博碩士論文 110329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.116.36.192
姓名 黃力朋(Li-Peng Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 可逆高熵氧化物陽極應用於 鋰離子全電池之研究
(Study on Reversible High Entropy Oxides as Anode in Lithium-Ion Batteries)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討
★ 高熵氧化物電極於類海水催化應用★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究
★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 高熵氧化物 (HEO) 由於其出色的性能,如高溫熱穩定性和高離子導電性,對於鋰離子電池 (LIBs) 中的應用具有潛在的前景。本研究成功利用溶膠凝膠法合成一種新型的高熵氧化物 (Co0.2Ni0.2Cu0.2Mg0.2Zn0.2)O,該氧化物具有岩鹽結構,並將其作為LIBs的陽極活性材料。在50mA g-1 (0.1C)定電流充放電率 (C-rate) 條件下,可達到了450mAh g-1的比容量。為了解決高熵氧化物陽極反應初期不可逆容量損失的問題,會在與鎳鈷錳氧化物 (NCM811) 陰極組裝成全電池之前,通過預鋰化處理對高熵氧化物陽極表面進行改質。透過預鋰化改質成功將不可逆容量比從 50% 降至 15%;在反應過程中,陽極/電解液界面也會形成磷酸鋰 (Li3PO4) 薄膜,可增強導電性並抑制鋰枝晶的生長。全電池的電化學測試結果顯示,高熵氧化物陽極在20mA g-1(0.1C)的C-rate條件下,實現了121mAh g-1的比容量,其工作電壓約2.4V,全電池的能量密度可達到292Wh kg-1。此外,為了探討高熵氧化物陽極的老化機制,透過拆解不同循環次數的HEO/Li袋裝型半電池及分析陽極表面形貌和元素價態的改變。以下提出了兩點造成老化的原因:1) HEO 材料結構中的鎂離子 (Mg2+) 還原為金屬鎂 (Mg) ,產生了氧(O) 造成電池膨脹;2) 鋰離子 (Li+) 與氧 (O) 結合形成氧化鋰 (Li2O) ,然後與電解液中的六氟磷酸鋰 (LiPF6) 反應,最終導致陽極表面上的 (Li3PO4)不斷增厚,造成界面阻抗增加。本研究通過對高熵氧化物陽極的效能測試及反應過程形貌與價態的變化深入研究,致力於推動高熵材料作為輕量、安全的活性材料應用在未來的儲能系統。
摘要(英) High entropy oxides (HEOs) have great potential for lithium-ion batteries (LIBs) applications due to the exceptional properties, such as high-temperature stability and high ionic conductivity. This study successfully synthesized a novel HEO (Co0.2Ni0.2Cu0.2Mg0.2Zn0.2) O with a rock-salt structure with the sol-gel method and utilized it as the anode in LIBs. The HEO anode achieved a specific capacity of 450mAh g-1 at a constant current charging-discharging rate (C-rate) of 50mA g-1 (0.1C). To solve the issue of irreversible capacity loss during the initial stage of the electrocatalysis reaction, the HEO anode surface was optimized through the pre-lithiation modification before assembling with the high-nickel cobalt manganese oxide (NCM811) cathode to form full cells. This process successfully reduced the irreversible capacity ratio from 50% to 15% and formed a lithium phosphate (Li3PO4) thin film at the anode/ electrolyte interface, enhancing conductivity and inhibiting the growth of the lithium dendrites. Electrochemical measurements of the full cells showed that the HEO anode achieved a specific capacity of 121mAh g-1 at 20mA g-1 (0.1C) with a working voltage of around 2.4V. The energy density can reach 292Wh kg-1. Furthermore, in order to investigate the aging mechanism of the HEO anodes, this study also analyzed the morphology and elemental valence changes of the HEO anode. Two degradation mechanisms were proposed: 1) Reduction of magnesium ions (Mg2+) in the HEO material system to metallic magnesium (Mg), resulting in the generation of oxygen (O) and cell expansion; 2) Migration of lithium ions (Li+) combined with O to form lithium oxide (Li2O), which then reacted with the lithium hexafluorophosphate (LiPF6) in the electrolyte, eventually leading to the continuous thickening of Li3PO4 deposits on the anode surface and increased interface impedance. Through in-depth research and analysis of the HEO anode′s performance, morphology changes, and valence states, this study aims to promote the application of HEO as a lightweight and safe active material in future energy storage systems.
