博碩士論文 107886002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.118.193.232
姓名 黃詣超(Yi-Chao Huang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 基因調控層面探討黃酮類天然中草藥作為抗口腔癌藥物可行性研究
(Feasibility of flavonoid natural Chinese herbal medicines as anti-oral cancer drugs of gene regulation)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 肝纖維化細胞與動物模型以轉錄體資料分析比較
★ 基於深度學習之皮膚病兆切割之研究★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-24以後開放)
摘要(中) 口腔癌是全球十大癌症之一,全球口腔癌發病率呈上升趨勢,且有年輕化趨勢,給全球帶來醫療健康沉重的負擔,在口腔癌的發病率和死亡率居高不下的情況下,有90%是由口腔鱗狀上皮細胞癌造成的,有76%的口腔癌患者在5年內存活且無轉移,但發病率仍然持續上升。口腔癌有多種治療選擇,包括手術、放射療法和化學療法,但副作用相當的大,尤其以手術方式進行治療更是補可逆的治療方式,所以本篇論文主要探討利用天然中草藥開發治療口腔癌的藥物。
口腔癌的發生是因為相關特定基因突變造成,我們試著利用中草藥對口腔癌細胞的基因影響來探討中草藥開發成為口腔癌藥物的可行性,本篇論文探索27種化療藥物及63種天然化合物發現大部分藥理作用主要是透過誘發口腔癌凋亡途徑達到抑制口腔癌細胞生長的效果,並且發現黃酮類的天然中草藥化合物可以作為抗口腔癌藥物發展的可行性,所以本篇論文要探索芫花萃取物HGK在口腔癌細胞中特定基因突變的治療機轉。
Hydroxygenkwanin (HGK) 是一種從瑞香中提取的天然黃酮類化合物。以往的研究發現HGK具有抗發炎、抗癌效果,但在口腔癌的作用仍不清楚,本篇論文以HGK黃酮類的中草藥作為發展天然中草藥確實會影響癌細胞基因表達作為論述。實驗證明HGK 劑量會抑制 SAS 和 OCEM1 細胞的生長。在基因功能富集分析顯示了細胞運動、細胞週期和細胞生長和增殖的重要途徑。我們透過流式細胞技術證明了 HGK 誘導細胞週期停滯,利用生物技術證實HGK抑制細胞聚落形成能力和細胞運動。Western blot顯示HGK通過p21激活誘導細胞週期停滯並引起內在細胞凋亡途徑。HGK通過下調Vimentin蛋白抑制細胞侵襲和遷移,HGK 可望成為治療口腔癌的天然中草藥。
過去很多研究探討中草藥對癌細胞的作用,但沒有針對癌細胞的基因表達特別闡述,我們希望藉由HGK作用口腔癌細胞的基因表達,藉以探討開發天然抗口腔癌藥物是提供一種降低口腔癌治療風險和開發口腔癌輔助治療的可能性。
摘要(英) Oral cancer is one of the top ten cancers worldwide. The global incidence of oral cancer is increasing and tends to occur at a younger age, placing a heavy burden on global medical health. Of the high incidence and mortality of oral cancer, 90% is caused by oral squamous cell carcinoma and 76% of oral cancer patients survive within 5 years without metastasis, but the incidence rate continues to rise. There are many treatment options for oral cancer,including surgery, radiotherapy and chemotherapy, but the side effects are quite large, especially surgical treatment is a non-reversible treatment, so this thesis mainly discusses the use of natural Chinese herbal medicine to develop the treatment of oral cancer.
The occurrence of oral cancer is caused by related specific gene mutations. We are trying to use the influence of Chinese herbal medicines on the genes of oral cancer cells to explore the feasibility of developing Chinese herbal medicines into oral cancer drugs. In this thesis, 27 chemotherapeutic drugs and 63 natural compounds are investigated. Most of the pharmacological effects are mainly to inhibit the growth of oral cancer cells by inducing the apoptosis pathway of oral cancer, and found that the flavonoids of natural Chinese herbal compounds can be used as anti-oral cancer drugs, so this paper will explore Daphne genkwa extract therapeutic mechanism of HGK in specific gene mutations in oral cancer cells.
Hydroxygenkwanin (HGK) is a natural flavonoid extracted from Daphne. Previous studies have shown that HGK has anti-inflammatory and anticancer effects, but its role in oral cancer is still unclear. This paper discusses that HGK flavonoids, as natural Chinese herbal medicines, can indeed affect the gene expression of cancer cells. Experiments showed that HGK dosage inhibited the growth of SAS and OCEM1 cells. Functional enrichment analysis of genes revealed important pathways for cell motility, cell cycle, and cell growth and proliferation. We demonstrated by flow cytometry that HGK induces cell cycle arrest and by bioassay that HGK inhibits cell colony formation and cell motility. Western blot showed that HGK induces cell cycle arrest and induces the intrinsic apoptotic pathway through p21 activation. HGK inhibited cell invasion and migration by downregulating Vimentin protein. HGK may be an effective natural product for the treatment of oral cancer.
In the past, many studies have investigated the effect of Chinese herbal medicine on cancer cells, but they have not looked specifically at the gene expression of cancer cells. We hope that through the effect of HGK on the gene expression of oral cancer cells, it will be possible to explore the development of natural anti-oral cancer drugs to provide a treatment for oral cancer. Risk and possibility of developing adjuvant therapy for oral cancer.
