博碩士論文 110324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.218.2.200
姓名 黃聖迪(Sheng-Ti Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 連續微流道反應器中進行防污聚合物篩選
(Antifouling Polymer screening in Continuous Flow Microreactor)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 連續式聚合提供了一些明顯的優勢,包括均勻混合、易於控制停留時間、高重現性和高安全性。除此之外,流動反應器系統,只需用數個小時即可得到高轉化率的產物,通過適當選擇反應參數,可快速確定最佳反應條件,而此最佳條件可以透過微流道系統應用於大規模生產。相較於批式反應器需要大容量存儲空間亦耗時,並花費大量生產成本,連續式聚合可增加生產效率。
在此實驗中,採用了一個簡單和低成本的管狀連續式反應器,而管線與停留時間可以隨時調整,因此單體的完全轉化將成為目標,以避免任何純化步驟,除此之外,此管狀連續式反應器用來方便地擴大規模和降低合成成本,還可以用高通量的方法來篩選共聚物組成。從而快速合成一個廣泛的聚合物。鑑於此,我們透過傳統的自由基聚合反應合成不同條件下的共聚物,並利用浸塗處理將共聚物以物理吸附至組織培養聚苯乙烯(TCPS)進行表面修飾。此共聚物以2-羥乙基甲基丙烯酸乙酯 (HEMA) -甲基丙烯酸月桂酯 (DMA)為基礎,其一,HEMA其擁有高生物相容性、親水性,其二,DMA能夠使共聚高分子物理吸附於TCPS,共聚物利用核磁共振氫譜 (1H NMR) 鑑定結構和轉化率,再透過凝膠滲透層析儀 (GPC) 確認不同條件下之分子量;使用水接觸角測量儀確認塗層的親水性;X射線光電子能譜儀 (XPS)及衰減全反射傅立葉轉換紅外光譜儀 (ATR-FTIR) 驗證塗層表面組成;運用橢圓偏光儀 (Ellipsometer) 分析修飾厚度;細菌及蛋白質貼附測試檢測平板的抗污特性。
本實驗中,藉由調整反應時間、反應溫度、單體濃度、單體對起始劑比例去檢驗最佳反應條件,得知塗層之最佳親水性、抗汙性,由於可快速篩選的特性,此流動式反應器系統有望高產量製造有益的表面修飾材料應用於醫療器材。
摘要(英) Continuous polymerization offers several advantages, including uniform mixing, easy control of residence time, high reproducibility, and high safety. In addition, a flow reactor system can produce high conversion rates in just a few hours, and by appropriately selecting reaction parameters, the optimal reaction conditions can be quickly determined, which can be applied to large-scale production through microchannel systems. Compared to batch reactors, which require large storage spaces and are time-consuming and expensive, continuous polymerization can increase production efficiency.
In this experiment, a simple and low-cost tubular continuous reactor was used. The pipeline and residence time can be adjusted at any time, so the complete conversion of the monomer will be the goal to avoid any purification steps. In addition, this tubular continuous reactor is used to conveniently scale up, and high-throughput methods can be used to screen copolymer compositions, thereby quickly synthesizing a wide range of polymers library. In this view, we synthesized copolymers under different conditions via free radical polymerization and the copolymer was physically adsorbed onto tissue-cultured polystyrene (TCPS) through a dip coating process to perform surface modification and used dip coating to physically adsorb the copolymers for surface modification. The copolymer is based on 2-hydroxyethyl methacrylate (HEMA)-ran-Dodecyl methacrylate (DMA). First HEMA is known as a hydrophilic and biocompatible monomer. Second DMA for physical absorption of polymers on TCPS. The copolymer structure and conversion rate were determined by 1H nuclear magnetic resonance (1H NMR), and the molecular weight under different conditions was confirmed by gel permeation chromatography (GPC). The hydrophilicity of the coating was confirmed using a water contact angle goniometer, and the surface composition of the coating was verified using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).
In this experiment, the optimal hydrophilicity and antifouling properties of the coating were examined by adjusting reaction time, reaction temperature, monomer concentration, and monomer-to-initiator ratio. Due to its rapid screening capabilities, this flow reactor system is expected to produce high-yield beneficial surface modification materials for use in medical devices.
