博碩士論文 110329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.217.67.16
姓名 劉曉韻(Hsiao-Yun Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 調節銀-銦雙元觸媒在二氧化碳還原反應中單碳產物選擇性之研究
(Regulating the Selectivity of Ag-In Binary Catalysts to C1 Products in CO2 Reduction Reaction)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 二氧化碳還原反應(CO2RR)將化石燃料利用所產生的CO2轉化為可用燃料,可有效降低大氣中的CO2濃度,為能源問題提供了潛在解決方案。然而,CO2RR 面臨高過電位、競爭性析氫反應(HER)的加劇、低催化活性和選擇性,以及對高成本貴金屬催化劑依賴等困難。
在本研究中,通過摻入較經濟實惠的In2O3修飾Ag/C觸媒的表面,製備了具有不同Ag/In原子比(8/2、4/6和2/8)的Agx-Iny/C觸媒。高分辨率透射電子顯微鏡(TEM)顯示In2O3分散在Ag表面上形成核-殼結構。X射線光電子能譜(XPS)進一步證實,In2O3的添加降低了Ag表面的價態,暗示了d-band中心的偏移。線性掃描伏安法(LSV)表明,與Ag/C相比,Agx-Iny/C觸媒在-0.6 ~ -1.0 V vs. RHE (VRHE)的電壓範圍內的電流密度較大(負)且過電位較低,表明 In2O3 的加入增強了觸媒的活性並降低了過電位。特別是,Ag2-In8/C表現出最低的過電位和最大的甲酸分電流密度,表明其活性最高且最有利於CO2RR。X射線吸收光譜(XAS)證實In2O3氧化層在反應過程中阻止了內層Ag的氧化,並且Ag-In之間的交互作用增加了觸媒表面的電子轉移。在CO2RR過程中,Ag8-In2/C觸媒在-0.8 VRHE下實現了91.2%的高CO法拉第效率(FECO),分電流密度為1.67 mA/cm2。同樣,Ag2-In8/C觸媒在-0.9 VRHE下表現出高的95.5%甲酸法拉第效率 (FEHCOOH),分電流密度為3.53 mA/cm2。經過7小時的穩定性測試,Ag8-In2/C和Ag2-In8/C分別保持高FECO和FEHCOOH,表明觸媒具有出色的穩定性。本研究通過對結構和電催化特性的綜合分析,揭示了Agx-Iny/C觸媒中In2O3表面在調節中間體結合能方面的關鍵作用,從而提出了一種藉控制組成和電壓以調節CO2RR選擇性的新方法。
摘要(英) Carbon dioxide reduction reaction (CO2RR) offers potential solutions to energy problems by converting CO2 from fossil fuel utilization into usable fuels, effectively mitigating atmospheric CO2 levels. However, CO2RR faces difficulties including high overpotential, intensifying competing hydrogen evolution reaction (HER), low catalytic activity and selectivity, and the reliance on costly and noble catalysts.
In this study, the Agx-Iny/C catalysts with different Ag/In atomic ratios of 8/2, 4/6, and 2/8 were prepared by incorporating cost-effective In2O3 to modify the surface of Ag/C catalysts. High-resolution transmission electron microscopy (TEM) revealed that In2O3 was dispersed on the Ag surface to form a core-shell structure. It was further confirmed by X-ray photoelectron spectroscopy (XPS) that the valence state of Ag surface was reduced by the addition of In2O3, implying the shift of the d-band center. Linear sweep voltammetry (LSV) demonstrated that the current density of Agx-Iny/C catalysts exhibited more larger (negative) values and lower overpotentials compared to Ag/C in the voltage range of -0.6 to -1.0 V vs. RHE (VRHE), indicating that the In2O3 addition enhanced the activity and decreased the overpotentials of the catalysts. Particularly, Ag2-In8/C demonstrated the lowest overpotential and the largest formate partial current density, indicating its highest activity and most favorable for CO2RR. X-ray absorption spectroscopy (XAS) confirmed that the In2O3 oxide layer prevented the oxidation of Ag in the inner layer during the reaction, and the interaction between Ag-In increased the electron transfer on the catalyst surface. During CO2RR, the Ag8-In2/C catalyst achieved a high CO faradaic efficiency (FECO) of 91.2% at -0.8 VRHE with a partial current density of 1.67 mA/cm2. Similarly, the Ag2-In8/C catalyst exhibited and high formate faradaic efficiency (FEHCOOH) of 95.5% at -0.9 VRHE with a partial current density of 3.53 mA/cm2. After a 7-hour stability test, the Ag8-In2/C and Ag2-In8/C remain high FECO and FEHCOOH, respectively, indicating excellent catalyst stability. This study reveals the critical role of In2O3 surface in the Agx-Iny/C catalysts in modulating the binding energy of intermediates through the comprehensive analysis of their structure and electrocatalytic characteristics, revealing a novel approach for the selectivity regulation in CO2RR controlled by compositions and potentials.
