博碩士論文 110329010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.149.251.154
姓名 林家誠(Gu-Cheng Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 空心球尺寸、壁厚與熱處理對多孔17-4PH不銹鋼預型體壓縮性質之影響
(Effect of sphere sizes, thickness, and heat treatment on the compression properties of 17-4PH metallic hollow spheres preforms)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構觀察與機械性質測試,探討以不同尺寸(直徑:2mm、4mm,分別以L、H表示之)的聚苯乙烯(PS)球所製備之17-4PH不鏽鋼空心球、壁厚(180μm、250μm,分別以l、h表示之)與熱處理(燒結態、固溶(ST)態、時效(AGL)態)對其多孔預型體壓縮性質之影響。
結果顯示,由H-PS球製備之大孔洞(H=4mm)、薄球壁(l)180μm之燒結態(AS)多孔預型體(代號:Hl-AS),微結構係由板狀麻田散鐵(硬度為Hv341)、與條狀δ-肥粒鐵(硬度為Hv213)所組成,經壓縮測試,得悉其平台應力、與單位能量吸收分別為32MPa、13.6 J/g。經1050oC*1hr固溶處理後(代號:Hl-ST),銅原子回溶至基地,由光學顯微鏡觀察微結構仍為板狀麻田散鐵、與條狀δ-肥粒鐵所組成,其硬度分別為Hv308與Hv208。
施以520oC*4hr時效處理後(代號:Hl-AGL),富銅相(ε-Cu)在基地中析出,由光學顯微鏡觀察微結構仍為板狀麻田散鐵、與條狀δ-肥粒鐵所組成,其硬度分別為Hv383與Hv215,顯示麻田散鐵硬度較燒結態大幅提高,其平台應力〖(σ〗_pl)與單位能量吸收分別提高為58MPa、與24.2J/g。δ-肥粒鐵之硬度在各種條件下並無顯著變化。大孔洞(H=4mm)、厚球壁(h)250μm之燒結態多孔預型體(Hh-AS)、小孔洞(L=2mm)、薄球壁(l)180μm之 (Ll-AS)、與大孔洞(L=4mm)、厚球壁(h)250μm之(Lh-AS) 之預型體之機械性質皆有相同之傾向。
L-PS球製備之小孔洞(L=2mm)預型體燒結態與時效處理狀態,皆隨著壁厚(180μm、250μm)增加,其密度、平台應力皆獲得提升,燒結態預型體因壁厚的增加,其平台應力(σ_pl)由59MPa提升至91MPa,但單位能量吸收值(W)由24.1(J/g)下降至19.1(J/g)。H-PS球預型體則壓縮性質都獲得提升。
相同壁厚(180μm、250μm)與熱處理條件下,空心球尺寸越小,其平台應力越高。研究發現,具高壁厚(250μm)、小孔洞 (L-PS球)之預型體,經520oC時效處理後具有最佳壓縮性質,其平台應力(σ_pl)、與單位能量吸收值(W),分別為141MPa、與33.9(J/g)。
摘要(英) The effects of different pore sizes, wall thickness, and heat treatment on the compressive properties of 17-4PH stainless steel hollow spheres preform were investigated.
The results show that the porous preform made from H-PS spheres with large pores (H=4mm), thin wall (l=180μm), and sintered state (AS) exhibits a microstructure composed of plate-like martensite (with a hardness of Hv341) and lath-shaped δ-ferrite (with a hardness of Hv213). Compression testing reveals a plateau stress of 32MPa and an energy absorption capacity of 13.6 J/g. After solution treatment at 1050°C for 1 hour, copper atoms are re-dissolved into the matrix, and the microstructure still consists of plate-like martensite and lath-shaped δ-ferrite, with hardness of Hv308 and Hv208, respectively.
Upon aging treatment at 520°C for 4 hours, copper-rich phase (ε-Cu) precipitates in the matrix. The microstructure observed under an optical microscope remains as plate-like martensite and lath-shaped δ-ferrite, with hardness values of Hv383 and Hv215, respectively. It indicates a significant increase in the hardness of martensite compared to the sintered state, resulting in an increased plateau stress〖(σ〗_pl) of 58MPa and an energy absorption capacity of 24.2J/g. The hardness of δ-ferrite shows no significant change under various conditions. The mechanical properties of the porous preforms, including Hh-AS (large pores, h=250μm), Ll-AS (small pores, l=180μm), and Lh-AS (large pores, h=250μm), exhibit similar trends.
For L-PS sphere-prepared preforms, both the sintered state and aged state show increased density and plateau stress as the wall thickness (180μm, 250μm) increases. In the sintered state, the increase in wall thickness leads to an increase in plateau stress (σ_pl) from 59MPa to 91MPa, but the energy absorption capacity (W) decreases from 24.1 J/g to 19.1 J/g. The H-PS sphere-prepared preforms show improved compressive properties.