關鍵字(中) ★ 連續式反應器
★ 流動化學
★ 醫療塗層
★ 非特異性吸附
★ 高通量
★ 雙親性高分子
關鍵字(英) ★ continuous reactor
★ flow chemistry
★ medical coatings
★ non-specific adsorption
★ high throughput
★ amphiphilic copolymers
論文目次 中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
化學品名詞簡稱 X
共聚物名詞簡稱 X
一、 文獻回顧 1
1-1 批次反應器合成高分子之應用與困境 1
1-2連續式反應器 2
1-2-1連續式反應器之優勢 2
1-2-2晶片型微流道反應器 (Microchip Reactor) 3
1-2-3線圈管式微流道反應器 (Coiled Tube Microreactor) 4
1-3高通量(HIGH THROUGHPUT)實驗方法 5
1-3-1高通量實驗 5
1-3-2 一次一因子實驗 (One Factor At a Time Experimentation,OFAT) 5
1-3-3 一次一因子實驗(OFAT)缺點 6
1-3-4 實驗設計 (Design of Experiments) 7
1-4 抗吸附材料 8
1-4-1 2-甲基丙烯酸羥乙酯(2-Hydroxyethyl Methacrylate,HEMA) 8
1-4-2 2-甲基丙烯醯氧乙基磷醯膽鹼 (2-Methacryloyloxy ethyl phosphorylcholine,MPC) 9
1-4-3 2-(甲基丙烯醯氧基)乙基]三甲基銨(2-(Methacryloyloxy) ethyltrimethylammonium chloride,TMAEMA) 10
1-4-4 聚乙二醇(poly(ethylene glycol), PEG) 10
1-5 表面改質基板 11
1-5-1金屬生物材料 11
1-5-2高分子生物材料 11
二、 研究目的 13
三、 實驗藥品與實驗方法 15
3-1實驗藥品與設備 15
3-1-1 藥品清單 15
3-1-2 儀器設備清單 16
3-1-3 微流道設計 16
3-2材料製備 19
3-2-1 合成Poly(HEMA-ran-DMA) 19
3-2-2 合成Poly(MPC-DMA) 19
3-2-3 合成Poly(TMAEMA-DMA) 19
3-2-4 合成Poly(PEGMA-DMA) 19
3-2-5 矽晶圓(silicon wafer ) 基材製備 20
3-2-6 組織培養聚苯乙烯(TCPS)基材準備 20
3-3 實驗方法 21
3-3-1 液態核磁共振氫譜 (1H NMR) 21
3-3-2 凝膠滲透層析儀 (Gel Permeation Chromatogragh ,GPC) 21
3-3-3 P(HEMA-ran-DMA)TCPS平板修飾 21
3-3-4 衰減全反射式傅立葉轉換紅外光譜儀 (Attenuated Total Reflectance-Fourier-Transform Infrared Sepectroscopy,ATR-FTIR) 21
3-3-5 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy,XPS) 22
3-3-6 水接觸角測量 (Water Contact Angle Measurement) 22
3-3-7 薄膜厚度之量測 (Ellipsometry) 22
3-3-8 細菌貼附測試 (Bacteria Adhesion Test) 22
3-3-9 蛋白質吸附測試 (Protein Adsorption Test) 23
四、 結果討論 24
4-1 高通量合成 24
4-1-1 反應時間與單體比例對轉化率影響 25
4-1-2 Poly(2-Hydroxyethyl methacrylate-ran-dodecyl methacrylate), P(HEMA-ran-DMA)鑑定 (1H NMR) 26
4-1-3反應時間與單體比例對分子量影響 27
4-1-4 反應溫度與單體濃度對轉化率影響 28
4-1-5 反應溫度與單體濃度對分子量影響 30
4-1-6 單體對起始劑比例對轉化率影響 31
4-1-7 單體對起始劑比例對分子量影響 32
4-2塗層表面特性檢測 34
4-2-1 平板表面官能基測定 (ATR-FTIR) 34
4-2-2 表面元素測定 (XPS) 35
4-3 塗層表面功能性分析 37
4-3-1反應時間對薄膜膜度影響 37
4-3-2 反應溫度與單體濃度對薄膜厚度影響 38
4-3-3單體對起始劑比例對薄膜厚度影響 39
4-3-4反應時間與DMA/HEMA 比例對水接觸角影響 40
4-3-5 反應溫度與單體濃度對水接觸角影響 41
4-3-6 單體對起始劑比例對水接觸角影響 42
4-4浸塗表面抗吸附測試 43
4-4-1細菌貼附測試 43
4-4-2 蛋白質吸附試驗 49
4-5 不同單體鑑定 52
4-5-1不同單體性質測試 52
4-5-2不同單體塗層表面元素分析 55
4-5-3不同單體塗層表面功能性分析 61
4-5-4不同單體浸塗表面抗吸附測試 62
五、 結論 66
六、 未來展望 67
七、 參考文獻 68
參考文獻 1. Ilare, J., et al., Free-radical polymerization of methacrylic acid: From batch to continuous using a stirred tank reactor. Chemical Engineering and Processing-Process Intensification, 2021. 165.