關鍵字(中) ★ 二氧化碳還原反應
★ 銀銦二元觸媒
★ 一氧化碳
★ 甲酸
★ 核-殼結構
★ 選擇性調節
★ 原位X射線吸收光譜
關鍵字(英) ★ Carbon dioxide reduction reaction (CO2RR)
★ Ag-In binary catalysts
★ CO
★ formate
★ core-shell structure
★ selectivity regulation
★ in-situ X-ray absorption spectroscopy (in-situ XAS)
論文目次 摘要 i
Abstract ii
致謝 iv
Table of Contents vii
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 The Mechanism of CO2RR 2
1.2 The Modification of Catalysts for CO2RR Performance 6
1.3 Ag-based and Ag-In Binary Catalysts with High Selectivity 8
1.4 Motivation and Objective 11
Chapter 2 Experimental Section 12
2.1 Preparation of Catalysts 12
2.1.1 Reagents 12
2.1.2 Preparation of Agx-Iny/C catalysts 12
2.1.3 Preparation of Ag/C catalysts 13
2.1.4 Preparation of In2O3/C catalysts 13
2.2 Material Characterization 14
2.3 Electrochemical Tests 16
2.3.1 Electrochemical CO2RR measurements 16
2.3.2 Product quantitative analysis 18
Chapter 3 Results and Discussion 21
3.1 The Physical and Structural Characterizations of Ag-In Catalysts 21
3.1.1 Component and microstructure characterizations 21
3.1.2 Ex-situ XAS analysis and structural characterizations 29
3.2 The Electrochemical Characterizations of Ag-In Catalysts 31
3.2.1 Electrochemical CO2RR performance 31
3.2.2 In-situ XAS analysis 37
3.2.3 CO-stripping tests 40
Chapter 4 Conclusions 45
References 47
參考文獻 [1] Arán-Ais, R. M., Gao, D., Roldan Cuenya, B., Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 2018, 51, 2906.
[2] Cai, Z., Wu, Y., Wu, Z., Yin, L., Weng, Z., Zhong, Y., Xu, W., Sun, X., Wang, H., Unlocking bifunctional electrocatalytic activity for CO2 reduction reaction by win-win metal–oxide cooperation. ACS Energy Lett. 2018, 3, 2816.
[3] Mahyoub, S. A., Qaraah, F. A., Chen, C., Zhang, F., Yan, S., Cheng, Z., An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustain. Energy Fuels 2020, 4, 50.
[4] Chang, F., Xiao, M., Miao, R., Liu, Y., Ren, M., Jia, Z., Han, D., Yuan, Y., Bai, Z., Yang, L., Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem. Energy Rev. 2022, 5, 4.
[5] Cao, H., Zhang, Z., Chen, J. W., Wang, Y. G., Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606.
[6] Zou, Y., Wang, S., An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.
[7] Liu, A., Gao, M., Ren, X., Meng, F., Yang, Y., Gao, L., Yang, Q., Ma, T., Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 2020, 8, 3541.
[8] Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., Chen, R., Yang, S., Jin, Z., Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.
[9] Zhou, J. H., Zhang, Y. W., Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. React. Chem. Eng. 2018, 3, 591.
[10] Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., Koper, M. T., Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073.
[11] Vickers, J. W., Alfonso, D., Kauffman, D. R., Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol. 2017, 5, 775.
[12] Vasileff, A., Xu, C., Jiao, Y., Zheng, Y., Qiao, S. Z., Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809.
[13] Szubka, M., Talik, E., Sadecka, K., Pawlak, D. A., Zajdel, P., Guzik, A., Characterization of raw materials and self‐organized Bi2O3–Ag eutectic by X‐ray diffraction, scanning electron microscopy, and X‐ray photoelectron spectroscopy. Cryst. Res. Technol. 2017, 52, 1700044.
[14] Kafizas, A., Parry, S. A., Chadwick, A. V., Carmalt, C. J., Parkin, I. P., An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states. Phys. Chem. Chem. Phys. 2013, 15, 8254.
[15] Ren, W., Tan, X., Qu, J., Li, S., Li, J., Liu, X., Ringer, S. P., Cairney, J. M., Wang, K., Smith, S. C., Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.
[16] Zeng, J., Zhang, W., Yang, Y., Li, D., Yu, X., Gao, Q., Pd–Ag alloy electrocatalysts for CO2 reduction: composition tuning to break the scaling relationship. ACS Appl. Mater. Interfaces 2019, 11, 33074.
