博碩士論文 108623019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.223.209.129
姓名 涂欣怡(HSIN I TU)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 鯨鯊號立方衛星姿態感測與控制次系統設計及模擬
(Design and Simulation of the Attitude Determination and Control Subsystem for SCION-X)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型★ 飛鼠號立方衛星之飛行軟體及韌體設計
★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-12以後開放)
摘要(中) 姿態感測與控制系統(ADCS)是一個非常重要的次系統,用於穩定在軌立方體衛星並確保其能成功指向所需的方向。本文將主要設計及模擬鯨鯊號(SCIONX)立方衛星的姿態感測與控制次系統。鯨鯊號(SCIONX)立方衛星是一顆科學任務衛星,搭載小型電離層探測器,主要是探測500 公里太陽同步圓軌道電離層中F 層不規則體和電離層擾動;以及搭載高光譜成像儀主要是探測日測下380 到1020 納米波長之間的可見光和近紅外電磁光譜來分析台灣上空PM 2.5 濃度測量值2.5 濃度測量值;並搭載微小型太
陽極紫外線光度計,主要是探測軌道附近電漿與太陽紫外光所產生之光電流;以及搭載自動位置回報系統來接收與轉發以AX.25 形式的數據封包。為了使鯨鯊號能夠完成科學觀測並將珍貴的觀測。為了使鯨鯊號能夠完成科學觀測並將珍貴的觀測資料下傳至地面站,姿態感測與控制次系統需要在不同的指向需求中將鯨鯊號指向所需的方向並完成其任務,本文使用MATLAB 之Simulink 建立真實太空環境擾動、軌道以及衛星動力學模型來模擬不同軌道週期下,鯨鯊號使用反應輪、磁力計以及磁力矩器在Detumbling、Local Velocity Local Horizon (LVLH) Pointing、Sun Pointing、Surface Target Pointing 指向需求下的控制模擬,並成功完成指向控制模式切換使衛星達到穩定狀態。
摘要(英) The Attitude Determination and Control Subsystem (ADCS) is a very important subsystem used to stabilize an in-orbit CubeSat and ensure it can be successfully pointed in the required direction. This thesis will mainly design and simulate the Attitude Determination and Control Subsystem for the SCintillation and IONosphere eXtended (SCION-X) CubeSat. The SCIONX 12U CubeSat is a scientific mission satellite, equipped with a Compact Ionosphere Probe (CIP), mainly to detect F-layer plasma irregularities and ionospheric disturbances in the ionosphere along a 500-kilometer sun-synchronous circular orbit; and equipped with a Hyper-SCAN, a hyperspectral imager to measure the visible and near-infrared electromagnetic spectrum between 380 and 1020 nanometer wavelengths to analyze PM 2.5 concentration
measurements over Taiwan, a Solar Extreme Ultraviolet Probe(SEUV) to measure photoelectric current along a 500-kilometer sun-synchronous circular orbit, and a Automatic
Packet Report System(APRS) Digipeater to receive and forward data packets in the form of AX.25. In order to enable SCION-X to complete scientific observations and download precious observation data to the ground station, the attitude sensing and control subsystem needs to point the spacecraft in the required direction and complete its tasks in different pointing requirements. This thesis uses MATLAB Simulink to implement real space environment disturbance torques, orbit, and satellite dynamics model to simulate different orbit periods. The SCION-X spacecraft uses reaction wheels, magnetometers, and magnetic torquer devices to achieve the requirements of detumbling, local velocity local horizon (LVLH) Pointing, Sun Pointing, and Surface Target Pointing, and successfully completed the pointing control mode switching to control the satellite to be in stable state, satisfying pointing requirements.
關鍵字(中) ★ 立方衛星
★ 姿態感測與控制系統
關鍵字(英) ★ CubeSat
★ Attitude Determination and Control Subsystem
論文目次 一、 緒論 1
1-1 前言 1
1-2 論文概要 3
二、 姿態感測與控制介紹 4
2-1 感測器 4
2-2 制動器 5
2-3 設計過程 6
2-4 控制方法 10
2-5 指向模式 13
2-6 硬體介紹及選擇 15
2-6-1 Arcsec 17
2-6-2 Berlin Space Technologies 17
2-6-3 AAC Clyde Space 17
2-6-4 Blue Canyon Technologies 18
2-6-5 CubeSpace Satellite Systems 18
2-6-6 性能統整 19
三、 鯨鯊號任務 22
3-1 鯨鯊號任務介紹 22
3-1-1 科學目標 22
3-1-2 任務需求 24
3-2 系統架構 25
3-2-1 鯨鯊號系統架構介紹 25
3-2-2 任務操作模式 28
3-3 姿態感測與控制次系統選擇 30
四、 數學模擬 32
4-1 座標系介紹 32
4-1-1 地球慣性座標系(Earth Center Inertial Coordinates, ECI) 32
4-1-2 地心地固座標系(Earth Center Earth Fixed Coordinates, ECEF) 32
4-1-3 軌道參考座標系(Local Vertical Local Horizontal) 33
4-1-4 衛星體座標系(Body Coordinates) 34
4-2 姿態表示 35
4-2-1 尤拉角 35
4-2-2 四元素法 36
4-3 環境擾動力矩 37
4-3-1 地球梯度力矩 38
4-3-2 空氣阻力力矩 41
4-3-3 磁力矩 42
4-3-4 太陽輻射壓力矩 43
4-4 衛星動力學 45
4-4-1 動力學方程式 45
4-4-2 運動學方程式 46
五、 CubeADCS模擬 48
5-1 模擬環境 48
5-1-1 CubeADCS硬體介紹 48
5-1-2 軌道參數 52
5-1-3 環境模型 53
5-2 模擬框架 56
5-2-1 B-dot control law 57
5-2-2 Pointing control law 58
5-3 模擬結果 60
5-3-1 環境力矩 60
5-3-2 反翻轉(de-tumbling) 64
5-3-3 指向模式 66
六、 結論與未來展望 80
參考文獻 82
附錄一 87
附錄二 88
附錄三[36] 93
參考文獻 [1] J. Puig-Suari, C. Turner and W. Ahlgren, Development of the standard CubeSat deployer and a CubeSat class PicoSatellite, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), Big Sky, MT, USA, 2001, pp. 1/347-1/353 vol.1, doi:10.1109/AERO.2001.931726.