2. Haan, A.B.d. Process Technology. 2015, Berlin, München, Boston: De Gruyter.
3. Hafeez, S., et al., Liquid fuel synthesis in microreactors. Reaction Chemistry & Engineering, 2018. 3(4): p. 414-432.
4. Ilare, J. and M. Sponchioni, From batch to continuous free-radical polymerization: Recent advances and hurdles along the industrial transfer. Advances in Chemical Engineering, 2020. 56(1): p. 229-257.
5. Dong, Z., et al., Scale-up of micro-and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 2021. 10: p. 100097.
6. Amarakoon, M., et al., Environmental Impact of Polymer Fiber Manufacture. Macromolecular Materials and Engineering, 2022. 307(11).
7. Nagaki, A. and J. Yoshida, Controlled Polymerization in Flow Microreactor Systems, in Controlled Polymerization and Polymeric Structures: Flow Microreactor Polymerization, Micelles Kinetics, Polypeptide Ordering, Light Emitting Nanostructures, A. Abe, et al., Editors. 2013. p. 1-50.
8. Su, Y.H., Y. Song, and L. Xiang, Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Topics in Current Chemistry, 2018. 376(6).
9. Lin, B.H., et al., Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. Journal of the American Chemical Society, 2019. 141(22): p. 8921-8927.
10. Vandenbergh, J., et al., Polymer End Group Modifications and Polymer Conjugations via " Click" Chemistry Employing Microreactor Technology. Journal of Polymer Science Part a-Polymer Chemistry, 2014. 52(9): p. 1263-1274.
11. Nagy, C., A. Kecskemeti, and A. Gaspar, Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip. Analytica Chimica Acta, 2020. 1108: p. 70-78.
12. Bojang, A.A. and H.S. Wu, Design, Fundamental Principles of Fabrication and Applications of Microreactors. Processes, 2020. 8(8).
13. Nielsen, J.B., et al., Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Analytical Chemistry, 2020. 92(1): p. 150-168.
14. Awogbemi, O. and D.V. Von Kallon, Application of Tubular Reactor Technologies for the Acceleration of Biodiesel Production. Bioengineering-Basel, 2022. 9(8).
15. Nagy, C., R. Szabo, and A. Gaspar, Microfluidic Immobilized Enzymatic Reactors for Proteomic Analyses-Recent Developments and Trends (2017-2021). Micromachines, 2022. 13(2).
16. O′Brien, A.K. and C.N. Bowman, Impact of oxygen on photopolymerization kinetics and polymer structure. Macromolecules, 2006. 39(7): p. 2501-2506.
17. Melker, A., et al., Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 2015. 53(23): p. 2693-2698.
18. Goralczyk, A., et al., On-Chip Chemical Synthesis Using One-Step 3D Printed Polyperfluoropolyether. Chemie Ingenieur Technik, 2022. 94(7): p. 975-982.
19. Hoyle, C.E. An overview of oxygen inhibition in photocuring. in Technical Conference Proceedings-UV & EB Technology Expo & Conference, Charlotte, NC, United States. 2004.