關鍵字(中) ★ 高熵氧化物
★ 溶膠凝膠法
★ 鋰離子電池
★ 陽極材料
★ 失效機制
關鍵字(英) ★ High entropy oxide
★ sol-gel method
★ lithium-ion batteries
★ anode materials
★ failure mechanism
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
第二章 基礎理論及文獻回顧 4
2-1 二次電池系統介紹及ESG指標 4
2-2 鋰離子電池 7
2-2-1 鋰離子電池的原理及電池結構 7
2-2-2 影響鋰離子電池性能的因素 11
2-2-3 正負極活性材料介紹及正極/負極電容比(A/ C比) 13
2-3 全電池不可逆電容及負極預鋰化處理比較 15
2-4 高熵材料介紹及儲能領域的相關應用 18
2-4-1 高熵材料的定義特性及對ESG影響 18
2-4-2 高熵材料在儲能領域相關應用 21
2-5 高熵氧化物(高熵陶瓷)製備方法比較 25
2-5-1 固態機械球磨法 (Mechanical ball milling method) 25
2-5-2 氣相沉積法 (Vapor deposition Method) 26
2-5-3 液態反應法 26
2-5-3-1 共沉法 (Co-precipitation method) 26
2-5-3-2 噴霧裂解法 (Spray pyrolysis method) 27
2-5-3-3 溶膠凝膠法 (Sol-gel method) 29
第三章 實驗步驟 31
3-1 化學藥品 31
3-2 高熵氧化物電極製備及鋰離子電池封裝流程 32
3-2-1 高熵氧化物電極製備 32
3-2-1-1 高熵氧化物 (HEO) 粉末製備 32
3-2-1-2 高熵陽極電極片製備 33
3-2-2 鋰離子半電池 (HEO/ Li) 封裝流程 33
3-2-2-1 鈕扣型電池封裝 33
3-2-2-2 袋裝型(軟包裝)電池封裝 34
3-2-3 高熵陽極預鋰化處理及全電池 (NCM811/ HEO) 封裝 34
3-2-3-1 高熵陽極預鋰化處理 34
3-2-3-2 全電池封裝流程 35
3-3 分析儀器 35
3-3-1 材料特徵分析 35
3-3-2 電化學量測系統 36
3-3-2-1 循環伏安法 (Cyclic Voltammetry, CV) 36
3-3-2-2 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy, EIS) 37
3-3-2-3 定電流長時間循環充放電測試 (Galvanostatic charge-discharge testing, GCD) 37
3-3-2-4 充放電率測試 (C-rate) 38
第四章 結果與討論 39
4-1 高熵氧化物之粉末材料特徵分析與討論 39
4-1-1 高熵氧化物粉末之X-ray 繞射分析 (XRD) 39
4-1-2 高熵氧化物粉末之掃描式電子顯微鏡形貌分析 (SEM) 40
4-1-3 高熵氧化物粉末之粒徑分析 (PSD) 41
4-1-4 高熵氧化物粉末之穿透式電子顯微鏡分析 (TEM) 42
4-1-4 X-ray光電子光譜分析 (XPS) 42
4-2 高熵陽極半電池 (HEO/ Li) 性能測試分析與討論 45
4-2-1 循環伏安圖分析 (CV) 45
4-2-3 電化學阻抗圖譜 (EIS) 46
4-2-2 充放電率測試 (C-rate) 47
4-2-3 長時間穩定性測試 (Long cycle stability testing) 49
4-3 全電池 (NCM811/ HEO) 性能測試分析與討論 50
4-3-1 電化學阻抗圖譜 (EIS) 52
4-3-2 充放電率測試 (C-rate) 53
4-3-3 長時間穩定性測試 (Long cycle stability testing) 54
4-4 高熵陽極之老化/ 失效機制分析探討 55
第五章 結論與未來工作 61
5-1 結論 61
5-2 未來工作 62
參考文獻 63
參考文獻 1. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
2. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Central Science, 2017. 3(10): p. 1063-1069.
