博碩士論文 110826005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.138.105.124
姓名 陳璟宜(Ching-Yi Chen)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 黑色素瘤細胞的外泌體對角質細胞繼發性腫瘤進展的影響之研究
(Study of the effects of exosomes derived from melanoma cells on secondary tumor progression in keratinocytes)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-20以後開放)
摘要(中) 黑色素瘤是最具侵襲性的皮膚癌,標靶藥物 Vemurafenib (PLX4032)為 BRAFV600E突變的黑色素瘤之抑制劑。然而,黑色素瘤患者在經過 PLX4032 治療後出現了不良反應,包括抗藥性黑色素瘤及繼發性腫瘤。大多數的繼發性腫瘤有 21%-60% 屬於 RAS 突變,而增加 BRAF-CRAF 異二聚體的表現以激活 MEK/ERK 通路。PLX8394 為另一種新型 BRAFV600E 的抑制劑,可以抑制 BRAF-CRAF 異二聚體的表現。BRAFV600E抑制劑造成的繼發性腫瘤進展及機制尚不明確。因此,我們想要了解 BRAFV600E 抑製劑治療的黑色素瘤釋放的外泌體是否影響正常角質細胞及表皮細胞的繼發性腫瘤進展。在這次研究中,我們將 PLX4032 或 PLX8394 處理的角質細胞、上皮細胞、黑色素瘤細胞和 PLX4032 抗藥性黑色素瘤細胞所收集的條件培養基 (CM)處理角質細胞和上皮細胞,進行細胞的功能測定。從結果中觀察到用 PLX4032 處理的黑色素瘤細胞增加了角質細胞的遷移以及表皮細胞致瘤性。重要的是,與親代黑色素瘤細胞相比,經過PLX4032 處理的抗藥性黑色素瘤細胞的 CM 培養的角質細胞遷移能力顯著增加。相反,
角質細胞的遷移不受 PLX8394 處理的親代或抗性黑色素瘤細胞的 CM 培養的影響。
外泌體可以運輸物質,包括 DNA、RNA、miRNA 和蛋白質。我們從黑色素瘤的 CM 中純化了外泌體,並發現了角質細胞遷移能力增加與黑色素瘤細胞的外泌體轉移有關。此外,用 PLX4032 處理的黑色素瘤釋放出的外泌體增加了角質細胞的 BRAF-CRAF 異二聚體表達。最後,我們還從轉染了miR-567 的黑色素瘤細胞收集 CM,並觀察到轉染 miR-567 的黑色素瘤可以降低角質細胞的遷移能力。
綜合上述結果,PLX4032 處理的黑色素瘤細胞的外泌體增強了角質細胞的遷移能力和 BRAF-CRAF 異二聚體表達,相反地, PLX8394 處理的黑色素瘤細胞的外泌體與PLX4032 相比可以降低角質細胞的遷移及 BRAF-CRAF異二聚體表達趨勢。這些結果代表黑色素瘤釋放出來的外泌體在繼發性腫瘤進展中扮演關鍵角色。
摘要(英) Melanoma is the most aggressive form of skin cancer. Vemurafenib (PLX4032) is an inhibitor of the V600E mutant form of BRAF gene (BRAFV600E) for the treatment of melanoma. However, melanoma patients treated with PLX4032 cause adverse reactions including resistance and the formation of secondary tumor. Most of the secondary tumors have 21%-60% RAS mutations, which enhances the BRAF-CRAF heterodimer formation to activate the MEK/ERK pathway. PLX8394, a novel BRAFV600E inhibitor, could inhibit BRAF-CRAF interaction. BRAFV600E inhibitor-induced secondary tumor development are not fully defined. Therefore, we hypothesized that exosomes released from melanoma treated with BRAFV600E inhibitors may affect the progression of secondary tumors which are originated from normal keratinocytes, epidermal cells.
In this study, the conditioned medium (CM) collected from keratinocytes, epithelial, melanoma cells and PLX4032-resistant melanoma cells treated with BRAFV600E inhibitor,
PLX4032 or PLX8394, were used to treat keratinocyte and epithelial cells to perform cell-based functional assay. The results showed that melanoma cells treated with PLX4032 enhanced the migration, anchorage-independent growth of keratinocyte or epidermal cells. Importantly, the migrative ability of keratinocyte cells cultured with the CM from resistant melanoma cells treated with PLX4032 was increased significantly as compared to parental melanoma cells. In
contrast, tumorigenesis of keratinocyte cells was not affected by cultured with the CM from parental or resistant melanoma cells treated with PLX8394.