20. Shevlin, M., Practical high-throughput experimentation for chemists. ACS medicinal chemistry letters, 2017. 8(6): p. 601-607.
21. Morato, N.M., et al., Automated high-throughput system combining small-scale synthesis with bioassays and reaction screening. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 2021. 26(6): p. 555-571.
22. Wu, Q., et al., Research Progress in High-Throughput Screening of CO2 Reduction Catalysts. Energies, 2022. 15(18): p. 6666.
23. Taylor, C.J., et al., A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews, 2023. 123(6): p. 3089-3126.
24. Antony, J., T.Y. Chou, and S. Ghosh, Training for design of experiments. Work study, 2003. 52(7): p. 341-346.
25. Leng, C., et al., Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta biomaterialia, 2016. 40: p. 6-15.
26. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
27. Prasitsilp, M., et al., Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 2003. 14: p. 595-600.
28. Huang, K.-T., et al., Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomaterials science, 2017. 5(6): p. 1072-1081.
29. Nazarova, O., et al., New water-soluble copolymers of 2-methacryloyloxyethyl phosphorylcholine for surface modification. Journal of Applied Polymer Science, 2021. 138(17).
30. Seetasang, S. and Y. Xu, Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. Journal of Materials Chemistry B, 2022. 10(14): p. 2323-2337.
31. Takahashi, M., et al., Van der Waals interactions regulating the hydration of 2-methacryloyloxyethyl phosphorylcholine, the constructing monomer of biocompatible polymers. Scientific Reports, 2022. 12(1).
32. Dong, Y., et al., Phosphonate/quaternary ammonium copolymers as high-efficiency antibacterial coating for metallic substrates. Journal of Materials Chemistry B, 2021. 9(39): p. 8321-8329.
33. Semreen, M.H., et al., Recent updates of marine antimicrobial peptides. Saudi pharmaceutical journal, 2018. 26(3): p. 396-409.
34. Lin, H.-T., A. Venault, and Y. Chang, Reducing the pathogenicity of wastewater with killer vapor-induced phase separation membranes. Journal of Membrane Science, 2020. 614: p. 118543.
35. Tu, Q., et al., Click synthesis of quaternized poly (dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids and Surfaces B: Biointerfaces, 2016. 141: p. 196-205.
36. Hoffmann, M.M., Polyethylene glycol as a green chemical solvent. Current Opinion in Colloid & Interface Science, 2022. 57: p. 101537.
37. O’Brien-Simpson, N. and M. Dental, Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates.
38. Bose, S., S.F. Robertson, and A. Bandyopadhyay, Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta biomaterialia, 2018. 66: p. 6-22.
39. Ferreira, P., et al., Improving polymeric surfaces for biomedical applications: a review. Journal of Coatings Technology and Research, 2015. 12: p. 463-475.
40. Prasad, K., et al., Metallic biomaterials: current challenges and opportunities. Materials, 2017. 10(8): p. 884.
41. Xue, T., et al., Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Frontiers in Bioengineering and Biotechnology, 2020. 8: p. 603072.
42. Council, N.R. Biomaterials and Their Importance to Military Medicine. in Capturing the Full Power of Biomaterials for Military Medicine: Report of a Workshop. 2004. National Academies Press (US).
43. Ul Ahad, I., et al., Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research Part A, 2014. 102(9): p. 3298-3310.
44. Schachtner, J., P. Bayer, and A.J. von Wangelin, A flow reactor setup for photochemistry of biphasic gas/liquid reactions. Beilstein Journal of Organic Chemistry, 2016. 12(1): p. 1798-1811.
45. Plutschack, M.B., et al., The hitchhiker’s guide to flow chemistry∥. Chemical reviews, 2017. 117(18): p. 11796-11893.
46. Reis, M.H., Reimagining Polymer Synthesis Through the Combination of Continuous-Flow Chemistry, Reactor Engineering, and Automation. 2021, The University of North Carolina at Chapel Hill.
47. Aka, E.C., et al., Comparing Gas–Liquid Segmented and Tube-in-Tube Setups for the Aerobic Dimerization of Desmethoxycarpacine with an Automated Flow Platform. Organic Process Research & Development, 2020. 24(5): p. 745-751.