關鍵字(中) ★ 口腔癌
★ 化學治療
★ 中草藥
★ 黃酮類藥物
★ 基因表達
★ 輔助治療
關鍵字(英) ★ Oral cancer
★ chemotherapy
★ Chinese herbal medicine
★ flavonoid
★ gene expression
★ adjuvant treatment
論文目次 壹、緒論 1
一、口(咽)腔構造解剖 1
二、口腔癌的危險因素 2
三、口腔癌細胞的分子基因 4
(一)上調控(Up-regulation): 4
(二)下調控:7
(三)甲基化 8
(四)基因突變 8
四、口腔癌的治療 12
(一)臨床治療 12
(二)口腔癌的輔助與替代療法(Complementary and Alternative Medicine, CAM) 12
五、中草藥的作用機制(Mechanism of Action, MOA) 13
六、評價化療藥物與中草藥 14
貳、動機 16
參、實驗材料與方法 17
一、綜合探索(Comprehensive search) 17
二、細胞培養 17
三、中草藥化合物 17
四、中草藥化合物刺激癌細胞實驗分析 19
(一)細胞存活率分析(MTT assay) 19
(二)Clonogenic ability test 19
(三)細胞遷徙能力分析(Migration assay)及侵襲試驗(Invasion Assays) 19
(四)細胞週期分析(Cell cycle analysis) 20
(五)核糖核酸測序 (RNA Sequencing) 20
(六)基因差異表達分析 (Differential Expression Gene Analysis) 21
(七)西方墨點法(Western Blotting) 22
(八)數據分析統計 23
肆、實驗設計與流程 24
一、探索具有潛在發展之口腔癌中草藥 24
二、分子基因技術及生物訊息方法探Hydroxygenkwanin(HGK)作為口腔癌藥物的作用機制 25
伍、結果 26
一、口腔癌化療藥物表觀遺傳調控 26
二、中草藥調控癌細胞基因及有效抑制癌細胞的生長 42
三、黃酮類(Flavonoids)中草藥有效治療口腔癌 44
四、黃酮類中草藥Hydroxygenkwanin(HGK)抑制口腔癌效果
47
五、RAN序列數據鑑定基因表達差異 49
六、基因富集分析(Gene Set Enrichment Analysis, GSEA)推測細胞功能影響 51
七、HGK對SAS及OECM1口腔癌細胞週期的影響 53
八、HGK對SAS細胞和OECM1細胞的運動影響 55
九、HGK對SAS細胞和OECM1細胞的細胞週期、細胞凋亡和EMT調節蛋白的影響 58
陸、討論 61
柒、參考文獻 65
捌、已發表文章 82
參考文獻 1.Montero, P.H. and S.G. Patel, Cancer of the oral cavity. Surg Oncol Clin N Am, 2015. 24(3): p. 491-508.
2.Chattopadhyay, I., M. Verma, and M. Panda, Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol Cancer Res Treat, 2019. 18: p. 1533033819867354.
3.Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 2015. 517(7536): p. 576-82.
4.Takeshima, M., et al., High frequency of hypermethylation of p14, p15 and p16 in oral pre-cancerous lesions associated with betel-quid chewing in Sri Lanka. J Oral Pathol Med, 2008. 37(8): p. 475-9.
5.Warnakulasuriya, S., Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol, 2010. 46(6): p. 407-10.
6.Hsu, P.C., et al., Chrysophanol Suppresses Cell Growth via mTOR/PPAR-α Regulation and ROS Accumulation in Cultured Human Tongue Squamous Carcinoma SAS Cells. Curr Issues Mol Biol, 2022. 44(4): p. 1528-1538.
7.Johnson, D.E., et al., Head and neck squamous cell carcinoma. Nat Rev Dis Primers, 2020. 6(1): p. 92.
8.Maggioni, D., et al., Flavonoids in oral cancer prevention and therapy. Eur J Cancer Prev, 2015. 24(6): p. 517-28.
9.D′Souza, W. and D. Saranath, OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. Omics, 2017. 21(12): p. 689-703.
10.Hassin, O. and M. Oren, Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov, 2023. 22(2): p. 127-144.
11.Li, T.J. and J. Cui, COX-2, MMP-7 expression in oral lichen planus and oral squamous cell carcinoma. Asian Pac J Trop Med, 2013. 6(8): p. 640-3.
12.Hashemi Goradel, N., et al., Cyclooxygenase-2 in cancer: A review. J Cell Physiol, 2019. 234(5): p. 5683-5699.
13.Quintero-Fabián, S., et al., Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol, 2019. 9: p. 1370.
14.Yang, Y. and Y. Cao, The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol, 2022. 86(Pt 3): p. 251-261.
15.Johnstone, S. and R.M. Logan, Expression of vascular endothelial growth factor (VEGF) in normal oral mucosa, oral dysplasia and oral squamous cell carcinoma. Int J Oral Maxillofac Surg, 2007. 36(3): p. 263-6.
16.Perini, G.F., et al., BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol, 2018. 11(1): p. 65.
17.Camisasca, D.R., et al., Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol, 2009. 45(3): p. 225-33.
18.Musgrove, E.A., et al., Cyclin D as a therapeutic target in cancer. Nat Rev Cancer, 2011. 11(8): p. 558-72.
19.Angadi, P.V. and R. Krishnapillai, Cyclin D1 expression in oral squamous cell carcinoma and verrucous carcinoma: correlation with histological differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007. 103(3): p. e30-5.
20.Huynh, J., et al., Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer, 2019. 19(2): p. 82-96.
21.Grandis, J.R., et al., Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4227-32.
22.Taniguchi, K. and M. Karin, NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol, 2018. 18(5): p. 309-324.
23.Piva, M.R., et al., Role of inflammation in oral carcinogenesis (Part II): CD8, FOXP3, TNF-α, TGF-β and NF-κB expression. Oncol Lett, 2013. 5(6): p. 1909-1914.