Under the same wall thickness (180μm, 250μm) and heat treatment conditions, smaller hollow sphere sizes result in higher plateau stress. It is found that preform with high wall thickness (250μm) and small pores (L-PS spheres), after aging treatment at 520°C, exhibit the best compressive properties with a plateau stress (σpl) of 141MPa and an energy absorption capacity (W) of 33.9 J/g.
關鍵字(中) ★ 金屬空心球
★ 17-4PH不銹鋼
★ 預型體
★ 多孔材料
★ 壓縮性質
關鍵字(英) ★ metal hollow ball
★ 17-4PH stainless steel
★ preform
★ porous material
★ compression properties
論文目次 摘要 i
Abstract iii
謝誌 v
圖目錄 viii
表目錄 xii
第一章 前言與文獻回顧 1
1.1 預型體簡介 1
1.1.1多孔合金介紹 1
1.1.2預型體簡介 2
1.1.3預型體壓縮性質 3
1.2多孔合金機械性質 4
1.2.1 多孔合金吸收衝擊值計算 4
1.2.2不同性質的多孔合金 6
1.3 17-4PH不銹鋼介紹 8
1.3.1 17-4PH不銹鋼簡介 8
1.3.2 17-4PH不銹鋼熱處理 8
1.3.3不同時效處理對17-4PH結構影響及強化機制 10
第三章 結果與討論 19
3.1 17-4PH預型體微結構分析 19
3.1.1空心球OM微結構 19
3.1.2 17-4PH不銹鋼預型體OM微結構 20
3.1.3 17-4PH不銹鋼預型體SEM微結構 21
3.2 17-4PH不銹鋼預型體X光繞射分析 23
3.3 17-4PH不銹鋼預型體燒結態(AS)機械性質分析 24
3.3.1 17-4PH不銹鋼預型體硬度之分析 24
3.3.2 17-4PH不銹鋼預型體壓縮性質分析 24
3.3.2.1 17-4PH不銹鋼預型體(Hl)時效處理對壓縮性質的影響 27
3.3.2.2 17-4PH不銹鋼預型體(Ll)時效處理對壓縮性質的影響 31
3.3.2.3 17-4PH不銹鋼預型體尺寸對壓縮性質的影響 34
3.3.2.4 17-4PH不銹鋼預型體壁厚對壓縮性質的影響 37
第四章 結論 40
第五章 未來研究規劃 42
第六章 參考文獻 43
第七章 附錄 47
參考文獻 [ASH] M. F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H. N. G. Wadley, “Metal Foams: A Design Guide”, (2000)
[ASTM1] ASTM-E9 89a, “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature”, pp.1-9. (2000)
[ASTM2] ASTM-A693-13, “Standard Specification for Precipitation-Hardening Stainless and Heat Resisting Steel Plate, Sheet, and Strip”, pp.1-9. (2018)
[AUG] C. Augustin, W. Hungerbach, “Production of hollow spheres (HS) and hollow sphere structures (HSS)”, Materials Letters, Vol. 63, pp.1109-1112. (2009)
[CAT] O. Caty, E. Maire, S. Youssef, R. Bouchet, “Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements”, Acta Materialia, Vol. 56, pp.5524-5334. (2008)
[CHU] C.Y. Chung, Y.C. Tzeng, “Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel”, Materials Letters, Vol. 237, pp.228-231. (2019)
[DAV] J. R. Davis, “ASM Specialty Handbook:Stainless Steel”, ASM International, pp.5-38. (1994)
[FAL] A. Fallet, P. Lhuissier, L. Salvo, Y. Bréchet, “Mechanical Behaviour of Metallic Hollow Spheres Foam”, Advanced Engineering Materials, Vol. 10, pp. 858-862. (2008)
[FEN] G. Feng, S. Li, L. Xiao, W. Song, “Energy absorption performance of honeycombs with curved cell walls under quasi-static compression”, International Journal of 1Mechanical Sciences, Vol. 210, pp.106746. (2021)
[FRI] O. Friedl, C. motz, H. Peterlik, S. Puchegger, N. Reger, and R. Pippan, “Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures”, Metallurgical and Materials Transactions B, Vol. 10, pp.135-146. (2008)
[GAO] Z. Y. Gao, T. X. Yu, and H. Zhao, “Mechanical Behavior of Metallic Hollow Sphere Materials : Experimental Study”, Journal of aerospace engingeering, Vol. 21, pp.206-216. (2008)
[GIB] L.J. Gibson, M.F. Ashby, “Cellular solids:structure and properties”, Cambridge: Cambridge University Press. (1997)
[GUP] I. Gupta, P. K. Rohatgi, “Metal matrix syntactic foams: processing, microstructure, properties and applications”, pp.366-373. (2014)
[HSI] C. N. Hsiao, C. S. Chiou, J. R. Yang, “Aging reactions in a 17-4 PH stainless steel”, Materials Chemistry and Physics, Vol. 74, pp.134-142. (2002)
[HSU] C. M. Hsu, Y. C. Tzeng, S. F. Chen, Y. L. Chen, H. L. Lee, “Fabrication of 17-4PH Stainless Steel Foam by a Pressureless Powder Space Holder Technique”, Advanced Engineering Materials, Vol. 23, pp.2001202. (2021)
[LI] Q. M. Li, I. Magkiriadis, J. J. Harrigan, “Compressive Strain at the Onset of Densification of Cellular Solids”, Journal of cellular plastics, Vol. 42, pp.371-392. (2006)