Exosomes can transport cargo, including DNA, RNA, miRNA and proteins. We purified exosomes from CM and revealed the mechanism of the enhanced migration activity on keratinocytes are linked to exosomes transferred from melanoma cells. Moreover, exosomes derived from melanoma treated with PLX4032 increase BRAF-CRAF heterodimer expression of keratinocytes. Finally, we also collected CM from melanoma cells overexpressed miR-567 and observed that melanoma overexpression of miR-567 could decrease migration activity on keratinocytes.
In conclusion, exosomes derived from melanoma cells treated with PLX4032 enhanced migrative ability and BRAF-CRAF heterodimer expression of keratinocytes, in contrast, exosomes derived from melanoma cells treated with PLX8394 decreased migrative ability and BRAF-CRAF heterodimer expression of keratinocytes compared to melanoma cells treated with PLX4032. These results suggest that exosomes released from melanoma play a key role in secondary tumors progression.
關鍵字(中) ★ 黑色素瘤
★ 外泌體
★ 繼發性腫瘤
關鍵字(英) ★ Melanoma
★ Exosomes
★ Secondary tumor
論文目次 摘要 i
Abstract ii
誌 謝 iv
目 錄 vi
圖目錄 viii
表目錄 ix
Abbreviation list x
一、介紹 1
1. 黑色素瘤 (Melanoma) 1
1-1 皮膚癌 (Skin cancer) 1
1-2 黑色素瘤與形成機制(Mechanisms of melanoma formation) 2
1-3 黑色素瘤的治療 (Treatment) 4
2. BRAF抑制劑(BRAF inhibitor) 5
2-1 BRAF抑制劑機制 (Mechanism of BRAF inhibitor) 5
2-2 BRAF抑制劑引起的不良反應(Adverse reactions of BRAF inhibitors) 7
3. 腫瘤微環境(Tumor microenvironment) 7
3-1 腫瘤微環境(Tumor microenvironment) 7
3-2 黑色素瘤外泌體(Exosomes from melanoma) 8
4. 微型RNA(MicroRNA) 9
4-1 微型RNA(miRNA) 9
4-2 miR-567 9
5. 研究目的(Purpose) 9
二、材料與方法 11
1.細胞培養 (cell culture) 11
2.miRNA轉染 (Transfection) 11
3.條件培養基收集 (Conditioned-medium collection) 11
4.蛋白質收集 (Protein extraction) 11
5.西方墨點法 (Western blot) 12
6.細胞傷口癒合實驗 (Wound healing assay) 12
7.細胞軟瓊脂集落形成 (Soft agar assay) 12
8.製備移除外泌體的培養基 (Preparation of Exosome-Depleted BSA Culture Medium) 13
9.細胞外泌體純化 (Exosome isolation) 13
10.免疫沉澱 (Immunoprecipitation) 13
11.統計(Statistics) 14
三、結果 15
1.黑色素瘤的條件培養基增加角質細胞的遷移能力 15
2.黑色素瘤的條件培養基對上皮細胞的存活的影響 16
3.黑色素瘤釋放的外泌體增加角質細胞的遷移能力 16
4.黑色素瘤釋放的外泌體增加角質細胞BRAF-CRAF二聚體的表現 17
5.miR-567降低黑色素瘤的條件培養基對角質細胞的遷移能力 18
四、結論 19
五、討論 20
1.BRAF inhibitor處理黑色素瘤細胞對於正常皮膚細胞功能的改變 20
2.BRAF inhibitor處理黑色素瘤外泌體造成繼發性腫瘤之機制 20
3. BRAF inhibitor處理黑色素瘤的外泌體是否影響角質細胞遷移 21
4.外泌體中的miRNA是否影響角質細胞功能 22
5.黑色素瘤治療的發展及應用 22
六、參考文獻 24
參考文獻 1. Zafar M, Sharif MI, Sharif MI, Kadry S, Bukhari SAC, Rauf HT: Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey. Life (Basel) 2023, 13(1).