3. Reddy, M.A., et al., CFx derived carbon–FeF2 nanocomposites for reversible lithium storage. Advanced energy materials, 2013. 3(3): p. 308-313.
4. Breitung, B., et al., In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016. 8(29): p. 14048-14056.
5. Bajolle, H., M. Lagadic, and N. Louvet, The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Research & Social Science, 2022. 93: p. 102850.
6. Musicó, B.L., et al., The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials, 2020. 8(4): p. 040912.
7. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. 2019. 31(26): p. 1806236.
8. Wang, D., et al., Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. 2019. 7(42): p. 24211-24216.
9. Albedwawi, S.H., et al., High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials & Design, 2021. 202: p. 109534.
10. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
11. JIU GUAN Survey Instrument Co., L. 充電電池的種類與概述. Available from: https://www.skcic.com.tw/knowledge/faq-11.html.
12. 平順建築材料. 鋰離子電池鋰枝晶生長:影響因素和抑制方法. 2020/10/12; Available from: https://read01.com/zh-tw/NNA4L4Q.html#.YVRAcppBxhF.
13. Wang, J., et al., Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420: p. 129739.
14. 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽. 儲能發展的勁旅─鋰離子電池. 2019/5; Available from: https://ejournal.stpi.narl.org.tw/sd/download?source=10805-10.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1.
15. Francis, C.F., I.L. Kyratzis, and A.S.J.A.M. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. 2020. 32(18): p. 1904205.
16. 嘉民揚電子, 影響鋰電池內阻的因素有哪些.
17. Zhang, J., et al., Balancing particle properties for practical lithium-ion batteries. 2022. 61: p. 18-29.
18. Hightech, 鋰離子電池(Lithium ion battery)的原理、特性與應用. 2020/12/1.
19. 尚普華泰諮詢, 2021年鋰電池正極材料行業概況分析. 2020/10/22.
20. Lu, J., et al., High-performance anode materials for rechargeable lithium-ion batteries. 2018. 1: p. 35-53.
21. 黃昱叡, 黃., 鄭尹瑋, 劉全璞, 負極材料 - 鋰離子電池. 科學發展, 2019/ 12: p. 11-15.
22. Wu, L., et al., Evaluating the heat generation characteristics of cylindrical lithium-ion battery considering the discharge rates and N/P ratio. Journal of Energy Storage, 2023. 64: p. 107182.
23. Song, B.F., A. Dhanabalan, and S.L. Biswal, Evaluating the capacity ratio and prelithiation strategies for extending cyclability in porous silicon composite anodes and lithium iron phosphate cathodes for high capacity lithium-ion batteries. Journal of Energy Storage, 2020. 28: p. 101268.
24. Osiak, M., et al., Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. 2014. 2(25): p. 9433-9460.
25. LIBA, 正负极材料预锂化. 2023/04/15.
26. 才神号, 锂电池预锂化策略(概念、前景和挑战). 2023/06/08.
27. 黃國雄, 等莫耳比多元合金系統之研究. 1996, 國立清華大學材料科學與工程研究所碩士論文.
28. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
29. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
30. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
31. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation. in Materials Science Forum. 2007. Trans Tech Publ.
32. Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
33. Gao, M.C., et al., High-entropy alloys. Cham: Springer International Publishing, 2016.
34. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
35. Ma, Y., et al., High-entropy energy materials: challenges and new opportunities. Energy & Environmental Science, 2021.
36. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019. 31(26): p. 1806236.
37. Sarkar, A., et al., Nanocrystalline multicomponent entropy stabilised transition metal oxides. Journal of the European Ceramic Society, 2017. 37(2): p. 747-754.
38. Sarkar, A., et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton transactions, 2017. 46(36): p. 12167-12176.
39. Sarkar, A., et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018. 38(5): p. 2318-2327.
40. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 1-9.
41. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
42. Pluym, T., et al., Solid silver particle production by spray pyrolysis. Journal of aerosol science, 1993. 24(3): p. 383-392.
43. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of materials research, 1995. 10(7): p. 1661-1673.
44. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 1999. 59(3): p. 185-198.
45. Cerpotech. Spray pyrolysis of ceramic powders for energy, environmental and electronic applications. Available from: https://matmatch.com/suppliers/cerp-cerpotech/examples/spray-pyrolysis-powders.
46. Shirsath, S.E., et al., Ferrites obtained by sol-gel method, in Handbook of sol-gel science and technology. 2018, Springer Cham. p. 695-735.
47. Innocenzi, P., Understanding sol–gel transition through a picture. A short tutorial. Journal of Sol-Gel Science and Technology, 2020. 94(3): p. 544-550.
48. Sushil, J., et al., High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn) O by citrate gel method. Materials Chemistry and Physics, 2021. 259: p. 124014.
49. Saghir, A.V., et al., One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation. Journal of the European Ceramic Society, 2021. 41(1): p. 563-579.
50. Niu, B., et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Scientific reports, 2017. 7(1): p. 1-7.
51. Mao, A., et al., Solution combustion synthesis and magnetic property of rock-salt (Co0. 2Cu0. 2Mg0. 2Ni0. 2Zn0. 2) O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 2019. 484: p. 245-252.
52. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
53. 曾啟恩, 吳翊慈, and 蔡.J. 化工, 電化學阻抗頻譜的原理與應用. 2022. 69(4): p. 36-50.
54. Lin, Y., et al., Impact of reducing conditions on the stabilization of Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O high-entropy oxide. 2022. 48(20): p. 30184-30190.
55. Wang, S.-Y., et al., Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn) O high-entropy oxide anodes for lithium-ion batteries. 2021. 274: p. 125105.
56. Qi, K., et al., Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811 lithium-ion batteries up to 4.5 V. 2022. 320: p. 119282.
57. Jiang, S., et al., Regulating electrode-electrolyte interphases and eliminating hydrogen fluoride to boost electrochemical performances of Li/NCM811 batteries. 2023. 451: p. 138359.
58. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. 2020. 11(1): p. 1-13.
59. Uno, M. and K.J.I.T.o.v.t. Tanaka, Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells. 2011. 60(4): p. 1505-1515.
60. Pastor-Fernández, C., et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. in 2016 IEEE Transportation Electrification Conference and Expo (ITEC). 2016. IEEE.
61. 江子才, 常用鋰電參數計算公式. 2018/08/07.
62. Poizot, P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
63. Helen, M., et al., Single step transformation of sulphur to Li 2 S 2/Li 2 S in Li-S batteries. Scientific reports, 2015. 5(1): p. 1-12.
64. Sarkar, A., et al., High entropy oxides for reversible energy storage. 2018. 9(1): p. 3400.
65. Ghigna, P., et al., Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. 2020. 12(45): p. 50344-50354.
66. Meddings, N., et al., Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. 2020. 480: p. 228742.
67. Yang, W., et al., Potentiostatic Reconstruction of Nickel‐Cobalt Hydroxysulfate with Self‐Optimized Structure for Enhancing Energy Storage. 2022. 12(41): p. 2202286.
68. XIAO, Z.-b., C. Shang, and M.-m.J.T.o.N.M.S.o.C. GUO, Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1. 3Al0. 3Ti1. 7 (PO4) 3. 2011. 21(11): p. 2454-2458.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明