[LHU] P. Lhuissier, A. Fallet, L. Salvo, Y. Brechet, “Quasistatic mechanical behaviour of stainless steel hollow sphere foam: Macroscopic properties and damage mechanisms followed by X-ray tomography”, Materials Letters, Vol. 63, pp.1113-1116. (2009)
[JAI] H. Jain, D.P. Mondal, G. Gupta, R. Kumar, “Effect of compressive strain rate on the deformation behaviour of austenitic stainless steel foam produced by space holder technique”, Materials Chemistry and Physics, Vol. 259, pp.124010 (2021)
[MAT] G. A. Matias, P. Marc, R. Afsaneh, “Ballistic performance of composite metal foams”, Composite Structures, Vol. 125, pp. 202-211. (2015)
[OCH] A. Ochsner, C. Augustin, “Multifunctional Metallic Hollow Sphere Structures Manufacturing, Properties and Application”, (2009)
[OLA] A. Olaf, W. Ulf, S, Lothar, S. Günter, K. Bernd, “Novel Metallic Hollow Sphere Structures”, Advanced Engineering Materials, Vol. 2, pp.192-195. (2000)
[ROY] S. Roy, A. Wanner, T. Beck, T. Studnitzky, G. Stepani, “Mechanical properties of cellular solids produced from hollow stainless steel spheres”, Journal of Materials Science, Vol. 46, pp.5519-5526. (2011)
[SU] X. Su, L. Gao, F. Zhou, G. Duan, “A substrate-independent fabrication of hollow sphere arrays via template-assisted hydrothermal approach and their application in gas sensing”, Sensors and Actuators B: Chemical, Vol. 251, pp.74-85. (2017)
[SUN] Y. Sun, B. Amirrasouli, S.B. Razavi, Q.M. Li, T. Lowe, P.J. Withers, “The variation in elastic modulus throughout the compression of foam materials”, Acta Materialia, Vol. 110, pp.161-174. (2016)
[WAN1] T. Wana, Y. Liua, C. Zhoua, X. Chen, Y. Li, “Fabrication, properties, and applications of open-cell aluminum foams: A review”, Journal of Materials Science & Technology, Vol. 62, pp.11-24. (2021)
[WAN2] C. Wang, F. Jiang, R. Qin, T. Yu, and C. Guo, “Preparation and Characterization of Hollow 316L Stainless Steel Spheres Prepared by Powder Metallurgy”, Journal of Materials Engineering and Performance, Vol. 31, pp.1540-1549. (2021)
[WAN3] J. Wang, H. Zou, C. Li, R. Zuo, S. Qiu, B. Shen, “Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel”, Journal of University of Science and Technology Beijing, Vol. 13, pp.235-239. (2006)
[WU1] Y. Wu, D. Blaine, B. Marx, C. Schlaefer, G. Tzeng, “Sintering Densification and Microstructural Evolution of Injection Molding Grade 17-4 PH Stainless Steel Powder”, Metallurgical and Materials Transactions A, Vol. 33, pp. 2185-2194. (2002)
[WU2] M.W. Wu, Z. K. Huang, C. F. Tseng, K. S. Hwang, “Microstructures, Mechanical Properties, and Fracture Behaviors of Metal-Injection Molded 17-4PH Stainless Steel”, Metals and Materials International, Vol. 21, pp.531-537. (2015)
[YU1] T. Yu, F. Jiang, C. Wang, M. Cao, Z. Wang, Y. Chang, C. Guo, “Investigation on Fabrication and Microstructure of Ti–6Al–4V Alloy Hollow Spheres by Powder Metallurgy”, Metals and Materials International, Vol. 27, pp.1083–1091. (2021)
[YU2] P. J. Yu, C.Y. Huang, Y.T. Lin, Y.C. Su, H.W. Yen, C. A. Hsu, S. H. Wang, J. W. Yeh, W. H. Hou, T. R. Lin, T. W. Hsu, “Crystalline characteristics of a dual-phase precipitation hardening stainless steel in quenched solid solution and aging treatments”, Materials Chemistry and Physics, Vol. 280, pp.206-216. (2022)
[ZHA] H. Zhamg, P. Wu, L. Li, and R. Hu, “The Morphology of ε-Cu Phase and its Interaction with Dislocation in 17-4 PH Steel”, Materials Science and Engineering: A, Vol. 756, pp.319-327. (2019)
[ZIM] A. M. Zimar, M. H. Nowsath, M. N. Muhammad and S. R. Herath, “Non-linear behaviour of open-cell metal foam under tensile loading”, IEEE, pp.349-354. (2016)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明