[2] The CubeSat Program, Cal Poly SLO. CubeSat Design Specification (CDS) Rev 14. San Luis Obispo, California, 2022.

[3] The CubeSat: Small Satellites for Big Ideas. (2023, March 15). GISGeography. https://gisgeography.com/cubesat/

[4] R, H. S., D, V. L., & K, B. L. (2017). NASA SYSTEMS ENGINEERING HANDBOOK. [Washington, D.C. United States] (NASA/SP-2016-6105 Rev 2). National Aeronautics and Space Administration

[5] Millan, R. M., Steiger, R. V., Ariel, M., Bartalev, S., Borgeaud, M., & Campagnola, S. (2019). Small Satellites for Space Science: A COSPAR Scientific Roadmap. Advances in Space Research, 64(8), 1466–1517. https://doi.org/https://doi.org/10.1016/j.asr.2019.07.035

[6] M. N. Sweeting. (2018). Modern Small Satellites-Changing the Economics of Space. IEEE, 106(3), 343–361. https://doi.org/10.1109/JPROC.2018.2806218.

[7] Wertz, J. R., & Larson, W. J. (n.d.). Space Mission Analysis and Design (third edition).

[8] Markley, F. Landis, &Crassidis, John L(2014). Fundamentals of Spacecraft Attitude Determination and Control. Springer Verlag.

[9] California Polytechnic State University, San Luis Obispo (Cal Poly) CubeSat Systems Engineer Lab. CubeSat101:Basic Concepts and Processes for First-Time CubeSat Developers (AIAA Education Series). (2017). NASA CubeSat Launch Initiative.

[10] Yost, B., & Weston, S. (2023). State-of-the-Art Small Spacecraft Technology. National Aeronautics and Space Administration.

[11] J. Wertz, Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 1978.

[12] Bouras, M., & Berbia, H. (2019).Review of Attitude Control Approaches for ADCS Optimization and Faults Tolerance, 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 1–4. doi: 10.1109/ICMSAO.2019.8880358.