[17] Zhai, J., Hu, Y., Su, M., Shi, J., Li, H., Qin, Y., Gao, F., Lu, Q., One‐step phase separation for core‐shell carbon@ indium oxide@ bismuth microspheres with enhanced activity for CO2 electroreduction to formate. Small 2023, 19, 2206440.
[18] Wang, X., Liu, S., Zhang, H., Zhang, S., Meng, G., Liu, Q., Sun, Z., Luo, J., Liu, X., Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. ChemComm 2022, 58, 7654.
[19] Wang, X., He, W., Shi, J., Junqueira, J. R., Zhang, J., Dieckhöfer, S., Seisel, S., Das, D., Schuhmann, W., Ag‐induced phase transition of Bi2O3 nanofibers for enhanced energy conversion efficiency towards formate in CO2 electroreduction. Chem Asian J 2023, 18, e202201165.
[20] Liu, S. Q., Shahini, E., Gao, M. R., Gong, L., Sui, P. F., Tang, T., Zeng, H., Luo, J. L., Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS Nano 2021, 15, 17757.
[21] Zhang, M., Zhang, Z., Zhao, Z., Huang, H., Anjum, D. H., Wang, D., He, J. h., Huang, K. W., Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu–Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103.
[22] Xie, L., Liang, J., Priest, C., Wang, T., Ding, D., Wu, G., Li, Q., Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction. ChemComm 2021, 57, 1839.
[23] Kim, D., Xie, C., Becknell, N., Yu, Y., Karamad, M., Chan, K., Crumlin, E. J., Nørskov, J. K., Yang, P., Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329.
[24] Bagchi, D., Sarkar, S., Singh, A. K., Vinod, C. P., Peter, S. C., Potential- and time-dependent dynamic nature of an oxide-derived PdIn nanocatalyst during electrochemical CO2 reduction. ACS Nano 2022, 16, 6185.
[25] Li, J., Zhu, M., Han, Y. F., Recent advances in electrochemical CO2 reduction on indium‐based catalysts. ChemCatChem 2021, 13, 514.
[26] Gao, D., Zhang, Y., Zhou, Z., Cai, F., Zhao, X., Huang, W., Li, Y., Zhu, J., Liu, P., Yang, F., Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 2017, 139, 5652.
[27] Yuan, X., Wu, Y., Jiang, B., Wu, Z., Tao, Z., Lu, X., Liu, J., Qian, T., Lin, H., Zhang, Q., Interface engineering of silver-based heterostructures for CO2 reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 56642.
[28] Barasa, G. O., Awino, C., Li, C., Agumba, J. O., Okoth, K. O., Magero, D., Indium decorated nanoporous Ag as an efficient catalyst for enhanced CO2 electroreduction. Solid State Sci. 2022, 129, 106916.
[29] Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., Pérez-Ramírez, J., Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J Catal 2016, 343, 266.
[30] Zhang, J., Qiao, M., Li, Y., Shao, Q., Huang, X., Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn (IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722.
[31] Park, H., Choi, J., Kim, H., Hwang, E., Ha, D. H., Ahn, S. H., Kim, S. K., AgIn dendrite catalysts for electrochemical reduction of CO2 to CO. Appl. Catal. B 2017, 219, 123.
[32] Wu, G., Chen, W., Pang, Y., Xie, R., Xia, D., Chai, G., Modulating AgIn@ In2O3 core–shell catalysts for amplified electrochemical reduction of CO2 to formate. ChemElectroChem 2022, 9, e202200318.
[33] Zhang, J., Fan, T., Huang, P., Lian, X., Guo, Y., Chen, Z., Yi, X., Electro‐reconstruction‐induced strain regulation and synergism of Ag‐In‐S toward highly efficient CO2 electrolysis to formate. Adv. Funct. Mater. 2022, 32, 2113075.
[34] Cheng, Y. S., Chu, X. P., Ling, M., Li, N., Wu, K. L., Wu, F. H., Li, H., Yuan, G., Wei, X. W., An MOF-derived copper@ nitrogen-doped carbon composite: the synergistic effects of N-types and copper on selective CO2 electroreduction. Catal. Sci. Technol. 2019, 9, 5668.
[35] Ma, W., Xie, S., Zhang, X. G., Sun, F., Kang, J., Jiang, Z., Zhang, Q., Wu, D. Y., Wang, Y., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019, 10, 892.
[36] Choi, S., Park, Y., Choi, J., Lee, C., Cho, H. S., Kim, C. H., Koo, J., Lee, H. M., Structural effectiveness of AgCl-decorated Ag nanowires enhancing oxygen reduction. ACS Sustain. Chem. Eng. 2021, 9, 7519.
[37] Xie, J., Li, S., Zhang, X., Zhang, J., Wang, R., Zhang, H., Pan, B., Xie, Y., Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615.
