參考文獻 |
[1] J. Puig-Suari, C. Turner and W. Ahlgren, Development of the standard CubeSat deployer and a CubeSat class PicoSatellite, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), Big Sky, MT, USA, 2001, pp. 1/347-1/353 vol.1, doi:10.1109/AERO.2001.931726.
[2] The CubeSat Program, Cal Poly SLO. CubeSat Design Specification (CDS) Rev 14. San Luis Obispo, California, 2022.
[3] The CubeSat: Small Satellites for Big Ideas. (2023, March 15). GISGeography. https://gisgeography.com/cubesat/
[4] R, H. S., D, V. L., & K, B. L. (2017). NASA SYSTEMS ENGINEERING HANDBOOK. [Washington, D.C. United States] (NASA/SP-2016-6105 Rev 2). National Aeronautics and Space Administration
[5] Millan, R. M., Steiger, R. V., Ariel, M., Bartalev, S., Borgeaud, M., & Campagnola, S. (2019). Small Satellites for Space Science: A COSPAR Scientific Roadmap. Advances in Space Research, 64(8), 1466–1517. https://doi.org/https://doi.org/10.1016/j.asr.2019.07.035
[6] M. N. Sweeting. (2018). Modern Small Satellites-Changing the Economics of Space. IEEE, 106(3), 343–361. https://doi.org/10.1109/JPROC.2018.2806218.
[7] Wertz, J. R., & Larson, W. J. (n.d.). Space Mission Analysis and Design (third edition).
[8] Markley, F. Landis, &Crassidis, John L(2014). Fundamentals of Spacecraft Attitude Determination and Control. Springer Verlag.
[9] California Polytechnic State University, San Luis Obispo (Cal Poly) CubeSat Systems Engineer Lab. CubeSat101:Basic Concepts and Processes for First-Time CubeSat Developers (AIAA Education Series). (2017). NASA CubeSat Launch Initiative.
[10] Yost, B., & Weston, S. (2023). State-of-the-Art Small Spacecraft Technology. National Aeronautics and Space Administration.
[11] J. Wertz, Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 1978.
[12] Bouras, M., & Berbia, H. (2019).Review of Attitude Control Approaches for ADCS Optimization and Faults Tolerance, 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 1–4. doi: 10.1109/ICMSAO.2019.8880358.
[13] Chen, X., Hashida, Y., Hodgart, S., & Steyn, W. h. (1999). Optimal Combined Reaction-Wheel Momentum Management for Earth-Pointing Satellites. Journal of Guidance, Control, and Dynamics, 22(4), 1–4. https://doi.org/10.2514/2.4431
[14] Arcus ADCS. (2023, January 13).
https://satsearch.co/products/arcsec-arcus-adcs
[15] IADCS-100 [Cubesat Components]. (n.d.). Berlin Space Technologies. https://www.berlin-space-tech.com/portfolio/iadcs/
[16] CubeSat & SmallSat ADCS Solutions. (2022, March 30). AAC Clyde Space. https://www.aac-clyde.space/what-we-do/space-products-components/adcs
[17] Blue Canyon Technologies Attitude Control Systems. (n.d.). Blue Canyon Technologies. https://www.aac-clyde.space/what-we-do/space-products-components/adcs
[18] CubeADCS Gen 1. (n.d.). CubeSpace Satellite Systems. https://www.cubespace.co.za/products/gen-1/integrated-adcs/cubeadcs/
[19] Baker, D. n, & Chandran, A. (2018). Space, Still the Final Frontier. Science, 361(6399), 207. https://doi.org/10.1126/science.aau763
[20] Lin, P. A., Cheng, K. L., Yu, T. J., Wang, R. Y., Hsieh, Y. C., Gacal, glenn Franco, Denduonghatai, S., Tu, H. I., Wang, Y. S., Ciou, G. P., & Chang, L. C. (n.d.). The Preliminary Design of SCIntillation and IONosphere - EXtended: SCION-X – A 12U CubeSat for Ionospheric and Atmospheric. International Conference on Astronautics and Space Exploration 2021.
[21] Ionosphere. (n.d.). Ionosphere | NOAA / NWS Space Weather Prediction Center. https://www.swpc.noaa.gov/phenomena/ionosphere
[22] Kelly, M. A., J. M. Comberiate, E. S. Miller, and L. J. Paxton (2014), Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda, Space Weather, 12, 601–611, doi:10.1002/2014SW001081.
[23] Lin, Z. W., C. K. Chao, J. Y. Liu. C. M. Huang, Y. H. Chu, C. L. Su, Y. C. Mao, and Y. S. Chang(2017): Advanced Ionospheric Probe scientific mission onboard FOR- MOSAT-5 satellite. Terr. Atmos. Ocean. Sci., 28, 99-110, doi: 10.3319/ TAO.2016.09.14.01(EOF5)
[24] SCIONX-PDR-Report. (n.d.). https://docs.google.com/document/d/10Z1MOT4zLfJG50vHf2YMd8ZDlIYTgLsr/edit?usp=drive_web&ouid=105592675898439541991&rtpof=true
[25] SCION-X Requirements. (n.d.). https://docs.google.com/spreadsheets/d/18GAG0KdzPTSSBx_Zg8RMVGlb9tTNc-9-/edit#gid=1400666597
[26] Lavezzi, G. (2018). Image Processing of Multiclass Satellite Tracklets for Initial Orbit Determination Based on Optical Telescopes.
[27] Bevilacqua, R., Romano, M., Curti, F., Caprari, A. P., & Pellegrini, V. (2011). Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation. International Journal of Aerospace Engineering, 1687–5966.
[28] Ghose, K. (2012). MEMS Inertial Sensor to Measure the Gravity Gradient Torque in Orbit.
[29] Khalil, K. I., & Samwel, S. W. (2016). Effect of Air Drag Force on Low Earth Orbit Satellites During Maximum and Minimum Solar Activity. Space Research Journal, 9(1), 1–9. https://doi.org/10.3923/srj.2016.1.9
[30] COSPAR International Reference Atmosphere. (n.d.). https://books.google.com.tw/books?id=vczEAAAAIAAJ&hl=zh-TW&source=gbs_similarbooks
[31] Mahooti, M. (2022). Satellite Orbits: Models, Methods and Applications (Version 3.1.2).
[32] International Geomagnetic Reference Field: the 13th generation, Alken, P., Thébault, E., Beggan, C.D. et al. International Geomagnetic Reference Field: the thirteenth generation. Earth Planets Space 73, 49 (2021).doi: 10.1186/s40623-020-01288-x
[33] Moler, C. (n.d.). Numerical Computing with MATLAB. MathWorks. https://www.mathworks.com/moler/chapters.html
[34] Gallifent, J. wyss. (2021). MATH431: Gimbal Lock.
[35] Desouky, M. A. a., & Abdelkhalik, O. (2020). A New Variant of the B-Dot Control for Spacecraft Magnetic Detumbling. Acta Astronautica, 171, 14–22.
[36] SOLIDWORKS Simulation (2023). Kai-Jie Hou
zzx851203tw@gmail.com |