[13] Chen, X., Hashida, Y., Hodgart, S., & Steyn, W. h. (1999). Optimal Combined Reaction-Wheel Momentum Management for Earth-Pointing Satellites. Journal of Guidance, Control, and Dynamics, 22(4), 1–4. https://doi.org/10.2514/2.4431


[14] Arcus ADCS. (2023, January 13).
https://satsearch.co/products/arcsec-arcus-adcs

[15] IADCS-100 [Cubesat Components]. (n.d.). Berlin Space Technologies. https://www.berlin-space-tech.com/portfolio/iadcs/

[16] CubeSat & SmallSat ADCS Solutions. (2022, March 30). AAC Clyde Space. https://www.aac-clyde.space/what-we-do/space-products-components/adcs

[17] Blue Canyon Technologies Attitude Control Systems. (n.d.). Blue Canyon Technologies. https://www.aac-clyde.space/what-we-do/space-products-components/adcs

[18] CubeADCS Gen 1. (n.d.). CubeSpace Satellite Systems. https://www.cubespace.co.za/products/gen-1/integrated-adcs/cubeadcs/

[19] Baker, D. n, & Chandran, A. (2018). Space, Still the Final Frontier. Science, 361(6399), 207. https://doi.org/10.1126/science.aau763

[20] Lin, P. A., Cheng, K. L., Yu, T. J., Wang, R. Y., Hsieh, Y. C., Gacal, glenn Franco, Denduonghatai, S., Tu, H. I., Wang, Y. S., Ciou, G. P., & Chang, L. C. (n.d.). The Preliminary Design of SCIntillation and IONosphere - EXtended: SCION-X – A 12U CubeSat for Ionospheric and Atmospheric. International Conference on Astronautics and Space Exploration 2021.

[21] Ionosphere. (n.d.). Ionosphere | NOAA / NWS Space Weather Prediction Center. https://www.swpc.noaa.gov/phenomena/ionosphere

[22] Kelly, M. A., J. M. Comberiate, E. S. Miller, and L. J. Paxton (2014), Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda, Space Weather, 12, 601–611, doi:10.1002/2014SW001081.

[23] Lin, Z. W., C. K. Chao, J. Y. Liu. C. M. Huang, Y. H. Chu, C. L. Su, Y. C. Mao, and Y. S. Chang(2017): Advanced Ionospheric Probe scientific mission onboard FOR- MOSAT-5 satellite. Terr. Atmos. Ocean. Sci., 28, 99-110, doi: 10.3319/ TAO.2016.09.14.01(EOF5)

[24] SCIONX-PDR-Report. (n.d.). https://docs.google.com/document/d/10Z1MOT4zLfJG50vHf2YMd8ZDlIYTgLsr/edit?usp=drive_web&ouid=105592675898439541991&rtpof=true

[25] SCION-X Requirements. (n.d.). https://docs.google.com/spreadsheets/d/18GAG0KdzPTSSBx_Zg8RMVGlb9tTNc-9-/edit#gid=1400666597

[26] Lavezzi, G. (2018). Image Processing of Multiclass Satellite Tracklets for Initial Orbit Determination Based on Optical Telescopes.

[27] Bevilacqua, R., Romano, M., Curti, F., Caprari, A. P., & Pellegrini, V. (2011). Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation. International Journal of Aerospace Engineering, 1687–5966.

[28] Ghose, K. (2012). MEMS Inertial Sensor to Measure the Gravity Gradient Torque in Orbit.

[29] Khalil, K. I., & Samwel, S. W. (2016). Effect of Air Drag Force on Low Earth Orbit Satellites During Maximum and Minimum Solar Activity. Space Research Journal, 9(1), 1–9. https://doi.org/10.3923/srj.2016.1.9

[30] COSPAR International Reference Atmosphere. (n.d.). https://books.google.com.tw/books?id=vczEAAAAIAAJ&hl=zh-TW&source=gbs_similarbooks

[31] Mahooti, M. (2022). Satellite Orbits: Models, Methods and Applications (Version 3.1.2).

[32] International Geomagnetic Reference Field: the 13th generation, Alken, P., Thébault, E., Beggan, C.D. et al. International Geomagnetic Reference Field: the thirteenth generation. Earth Planets Space 73, 49 (2021).doi: 10.1186/s40623-020-01288-x

[33] Moler, C. (n.d.). Numerical Computing with MATLAB. MathWorks. https://www.mathworks.com/moler/chapters.html

[34] Gallifent, J. wyss. (2021). MATH431: Gimbal Lock.

[35] Desouky, M. A. a., & Abdelkhalik, O. (2020). A New Variant of the B-Dot Control for Spacecraft Magnetic Detumbling. Acta Astronautica, 171, 14–22.

[36] SOLIDWORKS Simulation (2023). Kai-Jie Hou
zzx851203tw@gmail.com
指導教授 張起維(Loren Chang) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明