2. Squamous Cell Carcinoma Of The Skin. Mayo Foundation for Medical Education and Research 2021.
3. Aggarwal P, Knabel P, Fleischer AB, Jr.: United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol 2021, 85(2):388-395.
4. Cencer TCR: CANCER REGISTRY ANNUAL REPORT, TAIWAN. 2020.
5. Ugurel S, Gutzmer R: Melanom. J Dtsch Dermatol Ges 2023.
6. Garutti M, Targato G, Buriolla S, Palmero L, Minisini AM, Puglisi F: CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. Cells 2021, 10(6).
7. Carcamo S, Nguyen CB, Grossi E, Filipescu D, Alpsoy A, Dhiman A, Sun D, Narang S, Imig J, Martin TC et al: Altered BAF occupancy and transcription factor dynamics in PBAF-deficient melanoma. Cell Rep 2022, 39(1):110637.
8. Cabrita R, Mitra S, Sanna A, Ekedahl H, Lovgren K, Olsson H, Ingvar C, Isaksson K, Lauss M, Carneiro A et al: The Role of PTEN Loss in Immune Escape, Melanoma Prognosis and Therapy Response. Cancers (Basel) 2020, 12(3).
9. Munoz-Couselo E, Garcia JS, Perez-Garcia JM, Cebrian VO, Castan JC: Recent advances in the treatment of melanoma with BRAF and MEK inhibitors. Ann Transl Med 2015, 3(15):207.
10. Bhatia P, Friedlander P, Zakaria EA, Kandil E: Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med 2015, 3(2):24.
11. Shaughnessy M, Klebanov N, Tsao H: Clinical and therapeutic implications of melanoma genomics. Journal of Translational Genetics and Genomics 2018, 2:14.
12. Domingues B, Lopes JM, Soares P, Populo H: Melanoma treatment in review. Immunotargets Ther 2018, 7:35-49.
13. Dummer R, Hauschild A, Guggenheim M, Keilholz U, Pentheroudakis G, Group EGW: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012, 23 Suppl 7:vii86-91.
14. Luke JJ, Schwartz GK: Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin Dermatol 2013, 31(3):290-297.
15. Davar D, Ding F, Saul M, Sander C, Tarhini AA, Kirkwood JM, Tawbi HA: High-dose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. J Immunother Cancer 2017, 5(1):74.
16. Knight A, Karapetyan L, Kirkwood JM: Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers (Basel) 2023, 15(4).
17. Proietti I, Skroza N, Michelini S, Mambrin A, Balduzzi V, Bernardini N, Marchesiello A, Tolino E, Volpe S, Maddalena P et al: BRAF Inhibitors: Molecular Targeting and Immunomodulatory Actions. Cancers (Basel) 2020, 12(7).
18. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M et al: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011, 364(26):2507-2516.
19. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA: MEK Inhibitors in the Treatment of Metastatic Melanoma and Solid Tumors. Am J Clin Dermatol 2017, 18(6):745-754.
20. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, Halilovic E, Persaud Y, Xing F, Viale A et al: The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A 2010, 107(33):14903-14908.
21. Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S, Krauthammer M, McCusker JP, Kluger Y, Sznol M: PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 2010, 23(2):190-200.
22. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N: RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010, 464(7287):427-430.
23. Yao Z, Gao Y, Su W, Yaeger R, Tao J, Na N, Zhang Y, Zhang C, Rymar A, Tao A et al: RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med 2019, 25(2):284-291.
24. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P: Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012, 11(11):873-886.
25. Tangella LP, Clark ME, Gray ES: Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim Biophys Acta Gen Subj 2021, 1865(1):129736.
26. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, Wood E, Fedorenko IV, Sondak VK, Anderson AR et al: PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 2011, 71(7):2750-2760.
27. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J et al: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012, 487(7408):505-509.
28. Shen CH, Kim SH, Trousil S, Frederick DT, Piris A, Yuan P, Cai L, Gu L, Li M, Lee JH et al: Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nat Med 2016, 22(9):1056-1061.
29. Gencler B, Gonul M: Cutaneous Side Effects of BRAF Inhibitors in Advanced Melanoma: Review of the Literature. Dermatol Res Pract 2016, 2016:5361569.
30. Boussemart L, Girault I, Malka-Mahieu H, Mateus C, Routier E, Rubington M, Kamsu-Kom N, Thomas M, Tomasic G, Agoussi S et al: Secondary Tumors Arising in Patients Undergoing BRAF Inhibitor Therapy Exhibit Increased BRAF-CRAF Heterodimerization. Cancer Res 2016, 76(6):1476-1484.
31. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P: Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020, 18(1):59.
32. Doyle LM, Wang MZ: Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8(7).
33. Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA: Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front Physiol 2020, 11:604274.
34. Lattmann E, Levesque MP: The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022, 14(13).
35. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18(6):883-891.
36. Biagioni A, Laurenzana A, Menicacci B, Peppicelli S, Andreucci E, Bianchini F, Guasti D, Paoli P, Serrati S, Mocali A et al: uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cell Mol Life Sci 2021, 78(6):3057-3072.
37. Garcia-Silva S, Benito-Martin A, Nogues L, Hernandez-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximenez-Embun P, Kataru RP, Lopez AA et al: Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nat Cancer 2021, 2(12):1387-1405.
38. Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, Zacharias W, Hao H, McMasters KM: Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One 2012, 7(10):e46874.
39. O‵Brien J, Hayder H, Zayed Y, Peng C: Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018, 9:402.
40. Varrone F, Caputo E: The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020, 21(3).
41. Luan W, Ding Y, Xi H, Ruan H, Lu F, Ma S, Wang J: Exosomal miR-106b-5p derived from melanoma cell promotes primary melanocytes epithelial-mesenchymal transition through targeting EphA4. J Exp Clin Cancer Res 2021, 40(1):107.
42. Bertoli G, Cava C, Diceglie C, Martelli C, Rizzo G, Piccotti F, Ottobrini L, Castiglioni I: MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration. Breast Cancer Res Treat 2017, 161(3):605-616.
43. Elkady MA, Doghish AS, Elshafei A, Elshafey MM: MicroRNA-567 inhibits cell proliferation and induces cell apoptosis in A549 NSCLC cells by regulating cyclin-dependent kinase 8. Saudi J Biol Sci 2021, 28(4):2581-2590.
44. Liu D, Zhang C, Li X, Zhang H, Pang Q, Wan A: MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma. EXCLI J 2018, 17:102-112.
45. Ma Y, Xue H, Wang W, Yuan Y, Liang F: The miR-567/RPL15/TGF-beta/Smad axis inhibits the stem-like properties and chemo-resistance of gastric cancer cells. Transl Cancer Res 2020, 9(5):3539-3549.
46. Han M, Hu J, Lu P, Cao H, Yu C, Li X, Qian X, Yang X, Yang Y, Han N et al: Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis 2020, 11(1):43.
47. Nguyen MT, Lin CH, Liu SM, Miyashita A, Ihn H, Lin H, Ng CH, Tsai JC, Chen MH, Tsai MS et al: miR-524-5p reduces the progression of the BRAF inhibitor-resistant melanoma. Neoplasia 2020, 22(12):789-799.
48. Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D: ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014, 9(3):e92444.
49. Dominska K, Kowalska K, Urbanek KA, Habrowska-Gorczynska DE, Ochedalski T, Piastowska Ciesielska AW: The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes. Int J Mol Sci 2020, 21(17).
50. O‵Donnell JL, Joyce MR, Shannon AM, Harmey J, Geraghty J, Bouchier-Hayes D: Oncological implications of hypoxia inducible factor-1alpha (HIF-1alpha) expression. Cancer Treat Rev 2006, 32(6):407-416.
51. Huang C, Jacobson K, Schaller MD: MAP kinases and cell migration. J Cell Sci 2004, 117(Pt 20):4619-4628.
52. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C et al: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010, 140(2):209-221.
53. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT et al: RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 2012, 366(3):207-215.
54. Shelke GV, Lasser C, Gho YS, Lotvall J: Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 2014, 3.
55. Patel H, Mishra R, Yacoub N, Alanazi S, Kilroy MK, Garrett JT: IGF1R/IR Mediates Resistance to BRAF and MEK Inhibitors in BRAF-Mutant Melanoma. Cancers (Basel) 2021, 13(22).
56. Santos Apolonio J, Lima de Souza Goncalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF: Oncolytic virus therapy in cancer: A current review. World J Virol 2021, 10(5):229-255.
57. Rezaie J, Feghhi M, Etemadi T: A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal 2022, 20(1):145.
指導教授 馬念涵(Nianhan Ma) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明