[41] A. Sharma. “Pervaporation from a Dense Membrane:  Roles of Permeant−Membrane Interactions, Kelvin Effect, and Membrane Swelling.” Langmuir. Vol. 20, no. 11, pp 4708–4714. (2004)
[42] J. D. Moon. “Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks.” Macromolecules. vol, 54. pp, 866−873. (2021)
[43] K. Adjemian, S. Srinivasan, J. Benziger, A. Bocarsly, “Invesigation of PEMFC operation above 100℃ emempolying perfluorosulfonic acid scilicon oxide composite membranes.” Power Sources, vol. 109, no. 2,pp. 356-364, (2002)
[44] F. Haroun. “Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Copolymer 2D Single Network at the Air–Water Interface.” Langmuir. Vol. 36, no. 31, pp. 9142–9152. (2020)
[45] A. F. Visentin and M. J. Panzer. “Poly(Ethylene Glycol) Diacrylate-Supported Ionogels with Consistent Capacitive Behavior and Tunable Elastic Response.” ACS Applied Materials & Interfaces. vol, 4. no. 6. pp, 2836-2839. (2012)
[46] C. Liu. “Controllable Molecular Sieving by copoly(Poly(ethylene glycol)Acrylate/Poly(ethylene glycol) Diacrylate)-Based Hydrogels via Capillary Electrophoresis for DNA Fragments.” ACS Appl. Polym. Mater. vol, 2. pp, 3886−3893. (2020)
[47] http://nehrc.nhri.org.tw/toxic國家環境毒物研究中心
[48] https://imod-fms.csu.edu.tw/sysdata/doc/b/b0216b2533188139/ pdf
[49] https://cn.chem-station.com/reactions/2017/07/norrish-reaction.html
指導教授 諸柏仁 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明