24.Uribe, M.L., I. Marrocco, and Y. Yarden, EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel), 2021. 13(11).
25.Solomon, M.C., et al., The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study. Med Oncol, 2016. 33(12): p. 138.
26.Chu, I.M., L. Hengst, and J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-67.
27.Fillies, T., et al., Cell cycle regulating proteins p21 and p27 in prognosis of oral squamous cell carcinomas. Oncol Rep, 2007. 17(2): p. 355-9.
28.Fan, C.C., et al., Expression of E-cadherin, Twist, and p53 and their prognostic value in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol, 2013. 139(10): p. 1735-44.
29.Morgan, A.E., T.J. Davies, and M.T. Mc Auley, The role of DNA methylation in ageing and cancer. Proc Nutr Soc, 2018. 77(4): p. 412-422.
30.Liu, K., et al., Promoter hypermethylation and inactivation of hMLH1, a DNA mismatch repair gene, in head and neck squamous cell carcinoma. Diagn Mol Pathol, 2003. 12(1): p. 50-6.
31.Koutsimpelas, D., et al., Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep, 2012. 27(4): p. 1135-41.
32.Chiles, M.C., et al., E-cadherin promoter hypermethylation in preneoplastic and neoplastic skin lesions. Mod Pathol, 2003. 16(10): p. 1014-8.
33.Miracca, E.C., L.P. Kowalski, and M.A. Nagai, High prevalence of p16 genetic alterations in head and neck tumours. Br J Cancer, 1999. 81(4): p. 677-83.
34.Sanchez-Cespedes, M., et al., Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res, 2000. 60(4): p. 892-5.
35.Maruya, S., et al., Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. Clin Cancer Res, 2004. 10(11): p. 3825-30.
36.Izumchenko, E., et al., Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res (Phila), 2015. 8(4): p. 277-286.
37.Ragos, V., et al., p53 mutations in oral cavity carcinoma. J buon, 2018. 23(6): p. 1569-1572.
38.Couture, C., et al., p53 and Ki-67 as markers of radioresistance in head and neck carcinoma. Cancer, 2002. 94(3): p. 713-22.
39.Ribeiro, F.A., et al., Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res, 2014. 34(4): p. 1547-52.
40.Rehmani, H.S. and N. Issaeva, EGFR in head and neck squamous cell carcinoma: exploring possibilities of novel drug combinations. Ann Transl Med, 2020. 8(13): p. 813.
41.Coleman, N., et al., HRAS Mutations Define a Distinct Subgroup in Head and Neck Squamous Cell Carcinoma. JCO Precis Oncol, 2023. 7: p. e2200211.
42.Sathyan, K.M., K.R. Nalinakumari, and S. Kannan, H-Ras mutation modulates the expression of major cell cycle regulatory proteins and disease prognosis in oral carcinoma. Mod Pathol, 2007. 20(11): p. 1141-8.
43.Jin, N., et al., Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. J Clin Invest, 2021. 131(22).
44.Denninghoff, V., et al., Mutational status of PIK3ca oncogene in oral cancer-In the new age of PI3K inhibitors. Pathol Res Pract, 2020. 216(1): p. 152777.
45.Jha, R., et al., Single nucleotide polymorphism in hMLH1 promoter and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Gene, 2013. 526(2): p. 223-7.
46.Taioli, E., et al., Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation. BMC Cancer, 2009. 9: p. 354.
47.Nakayama, S., et al., The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. Int J Cancer, 2001. 93(5): p. 667-73.
48.Don, K.R., et al., Promoter hypermethylation patterns of P16, DAPK and MGMT in oral squamous cell carcinoma: a systematic review and meta-analysis. Indian J Dent Res, 2014. 25(6): p. 797-805.
49.Wong, T. and D. Wiesenfeld, Oral Cancer. Aust Dent J, 2018. 63 Suppl 1: p. S91-s99.
50.Kocaadam, B. and N. Şanlier, Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr, 2017. 57(13): p. 2889-2895.
51.West, H.J., Complementary and Alternative Medicine in Cancer Care. JAMA Oncol, 2018. 4(1): p. 139.
52.Zhang, X.W., et al., Chinese Herbal Medicine for Advanced Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Am J Chin Med, 2018. 46(5): p. 923-952.
53.Mohammadi, A., B. Mansoori, and B. Baradaran, Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies. Biomed Pharmacother, 2017. 86: p. 262-270.
54.Mohd Fauzi, F., et al., Chemogenomics approaches to rationalizing the mode-of-action of traditional Chinese and Ayurvedic medicines. J Chem Inf Model, 2013. 53(3): p. 661-73.
55.Wang, Z., et al., L1000FWD: fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics, 2018. 34(12): p. 2150-2152.
56.Cheng, M.F., et al., The autophagic inhibition oral squamous cell carcinoma cancer growth of 16-hydroxy-cleroda-3,14-dine-15,16-olide. Oncotarget, 2017. 8(45): p. 78379-78396.
57.Jiang, J., et al., Gossypol inhibits growth, invasiveness, and angiogenesis in human prostate cancer cells by modulating NF-κB/AP-1 dependent- and independent-signaling. Clin Exp Metastasis, 2012. 29(2): p. 165-78.
58.Cheng, Y.Y., C.H. Hsieh, and T.H. Tsai, Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics. J Food Drug Anal, 2018. 26(2s): p. S88-s95.
59.Ting, C.T., et al., Prescription frequency and patterns of Chinese herbal medicine for liver cancer patients in Taiwan: a cross-sectional analysis of the National Health Insurance Research Database. BMC Complement Altern Med, 2017. 17(1): p. 118.