48. Yao, Z., et al., The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC advances, 2018. 8(51): p. 29344-29355.
49. Chen, H., et al., Poly (acrylonitrile-co-2-methylenesuccinamic acid) as a potential carbon fiber precursor: Preparation and stabilization. RSC advances, 2017. 7(85): p. 54142-54152.
50. Okada, H., et al., Emulsion Graft Polymerization of Methyl Methacrylate onto Cellulose Nanofibers. Green and Sustainable Chemistry, 2021. 11(01): p. 9.
51. Djibrine, B.Z., et al., An Effective Flocculation Method to the Kaolin Wastewater Treatment by a Cationic Polyacrylamide (CPAM): Preparation, Characterization, and Flocculation Performance. International Journal of Polymer Science, 2018. 2018.
52. Suryawanshi, P.L., et al., A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chemical Engineering Science, 2018. 189: p. 431-448.
53. Baeten, E., J.J. Haven, and T. Junkers, RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade. Polymer Chemistry, 2017. 8(25): p. 3815-3824.
54. Numata, S., et al., Polyimides, synthesis, characterization, and applications. KL Mittal, 1984. 1: p. 259.
55. Medeiros, S.F., et al., Thermally-sensitive and Biocompatible Poly(N-vinylcaprolactam): A Kinetic Study of Free Radical Polymerization in Ethanol. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 2013. 50(7): p. 763-773.
56. Akhmetzhan, A., et al., Synthesis and heavy-metal sorption studies of N, N-Dimethylacrylamide-based hydrogels. Polymers, 2021. 13(18): p. 3084.
57. Clayden, J., N. Greeves, and S. Warren, Organic chemistry. 2012: Oxford university press.
58. Tanzi, M.C., S. Fare, and G. Candiani, Chapter 1-Organization, structure, and properties of materials. Foundations of biomaterials engineering, 2019. 10.
59. Olaj, O.F., P. Vana, and M. Zoder, Chain length dependent propagation rate coefficient k(p) in pulsed-laser polymerization: Variation with temperature in the bulk polymerization of styrene and methyl methacrylate. Macromolecules, 2002. 35(4): p. 1208-1214.
60. Adams, P.N., P.J. Laughlin, and A.P. Monkman, Synthesis of high molecular weight polyaniline at low temperatures. Synthetic Metals, 1996. 76(1-3): p. 157-160.
61. Zheng, H.L., et al., Photoinitiated Polymerization of Cationic Acrylamide in Aqueous Solution: Synthesis, Characterization, and Sludge Dewatering Performance. Scientific World Journal, 2014.
62. Narang, S., et al., Synthesis of poly(propylene carbonate) from highly active, inexpensive achiral (Salph)Co(III)X as initiator and bis(triphenyl phosphine) iminium as co-initiator. Journal of Applied Polymer Science, 2016. 133(12).
63. Kampes, A. and B. Tieke, Emulsifier-free emulsion polymerization of the comonomer system styrene/tetrahydrofurfuryl metacrylate. Colloid and Polymer Science, 1997. 275: p. 1136-1143.
64. da Silva, R. and R.P. Vieira, An Experimental and Computational Approach on Controlled Radical Photopolymerization of Limonene. Macromolecular Chemistry and Physics, 2020. 221(22).
65. Nigmatullin, R., M. Bencsik, and F.G. Gao, Influence of polymerisation conditions on the properties of polymer/clay nanocomposite hydrogels. Soft Matter, 2014. 10(12): p. 2035-2046.
66. Zhang, G., et al., Free Radical Polymerization Initiated and Controlled by Visible Light Photocatalysis at Ambient Temperature. Macromolecules, 2011. 44(19): p. 7594-7599.
67. Li, Q., et al., Imbibition of polypyrrole into three-dimensional poly (hydroxyethyl methacrylate/glycerol) gel electrolyte for robust quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013. 1(27): p. 8055-8060.
68. Kim, Y.-W., et al., Fatty acid alkyl esters as feedstocks for the enzymatic synthesis of alkyl methacrylates and polystyrene-co-alkyl methacrylates for use as cold flow improvers in diesel fuels. Journal of the American Oil Chemists′ Society, 2011. 88: p. 1727-1736.