[38] Zhang, B., Chen, S., Wulan, B., Zhang, J., Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.
[39] Jia, Y., Hsu, H. S., Huang, W. C., Lee, D. W., Lee, S. W., Chen, T. Y., Zhou, L., Wang, J. H., Wang, K. W., Dai, S., Probing the roles of indium oxides on copper catalysts for enhanced selectivity during CO2-to-CO electrochemical reduction. Nano Lett. 2023, 23, 2262.
[40] Zeng, L., Shi, J., Chen, H., Lin, C., Ag nanowires/C as a selective and efficient catalyst for CO2 electroreduction. Energies 2021, 14, 2840.
[41] Qiu, C., Qian, K., Yu, J., Sun, M. Z., Cao, S. F., Gao, J. Q., Yu, R. X., Fang, L. Z., Yao, Y. W., Lu, X. Q., Li, T., Huang, B. L., Yang, S. H., MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH. Nano-Micro Lett. 2022, 14, 16.
[42] Pardo Pérez, L. C., Teschner, D., Willinger, E., Guiet, A., Driess, M., Strasser, P., Fischer, A., In situ formed “Sn1–xInx@ In1–ySnyOz” core@ shell nanoparticles as electrocatalysts for CO2 reduction to formate. Adv. Funct. Mater. 2021, 31, 2103601.
[43] Zhang, S., Zhao, S., Qu, D., Liu, X., Wu, Y., Chen, Y., Huang, W., Electrochemical Reduction of CO2 Toward C2 Valuables on Cu@ Ag Core‐Shell Tandem Catalyst with Tunable Shell Thickness. Small 2021, 17, 2102293.
[44] Wu, Y., Iwase, K., Harada, T., Nakanishi, S., Kamiya, K., Sn atoms on Cu nanoparticles for suppressing competitive H2 evolution in CO2 electrolysis. ACS Appl. Nano Mater. 2021, 4, 4994.
[45] Li, Q., Fu, J., Zhu, W., Chen, Z., Shen, B., Wu, L., Xi, Z., Wang, T., Lu, G., Zhu, J., Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290.
[46] Tsoukalou, A., Abdala, P. M., Stoian, D., Huang, X., Willinger, M. G., Fedorov, A., Müller, C. R., Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study. J. Am. Chem. Soc. 2019, 141, 13497.
[47] Fang, L., Lyu, X., Xu, J. J., Liu, Y., Hu, X., Reinhart, B. J., Li, T., Operando X-ray absorption spectroscopy study of SnO2 nanoparticles for electrochemical reduction of CO2 to formate. ACS Appl. Mater. Interfaces 2022, 14, 55636.
[48] Shen, C., Wang, P., Li, L., Huang, X., Shao, Q., Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Res. 2022, 15, 528.
[49] Wang, M., Ren, X., Yuan, G., Niu, X., Xu, Q., Gao, W., Zhu, S., Wang, Q., Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@ Cu2O catalyst. J. CO2 Util. 2020, 37, 204.
[50] Kwon, I. S., Debela, T. T., Kwak, I. H., Seo, H. W., Park, K., Kim, D., Yoo, S. J., Kim, J. G., Park, J., Kang, H. S., Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. J. Mater. Chem. A 2019, 7, 22879.
[51] Wu, H., Li, Z., Liu, Y., Zou, X., Yin, L., Lin, S., A cost-effective indium/carbon catalyst for highly efficient electrocatalytic reduction of CO2 to HCOOH. Sustain. Energy Fuels 2021, 5, 5798.
[52] Mou, K., Chen, Z., Yao, S., Liu, L., Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte. Electrochim. Acta 2018, 289, 65.
[53] Liu, K., Ma, M., Wu, L., Valenti, M., Cardenas-Morcoso, D., Hofmann, J. P., Bisquert, J., Gimenez, S., Smith, W. A., Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 16546.
[54] Gao, J., Zhao, S., Guo, S., Wang, H., Sun, Y., Yao, B., Liu, Y., Huang, H., Kang, Z., Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO. Inorg. Chem. Front. 2019, 6, 1453.
[55] Chen, D., Yao, Q., Cui, P., Liu, H., Xie, J., Yang, J., Tailoring the selectivity of bimetallic copper–palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater. 2018, 1, 883.
[56] Zhou, Y., Zhou, R., Zhu, X., Han, N., Song, B., Liu, T., Hu, G., Li, Y., Lu, J., Li, Y., Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.
[57] Dai, S., Huang, T. H., Liu, W. I., Hsu, C. W., Lee, S. W., Chen, T. Y., Wang, Y. C., Wang, J. H., Wang, K. W., Enhanced CO2 electrochemical reduction performance over Cu@ AuCu catalysts at high noble metal utilization efficiency. Nano Lett. 2021, 21, 9293.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明