60.Wu, C.T., Y.T. Tsai, and J.N. Lai, Demographic and medication characteristics of traditional Chinese medicine users among colorectal cancer survivors: A nationwide database study in Taiwan. J Tradit Complement Med, 2017. 7(2): p. 188-194.
61.Yeh, Y.C., et al., Hedyotis diffusa Combined with Scutellaria barbata Are the Core Treatment of Chinese Herbal Medicine Used for Breast Cancer Patients: A Population-Based Study. Evid Based Complement Alternat Med, 2014. 2014: p. 202378.
62.Chen, C.Y., et al., Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. J Pathol, 2009. 219(3): p. 347-55.
63.Li, F., et al., Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa. Bioorg Med Chem Lett, 2013. 23(9): p. 2500-4.
64.Sun, Y.W., et al., Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int Immunopharmacol, 2020. 83: p. 106384.
65.Wang, Y., et al., Synergistic anti-glioma effect of Hydroxygenkwanin and Apigenin in vitro. Chem Biol Interact, 2013. 206(2): p. 346-55.
66.Leu, Y.L., et al., Hydroxygenkwanin Suppresses Non-Small Cell Lung Cancer Progression by Enhancing EGFR Degradation. Molecules, 2020. 25(4).
67.Bailly, C., Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules, 2022. 12(2).
68.van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay. Methods Mol Biol, 2011. 731: p. 237-45.
69.Munshi, A., M. Hobbs, and R.E. Meyn, Clonogenic cell survival assay. Methods Mol Med, 2005. 110: p. 21-8.
70.Yue, B., Biology of the extracellular matrix: an overview. J Glaucoma, 2014. 23(8 Suppl 1): p. S20-3.
71.Freitas, J.T., I. Jozic, and B. Bedogni, Wound Healing Assay for Melanoma Cell Migration. Methods Mol Biol, 2021. 2265: p. 65-71.
72.Xie, Z., et al., C2orf40 inhibits metastasis and regulates chemo-resistance and radio-resistance of nasopharyngeal carcinoma cells by influencing cell cycle and activating the PI3K/AKT/mTOR signaling pathway. J Transl Med, 2022. 20(1): p. 264.
73.Svoboda, M., H.R. Frost, and G. Bosco, Internal oligo(dT) priming introduces systematic bias in bulk and single-cell RNA sequencing count data. NAR Genom Bioinform, 2022. 4(2): p. lqac035.
74.McDermaid, A., et al., Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform, 2019. 20(6): p. 2044-2054.
75.Toh, T.B., J.J. Lim, and E.K. Chow, Epigenetics in cancer stem cells. Mol Cancer, 2017. 16(1): p. 29.
76.Gebbia, V., et al., Abemaciclib: safety and effectiveness of a unique cyclin-dependent kinase inhibitor. Expert Opin Drug Saf, 2020. 19(8): p. 945-954.
77.Chen, Y., et al., Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh‑7 cells by regulating the ERK‑VEGF/MMP9 signaling pathway. Mol Med Rep, 2019. 20(4): p. 3317-3325.
78.Geenen, J.J.J. and J.H.M. Schellens, Molecular Pathways: Targeting the Protein Kinase Wee1 in Cancer. Clin Cancer Res, 2017. 23(16): p. 4540-4544.
79.Ferrara, N., et al., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004. 3(5): p. 391-400.
80.Chuang, F.C., et al., PI3k inhibitors (BKM120 and BYL719) as radiosensitizers for head and neck squamous cell carcinoma during radiotherapy. PLoS One, 2021. 16(1): p. e0245715.
81.Jia, Y., et al., Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016. 534(7605): p. 129-32.
82.Galluzzi, L., et al., Systems biology of cisplatin resistance: past, present and future. Cell Death Dis, 2014. 5(5): p. e1257.
83.Kozakiewicz, P. and L. Grzybowska-Szatkowska, Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett, 2018. 15(5): p. 7497-7505.
84.Porta, C., C. Paglino, and A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol, 2014. 4: p. 64.
85.Ghoshal, K. and S.T. Jacob, An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem Pharmacol, 1997. 53(11): p. 1569-75.
86.Frega, G., et al., Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology, 2020. 9(1): p. 1796002.
87.Mazorra, Z., et al., Nimotuzumab: beyond the EGFR signaling cascade inhibition. Semin Oncol, 2018. 45(1-2): p. 18-26.
88.Botticelli, A., et al., Anti-PD-1 and Anti-PD-L1 in Head and Neck Cancer: A Network Meta-Analysis. Front Immunol, 2021. 12: p. 705096.
89.Dutta, P.R. and A. Maity, Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer Lett, 2007. 254(2): p. 165-77.
90.LoRusso, P.M., Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. J Clin Oncol, 2016. 34(31): p. 3803-3815.
91.Dolan, M., et al., Enhanced efficacy of sitravatinib in metastatic models of antiangiogenic therapy resistance. PLoS One, 2019. 14(8): p. e0220101.
92.Miyanaga, N. and H. Akaza, [Sorafenib(Nexavar)]. Gan To Kagaku Ryoho, 2009. 36(6): p. 1029-33.
93.Heng, D.Y. and C. Kollmannsberger, Sunitinib. Recent Results Cancer Res, 2010. 184: p. 71-82.
94.Miricescu, D., et al., PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis (Review). Exp Ther Med, 2021. 21(5): p. 540.
95.Rubinfeld, H., et al., Combination of mTOR Inhibitors Augments Potency while Activating PI3K Signaling in Pituitary Tumors. Neuroendocrinology, 2016. 103(5): p. 592-604.
96.Khan, S., et al., Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells. Clin Immunol, 2011. 138(1): p. 85-96.