69. Kashi, T.J., M. Erfan, and D. Watts, Effect of water on HEMA conversion by FT-IR spectroscopy. Frontiers in Dentistry, 2007: p. 123-129.
70. Vargün, E. and A. Usanmaz, Degradation of poly (2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2010. 47(9): p. 882-891.
71. Barsbay, M. and O. Güven, Modification of polystyrene cell-culture-dish surfaces by consecutive grafting of poly (acrylamide)/poly (N-isopropylacrylamide) via reversible addition-fragmentation chain transfer-mediated polymerization. European Polymer Journal, 2021. 147: p. 110330.
72. He, X., et al., Design and cytocompatibility of chitosan-based thermoresponsive cell culture plates. Journal of Applied Biomaterials & Functional Materials, 2016. 14(4): p. 404-412.
73. Chen, D.W., et al., Osteoblast Biocompatibility and Antibacterial Effects Using 2-Methacryloyloxyethyl Phosphocholine-Grafted Stainless-Steel Composite for Implant Applications. Nanomaterials, 2019. 9(7): p. 939.
74. Liu, Q., Developing Ultralow-Fouling Multifunctional Polymers for Biomedical Applications. 2015: The University of Akron.
75. Macke, N., C.M. Hemmingsen, and S.J. Rowan, The effect of polymer grafting on the mechanical properties of PEG-grafted cellulose nanocrystals in poly(lactic acid). Journal of Polymer Science, 2022. 60(24): p. 3318-3330.
76. Lettow, J.H., et al., Effect of Graft Molecular Weight and Density on the Mechanical Properties of Polystyrene-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021. 54(22): p. 10594-10604.
77. Otsuka, H., Y. Nagasaki, and K. Kataoka, Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Science and Technology of Advanced Materials, 2000. 1(1): p. 21-29.
78. Guazzelli, E., G. Galli, and E. Martinelli, The Effect of Poly(ethylene glycol) (PEG) Length on the Wettability and Surface Chemistry of PEG-Fluoroalkyl-Modified Polystyrene Diblock Copolymers and Their Two-Layer Films with Elastomer Matrix. Polymers, 2020. 12(6).
79. Hu, W.F., et al., Interrelationship between water film thicknesses and contact angles and a model for CO2 adhesion. Molecular Simulation, 2019. 45(11): p. 868-875.
80. Chae, J.B., et al. Investigation on the thickness effect of a hydrophobic layer for operating voltage reduction in EWOD systems. in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). 2013. IEEE.
81. Ozcelik, B., et al., Poly(ethylene glycol)-Based Coatings Combining Low-Biofouling and Quorum-Sensing Inhibiting Properties to Reduce Bacterial Colonization. Acs Biomaterials Science & Engineering, 2017. 3(1): p. 78-87.
82. Sharma, G., et al., Escherichia coli biofilm: development and therapeutic strategies. Journal of Applied Microbiology, 2016. 121(2): p. 309-319.
83. Li, D.Y., et al., Enhancing hydrophilicity and comprehensive antifouling properties of microfiltration membrane by novel hyperbranched poly(N-acryoyl morpholine) coating for oil-in-water emulsion separation. Reactive & Functional Polymers, 2020. 156.
84. Adlhart, C., et al., Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. Journal of Hospital Infection, 2018. 99(3): p. 239-249.
85. Cho, E.C., et al., Protein adhesion regulated by the nanoscale surface conformation. Soft Matter, 2012. 8(47): p. 11801-11808.
86. Kuo, W.-H., et al., Surface modification with poly (sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules, 2011. 12(12): p. 4348-4356.
87. Pasche, S., Mechanisms of protein resistance of adsorbed PEG-graft copolymers. 2004, ETH Zurich.
88. Liu, Y., et al., Multifunctional P (PEGMA)–REDV conjugated titanium surfaces for improved endothelial cell selectivity and hemocompatibility. Journal of Materials Chemistry B, 2013. 1(2): p. 157-167.
89. Tang, H., et al., Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009. 88(2): p. 454-463.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明