參考文獻 |
[12] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402–403.
[13] B. O’Regan and M. Grätzel, A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–740.
[14] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev. 2017, 46, 5975–6023.
[15] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, New architectures for dye-sensitized solar cells, Chem. Eur. J. 2008, 14, 4458–4467.
[16] L. Giribabu, R. K. Kanaparthi and V. Velkannan, Molecular engineering of sensitizers for dye-sensitized solar cell application, Chem. Rec. 2012, 12, 306–328.
[17] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 1993, 115, 6382−6390.
[18] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 2003, 107, 8981−8987.
[19] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127, 16835−16847.
[20] James E. House, 2020, Ligand fields and molecular orbitals, Inorganic Chemistry (Third Edition), 687−715.
[21] S. Aghazada and M. K. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells, Inorganics 2018, 6, 52.
[22] Sadig Aghazada, Cyclometalated ruthenium complexes for dye sensitized solar cells, Ph.D Dissertation, École polytechnique fédérale de lausanne, 2018.
[23] P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser and M. Grätzel, Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells, Adv. Mater. 2003, 15, 2101−2104.
[24] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater. 2003, 2, 402−407;498.
[25] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells, Angew. Chem. Int. Ed. 2006, 45, 5822−5825.
[26] N. Hirata, J. J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M. Grätzel and D. D. Censo, Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films, Chem. Eur. J. 2004, 10, 595−602.
[27] C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu and K. C. Ho, Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells, Angew. Chem. Int. Ed. 2008, 47, 7342–7345.
[28] J. Y. Li, C. Y. Chen, J. G. Chen, C. J. Tan, K. M. Lee, S. J. Wu, Y. L. Tung, H. H. Tsai, K. C. Ho and C. G. Wu, Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells, J. Mater. Chem. 2010, 20, 7158–7164.
[29] C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 2009, 3, 3103–3109.
[30] C. Y. Chen, N. Pootrakulchote, T. H. Hung, C. J. Tan, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Grätzel, Ruthenium sensitizer with thienothiophene-linked carbazole antennas in conjunction with liquid electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2011, 115, 20043–20050.
[31] C. Y. Chen, N. Pootrakulchote, S. J. Wu, M. K. Wang, J. Y. Li, J. H. Tsai, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells, J. Phys. Chem. C 2009, 113, 20752–20757.
[32] T. D. Nguyen, C. H. Lin, C. L. Mai and C. G. Wu, Function of tetrabutylammonium on high-efficiency ruthenium sensitizers for both outdoor and indoor DSC application, ACS Omega 2019, 4, 11414−11423.
[33] C. Klein, M. K. Nazeeruddin, P. Liska, D. D. Censo, N. Hirata, E. Palomares, J. R. Durrant and M. Grätzel, Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity, Inorg. Chem. 2005, 44, 178−180.
[34] A. Mishra, N. Pootrakulchote, M. K. R. Fischer, C. Klein, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel, Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells, Chem. Commun. 2009, 7146–7148.
[35] A. Mishra, N. Pootrakulchote, M. K. Wang, S. J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, A thiophene-based anchoring ligand and its heteroleptic Ru(II)-complex for efficient thin-film dye-sensitized solar cells, Adv. Funct. Mater. 2011, 21, 963–970.
[36] C. Y. Chen, N. Pootrakulchote, M. Y. Chen, T. Moehl, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Grätzel, A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells, Adv. Energy Mater. 2012, 2, 1503–1509.
[37] S. R. Jang, J. H. Yum, C. Klein, K. J. Kim, P. Wagner, D. Officer, M. Grätzel and M. K. Nazeeruddin, High molar extinction coefficient ruthenium sensitizers for thin film dye-sensitized solar cells, J. Phys. Chem. C 2009, 113, 1998–2003.
[38] J. Y. Seo, M. Y. Jeong, Y. N. Seo, E. G. Lee, Y. R. Kim, P. Byoungchoo and B. H. Kim, Synthesis and characterization of novel heteroleptic Ru(II) bipyridine complexes for dye‑sensitized solar cell applications, Monatsh. Chem. 2019, 150, 1445−1452.
[39] J. H. Lee, J. H. Seo, Y. R. Choi, H. J. Oh, J. N. Huh, P. Byoungchoo, J. Tak and B. H. Kim, Synthesis and characterization of heteroleptic Ru(II) complexes based on 4,4′-bis((E)-styryl)-2,2′-bipyridine as ancillary ligand and application for dye-sensitized solar cells, Helv. Chim. Acta 2018, 101, e1800030.
[40] F. F. Gao, Y. Wang, D. Shi, J. Zhang, M. K. Wang, X. Y. Jing, B. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc. 2008, 130, 10720−10728.
[41] F. F. Gao, Y. M. Cheng, Q. J. Yu, S. Liu, D. Shi, Y. H. Li and P. Wang, Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells, Inorg. Chem. 2009, 48, 2664−2669.
[42] T. D. Nguyen, Y. P. Lan and C. G. Wu, The function of chalcogenophene in the cyclomatelated ring of the cycloruthenated dyes applied in dye-sensitized solar cell, Inorg. Chem. 2021, 60, 11328−11337.
[43] F. F. Gao, Y. Wang, J. Zhang, D. Shi, M. K. Wang, R. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chem. Commun. 2008, 2635–2637.
[44] J. J. Kim, H. B. Choi, C. W. Kim, M. S. Kang, H. S. Kang and J. J. Ko, Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2’-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells, Chem. Mater. 2009, 21, 5719–5726.
[45] M. Vollmer, Physics of the microwave oven, Phys. Educ. 2004, 39, 74−81.
[46] B. L. Hayes, Recent advances in microwave-assisted synthesis, Aldricchim. Aceta. 2004, 17, 65−76.
[47] Y. Jiang, C. Cabanetos, M. Allain, S. Jungsuttiwong and J. Roncali, Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups, Org. Electron. 2016, 37, 294–304.
[48] T. D. Nguyen, C. H. Lin and C. G. Wu, Effect of the CF3 substituents on the charge-transfer kinetics of high-efficiency cyclometalated ruthenium sensitizers, Inorg. Chem. 2017, 56, 252−260.
[49] H. Y. Yuan, W. H. Yin, J. L. Hu and Y. Li, 3-sulfonyloxyaryl(mesityl)iodonium triflates as 1,2-benzdiyne precursors with activation via ortho-deprotonative elimination strategy, Nat. Commun. 2023, 14, 1841.
[50] K. Kawabata, M. Takeguchi and H. Goto, Optical activity of heteroaromatic conjugated polymer films prepared by asymmetric electrochemical polymerization in cholesteric liquid crystals: structural function for chiral induction, Macromolecules 2013, 46, 2078−2091.
[51] 楊智翔,含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用,國立中央大學化學研究所碩士學位論文,2018。 |