97.Sathornsumetee, S. and J.N. Rich, Vandetanib, a novel multitargeted kinase inhibitor, in cancer therapy. Drugs Today (Barc), 2006. 42(10): p. 657-70.
98.Rivera, F., et al., Current situation of zalutumumab. Expert Opin Biol Ther, 2009. 9(5): p. 667-74.
99.Lakshmi, T., et al., Acacia catechu ethanolic bark extract induces apoptosis in human oral squamous carcinoma cells. J Adv Pharm Technol Res, 2017. 8(4): p. 143-149.
100.Lakshmi, T., et al., Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC-25 Cells. Pharmacogn Mag, 2017. 13(Suppl 3): p. S405-s411.
101.Li, Q., et al., Aloe-emodin induces apoptosis in human oral squamous cell carcinoma SCC15 cells. BMC Complement Altern Med, 2018. 18(1): p. 296.
102.Zheng, X.Y., et al., Emodin-induced autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in human hepatocytes. Drug Des Devel Ther, 2019. 13: p. 3171-3180.
103.Gao, Y., et al., Aloe-emodin, a naturally occurring anthraquinone, is a highly potent mast cell stabilizer through activating mitochondrial calcium uniporter. Biochem Pharmacol, 2021. 186: p. 114476.
104.Yang, P.Y., et al., Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget, 2017. 8(3): p. 4196-4207.
105.Hsu, P.C., et al., Chrysophanol Regulates Cell Death, Metastasis, and Reactive Oxygen Species Production in Oral Cancer Cell Lines. Evid Based Complement Alternat Med, 2020. 2020: p. 5867064.
106.Lee, H.S. and G.S. Jeong, Chrysophanol Attenuates Manifestations of Immune Bowel Diseases by Regulation of Colorectal Cells and T Cells Activation In Vivo. Molecules, 2021. 26(6).
107.Hsu, P.C., et al., Interleukin-6 and Interleukin-8 Regulate STAT3 Activation Migration/Invasion and EMT in Chrysophanol-Treated Oral Cancer Cell Lines. Life (Basel), 2021. 11(5).
108.Nam, W., et al., Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck, 2007. 29(4): p. 335-40.
109.Li, X., et al., The selectivity of artemisinin-based drugs on human lung normal and cancer cells. Environ Toxicol Pharmacol, 2018. 57: p. 86-94.
110.Sur, S., et al., Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract. Cell Commun Signal, 2019. 17(1): p. 131.
111.Sur, S. and R.B. Ray, Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers (Basel), 2020. 12(8).
112.Maggioni, D., et al., Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int J Oncol, 2013. 43(5): p. 1675-82.
113.Park, C.H., et al., Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci, 2020. 21(13).
114.Lin, C.Y., et al., Berberine-targeted miR-21 chemosensitizes oral carcinomas stem cells. Oncotarget, 2017. 8(46): p. 80900-80908.
115.Dang, Y., et al., Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell, 2020. 19(1): p. e13060.
116.Yeh, C.C., et al., Phenethyl isothiocyanate enhances TRAIL-induced apoptosis in oral cancer cells and xenografts. Clin Oral Investig, 2016. 20(9): p. 2343-2352.
117.Im, Y.S., M.H. Gwon, and J.M. Yun, Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr, 2021. 9(6): p. 3269-3279.
118.Hung, C.M., et al., Cucurbitacin E as inducer of cell death and apoptosis in human oral squamous cell carcinoma cell line SAS. Int J Mol Sci, 2013. 14(8): p. 17147-56.
119.Chawech, R., et al., Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad. Molecules, 2015. 20(10): p. 18001-15.
120.Bae, M.G., et al., Effects of 6,8-Diprenylgenistein on VEGF-A-Induced Lymphangiogenesis and Lymph Node Metastasis in an Oral Cancer Sentinel Lymph Node Animal Model. Int J Mol Sci, 2021. 22(2).
121.Lee, H.J., et al., Cudraxanthone H Induces Growth Inhibition and Apoptosis in Oral Cancer Cells via NF-κB and PIN1 Pathways. Am J Chin Med, 2015. 43(7): p. 1439-52.
122.Ohnishi, Y., et al., Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade. Oncol Lett, 2020. 19(6): p. 4177-4182.
123.Jagetia, G.C. and B.B. Aggarwal, "Spicing up" of the immune system by curcumin. J Clin Immunol, 2007. 27(1): p. 19-35.
124.Qiu, Y., et al., Tanshinone IIA induces cell death via Beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med, 2018. 7(2): p. 397-407.
125.Guo, R., et al., Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. Drug Des Devel Ther, 2020. 14: p. 4735-4748.
126.Huang, Y.C., et al., Anticancer Effect and Mechanism of Hydroxygenkwanin in Oral Squamous Cell Carcinoma. Front Oncol, 2019. 9: p. 911.
127.Li, N., et al., Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. J Agric Food Chem, 2008. 56(10): p. 3876-83.
128.Tian, H., et al., Dioscin inhibits SCC15 cell proliferation via the RASSF1A/MST2/YAP axis. Mol Med Rep, 2021. 23(6).
129.Wu, M.M., et al., Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res, 2021. 172: p. 105796.
130.Yang, W.E., et al., Duchesnea indica extract attenuates oral cancer cells metastatic potential through the inhibition of the matrix metalloproteinase-2 activity by down-regulating the MEK/ERK pathway. Phytomedicine, 2019. 63: p. 152960.
131.Zhao, L., et al., Anti-inflammatory mechanism of a folk herbal medicine, Duchesnea indica (Andr) Focke at RAW264.7 cell line. Immunol Invest, 2008. 37(4): p. 339-57.
132.Liao, M.Y., et al., Antimetastatic effects of Eclipta prostrata extract on oral cancer cells. Environ Toxicol, 2018. 33(9): p. 923-930.
133.Morel, L.J.F., et al., A standardized methanol extract of Eclipta prostrata (L.) L. (Asteraceae) reduces bronchial hyperresponsiveness and production of Th2 cytokines in a murine model of asthma. J Ethnopharmacol, 2017. 198: p. 226-234.
134.Lee, Y.J., et al., XIAP inhibitor embelin induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells. Environ Toxicol, 2017. 32(11): p. 2371-2378.
135.Wang, H., et al., Embelin can protect mice from thioacetamide-induced acute liver injury. Biomed Pharmacother, 2019. 118: p. 109360.
136.Chung, T.T., et al., Tricetin suppresses human oral cancer cell migration by reducing matrix metalloproteinase-9 expression through the mitogen-activated protein kinase signaling pathway. Environ Toxicol, 2017. 32(11): p. 2392-2399.
137.Cai, L., et al., Natural flavone tricetin suppresses oxidized LDL-induced endothelial inflammation mediated by Egr-1. Int Immunopharmacol, 2020. 80: p. 106224.
138.Lim, W., et al., Dichloromethane fraction from Gardenia jasminoides: DNA topoisomerase 1 inhibition and oral cancer cell death induction. Pharm Biol, 2010. 48(12): p. 1354-60.
139.Shen, B., et al., Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J Cell Mol Med, 2020. 24(9): p. 5097-5108.
140.Myoung, H., et al., Anti-cancer effect of genistein in oral squamous cell carcinoma with respect to angiogenesis and in vitro invasion. Cancer Sci, 2003. 94(2): p. 215-20.
141.Wei, T.T., et al., Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell, 2022. 185(10): p. 1676-1693.e23.
142.Yeh, C.M., et al., Geraniin inhibits oral cancer cell migration by suppressing matrix metalloproteinase-2 activation through the FAK/Src and ERK pathways. Environ Toxicol, 2019. 34(10): p. 1085-1093.
143.Bing, S.J., et al., Geraniin Promotes Recovery of Hematopoietic Cells after Radiation Injury. Am J Chin Med, 2017. 45(5): p. 1003-1016.
144.Wolter, K.G., et al., (-)-gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia, 2006. 8(3): p. 163-72.
145.Chen, C.W., et al., Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation, 2018. 41(6): p. 2265-2274.
146.Xiao, Y., et al., Resveratrol suppresses malignant progression of oral squamous cell carcinoma cells by inducing the ZNF750/RAC1 signaling pathway. Bioengineered, 2021. 12(1): p. 2863-2873.
147.Grive, K.J. and M.T. Sauerbrun-Cutler, Resveratrol improves granulosa cell activity through mitochondrial biogenesis. Fertil Steril, 2021. 115(4): p. 909-910.
148.Yuan, C.H., et al., Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling. Environ Toxicol, 2017. 32(3): p. 845-855.
149.Xu, Y.Q., Y. Gao, and D. Granato, Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem, 2021. 339: p. 128060.
150.Lu, K.W., et al., Gypenosides induce cell death and alter gene expression in human oral cancer HSC-3 cells. Exp Ther Med, 2017. 14(3): p. 2469-2476.
151.Duan, H., et al., Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res, 2021. 168: p. 105599.
152.Li, T. and L. Wang, Riparsaponin isolated from Homonoia riparia Lour induces apoptosis of oral cancer cells. Oncol Lett, 2017. 14(6): p. 6841-6846.
153.Chung, H.H., et al., Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells. Environ Toxicol, 2017. 32(6): p. 1765-1774.
154.Dzoyem, J.P. and J.N. Eloff, Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J Ethnopharmacol, 2015. 160: p. 194-201.
155.Min, R., et al., Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by Shikonin was partly through the inactivation of NF-kappaB pathway. Phytother Res, 2008. 22(3): p. 407-15.
156.Guo, H., et al., Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother, 2019. 112: p. 108704.
157.Huang, J.S., et al., Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer, 2016. 16: p. 245.
158.Rauf, A., et al., Honokiol: A review of its pharmacological potential and therapeutic insights. Phytomedicine, 2021. 90: p. 153647.
159.Shams, A., et al., Naturally Isolated Sesquiterpene Lactone and Hydroxyanthraquinone Induce Apoptosis in Oral Squamous Cell Carcinoma Cell Line. Cancers (Basel), 2023. 15(2).
160.Lee, S.H., Y.C. Cho, and J.S. Lim, Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation. Int J Mol Sci, 2021. 22(4).
161.Utaipan, T., et al., Carbazole alkaloids from Murraya koenigii trigger apoptosis and autophagic flux inhibition in human oral squamous cell carcinoma cells. J Nat Med, 2017. 71(1): p. 158-169.
162.Wang, J., et al., Chemomodulatory effect of neferine on DMBA-induced squamous cell carcinogenesis: Biochemical and molecular approach. Environ Toxicol, 2021. 36(4): p. 460-471.
163.Chiu, K.M., et al., Anti-Allergic and Anti-Inflammatory Effects of Neferine on RBL-2H3 Cells. Int J Mol Sci, 2021. 22(20).
164.Zhao, J., et al., Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur J Pharmacol, 2019. 847: p. 11-18.
165.Arora, R., et al., Operculina turpethum extract inhibits growth and proliferation by inhibiting NF-κB, COX-2 and cyclin D1 and induces apoptosis by up regulating P53 in oral cancer cells. Arch Oral Biol, 2017. 80: p. 1-9.
166.Ahmad, R., et al., Operculina turpethum attenuates N-nitrosodimethylamine induced toxic liver injury and clastogenicity in rats. Chem Biol Interact, 2009. 181(2): p. 145-53.
167.Lee, H.Z., et al., Oxidative stress involvement in Physalis angulata-induced apoptosis in human oral cancer cells. Food Chem Toxicol, 2009. 47(3): p. 561-70.
168.Daltro, S.R.T., et al., In vitro and In Vivo Immunomodulatory Activity of Physalis angulata Concentrated Ethanolic Extract. Planta Med, 2021. 87(1-02): p. 160-168.
169.Hsieh, M.J., et al., Pinostilbene Hydrate Suppresses Human Oral Cancer Cell Metastasis by Downregulation of Matrix Metalloproteinase-2 Through the Mitogen-Activated Protein Kinase Signaling Pathway. Cell Physiol Biochem, 2018. 50(3): p. 911-923.
170.Zhou, G., et al., Pinostilbene hydrate suppresses hepatic stellate cell activation via inhibition of miR-17-5p-mediated Wnt/β-catenin pathway. Phytomedicine, 2020. 79: p. 153321.
171.Chen, M.K., et al., Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed Pharmacother, 2019. 117: p. 109160.
172.Jeong, E., et al., Pinosylvin induces cell survival, migration and anti-adhesiveness of endothelial cells via nitric oxide production. Phytother Res, 2013. 27(4): p. 610-7.
173.Choi, S.J., et al., Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules, 2019. 24(20).
174.Lu, J., et al., Pseudolaric acid B ameliorates synovial inflammation and vessel formation by stabilizing PPARγ to inhibit NF-κB signalling pathway. J Cell Mol Med, 2021. 25(14): p. 6664-6678.
175.Yang, J., et al., Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed Pharmacother, 2018. 100: p. 226-232.
176.Yang, Y., et al., Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis, 2019. 10(2): p. 128.
177.Yang, J.S., et al., Suppression of the TNF-alpha level is mediated by Gan-Lu-Yin (traditional Chinese medicine) in human oral cancer cells through the NF-kappa B, AKT, and ERK-dependent pathways. Environ Toxicol, 2016. 31(10): p. 1196-205.
178.Inagaki, Y., et al., Gan-Lu-Yin (Kanroin), Traditional Chinese Herbal Extracts, Reduces Osteoclast Differentiation In Vitro and Prevents Alveolar Bone Resorption in Rat Experimental Periodontitis. J Clin Med, 2021. 10(3).
179.Chen, Y.Y., et al., Antimetastatic effects of Rheum palmatum L. extract on oral cancer cells. Environ Toxicol, 2017. 32(10): p. 2287-2294.
180.Keser, S., et al., Bioactive contents, In vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum ribes L.) extracts. Nat Prod Res, 2020. 34(23): p. 3353-3357.
181.Lin, C.W., et al., Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ Toxicol, 2019. 34(9): p. 983-991.
182.Dhakal, H., et al., Ursolic acid inhibits FcεRI-mediated mast cell activation and allergic inflammation. Int Immunopharmacol, 2021. 99: p. 107994.
183.Huang, Y.W., et al., Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway. Environ Toxicol, 2017. 32(3): p. 1037-1046.
184.Zhou, L., et al., Isolation of enantiomeric furolactones and furofurans from Rubus idaeus L. with neuroprotective activities. Phytochemistry, 2019. 164: p. 122-129.
185.Yang, C.Y., et al., Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells. BMC Complement Altern Med, 2017. 17(1): p. 555.
186.Li, Z.M., S.W. Xu, and P.Q. Liu, Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin, 2018. 39(5): p. 802-824.
187.Wang, W.H., et al., Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells. Evid Based Complement Alternat Med, 2017. 2017: p. 5364010.
188.Kim, D.R., et al., Protective effect of Salvia miltiorrhiza Bunge on 5-fluorouracil-induced oral mucositis. Int J Mol Med, 2017. 40(1): p. 39-46.
189.Chuang, C.Y., et al., Salvianolic acid A suppresses MMP-2 expression and restrains cancer cell invasion through ERK signaling in human nasopharyngeal carcinoma. J Ethnopharmacol, 2020. 252: p. 112601.
190.Kumar, V.B., et al., Sodium Danshensu Inhibits Oral Cancer Cell Migration and Invasion by Modulating p38 Signaling Pathway. Front Endocrinol (Lausanne), 2020. 11: p. 568436.
191.Zhang, Q.Z., et al., Sodium Danshensu promotes the healing of stage 2 pressure injury wounds in ischemia/reperfusion injury rat models: possible regulation of apoptosis and inflammatory response. J Tradit Chin Med, 2021. 41(4): p. 571-580.
192.Moon, S.M., et al., Anticancer activity of Saussurea lappa extract by apoptotic pathway in KB human oral cancer cells. Pharm Biol, 2013. 51(11): p. 1372-7.
193.Tag, H.M., et al., Evaluation of anti-inflammatory potential of the ethanolic extract of the Saussurea lappa root (costus) on adjuvant-induced monoarthritis in rats. J Basic Clin Physiol Pharmacol, 2016. 27(1): p. 71-8.
194.Choi, B.B., et al., Scutellariae radix induces apoptosis in chemoresistant SCC-25 human tongue squamous carcinoma cells. Am J Chin Med, 2015. 43(1): p. 167-81.
195.Chiu, C.H., et al., Chloroform Extract of Solanum lyratum Induced G0/G1 Arrest via p21/p16 and Induced Apoptosis via Reactive Oxygen Species, Caspases and Mitochondrial Pathways in Human Oral Cancer Cell Lines. Am J Chin Med, 2015. 43(7): p. 1453-69.
196.Kuo, W.W., et al., Crude extracts of Solanum lyratum protect endothelial cells against oxidized low-density lipoprotein-induced injury by direct antioxidant action. J Vasc Surg, 2009. 50(4): p. 849-60.
197.Uen, W.C., et al., Inhibition of aqueous extracts of Solanum nigrum (AESN) on oral cancer through regulation of mitochondrial fission. J Tradit Complement Med, 2018. 8(1): p. 220-225.
198.Hsieh, C.C., H.L. Fang, and W.C. Lina, Inhibitory effect of Solanum nigrum on thioacetamide-induced liver fibrosis in mice. J Ethnopharmacol, 2008. 119(1): p. 117-21.
199.Harada, K., et al., Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Int J Oncol, 2009. 35(5): p. 1025-35.
200.Murakami, K., K. Okajima, and M. Uchiba, The prevention of lipopolysaccharide-induced pulmonary vascular injury by pretreatment with cepharanthine in rats. Am J Respir Crit Care Med, 2000. 161(1): p. 57-63.
201.Ezhilarasan, D., V.S. Apoorva, and N. Ashok Vardhan, Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med, 2019. 48(2): p. 115-121.
202.Song, J.G., et al., Phloroglucinol-derived lipids from the leaves of Syzygium cumini and their neuroprotective activities. Fitoterapia, 2021. 153: p. 104968.
203.Oh, J.S., et al., Formononetin induces apoptotic cell death through the suppression of mitogen‑activated protein kinase and nuclear factor‑κB phosphorylation in FaDu human head and neck squamous cell carcinoma cells. Oncol Rep, 2020. 43(2): p. 700-710.
204.Lin, F.Z., et al., Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway. Phytomedicine, 2019. 54: p. 1-8.
205.Zhou, Y., et al., Celastrol Protects RPE Cells from Oxidative Stress-Induced Cell Death via Activation of Nrf2 Signaling Pathway. Curr Mol Med, 2019. 19(3): p. 172-182.
206.Ko, C.P., et al., Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol, 2015. 51(6): p. 593-601.
207.Li, Y.R., S. Li, and C.C. Lin, Effect of resveratrol and pterostilbene on aging and longevity. Biofactors, 2018. 44(1): p. 69-82.
208.Pouyfung, P., et al., Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine, 2019. 52: p. 238-246.
209.Yen, C.Y., et al., Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage. BMC Complement Altern Med, 2015. 15: p. 94.
210.Huang, C. and Y. Yu, Synergistic Cytotoxicity of β-Elemene and Cisplatin in Gingival Squamous Cell Carcinoma by Inhibition of STAT3 Signaling Pathway. Med Sci Monit, 2017. 23: p. 1507-1513.
211.Jiang, Z., et al., β-Elemene: Mechanistic Studies on Cancer Cell Interaction and Its Chemosensitization Effect. Front Pharmacol, 2017. 8: p. 105.
212.Kang, H.J. and Y.J. Jang, Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation. Int J Oral Sci, 2012. 4(2): p. 78-84.
213.Tomczak, K., P. Czerwińska, and M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015. 19(1a): p. A68-77.
214.Panche, A.N., A.D. Diwan, and S.R. Chandra, Flavonoids: an overview. J Nutr Sci, 2016. 5: p. e47.
215.Singh, S., et al., Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol, 2021. 189: p. 114409.
216.Karimian, A., Y. Ahmadi, and B. Yousefi, Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst), 2016. 42: p. 63-71.
217.Plesca, D., S. Mazumder, and A. Almasan, DNA damage response and apoptosis. Methods Enzymol, 2008. 446: p. 107-22.
218.Kitazumi, I. and M. Tsukahara, Regulation of DNA fragmentation: the role of caspases and phosphorylation. Febs j, 2011. 278(3): p. 427-41.
219.Lu, W. and Y. Kang, Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell, 2019. 49(3): p. 361-374.
220.Gupta, S.K., et al., Role of Vimentin and E-cadherin Expression in Premalignant and Malignant Lesions of Oral Cavity. Indian Journal of Otolaryngology and Head & Neck Surgery, 2022. 74(3): p. 350-355.
221.Gezici, S. and N. Şekeroğlu, Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents. Anticancer Agents Med Chem, 2019. 19(1): p. 101-111.
222.Butler, M.S., The role of natural product chemistry in drug discovery. J Nat Prod, 2004. 67(12): p. 2141-53.
223.Chuang, C.Y., et al., PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep, 2017. 38(2): p. 1115-1123.
224.Han, Y., et al., Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights, 2015. 9(Suppl 1): p. 29-46.
225.Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12.
226.Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
227.Sharma, A., K. Singh, and A. Almasan, Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol, 2012. 920: p. 613-26.
228.Fragkos, M., J. Jurvansuu, and P. Beard, H2AX is required for cell cycle arrest via the p53/p21 pathway. Mol Cell Biol, 2009. 29(10): p. 2828-40.
229.Nijkamp, M.M., et al., Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol, 2011. 99(3): p. 344-8.
230.Song, Y., et al., Restoring E-cadherin Expression by Natural Compounds for Anticancer Therapies in Genital and Urinary Cancers. Mol Ther Oncolytics, 2019. 14: p. 130-138.
231.Aung, T.N., et al., Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int J Mol Sci, 2017. 18(3).
232.Anwar, D.M., et al., Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. Expert Opin Drug Deliv, 2021. 18(11): p. 1609-1625.
指導教授 許藝瓊(Yi-Chiung Hsu) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明