博碩士論文 110623015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.14.247.239
姓名 吳詩予(Shih-Yu Wu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 TaiSAR空載系統運用於車載取像性能評估暨實驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 合成孔徑雷達(Synthetic Aperture Radar,SAR)是一種利用雷達原理進行影像成像之技術,它能夠提供地表反射率、高程、植被覆蓋、海浪流速等特徵信息,廣泛應用於軍事、氣象、海洋、地質、城市規劃等領域。為利本項技術研究、開發及應用並為執行農委會相關計畫,中央大學前已建置了TaiSAR合成孔徑雷達空載(亦稱機載)系統,此系統係由日本三菱公司所設計,計畫執行之初雖已初步完成功能驗證,並成功實施空照、取得影像。然而因為合約驗收問題,未能移交使用單位、且原飛機載具又因降落時損壞,致使此系統多年未加使用,最終造成設備散落,軟、硬體功能損壞;後來又因資訊、電子技術進步快速,導致相關零、附件缺料、停產,增加修復難度。
為妥善高價科研設備資源的發揮,本研究致力於修復TaiSAR系統,實驗初期逐步將散落設備尋回、組裝,並針對次系統實施檢測及復原,停產及無料設備則實施替代零件、裝備更換;另進行軟體改版、升級、重新撰寫程式,終於將設備功能恢復、正常運作。其中,系統修復過程及困難克服之方法,可提供各界類似雷達系統科研、遙測儀器維修、組裝之參考;此外,為驗證修復TaiSAR系統效能與系統功能是否恢復正常,並改善傳統衛星、空載SAR系統相關限制因素、縮短測試時間,本實驗另設計將TaiSAR系統安裝於車廂載具內執行任務。實驗期間,分別赴新竹縣芎林鄉對橋樑、宜蘭頭城對龜山島進行SAR輻射實驗。其中,在芎林對橋樑實驗中雖收到信號,但較難分辨待測目標物;而宜蘭頭城對龜山島實驗中,透過可視距離等參數的調整,終於成功獲得了SAR影像;並且再經調整天線的角度進行比對,驗證影像與龜山島下寬上窄特性吻合。實驗成果除證明已經將此台機器成功修復外,並提供一個新的高機動性、節省執行任務時間、降低實驗成本之高效安全性地面驗證方式,相信可作為空載、衛星SAR設備,升空前之前置測試程序,亦可提供各單位進行合成孔徑雷達地面測試之技術參考。
摘要(英) Synthetic Aperture Radar (SAR) is a technology that utilizes radar principles for image formation. It provides information on surface reflectivity, elevation, vegetation coverage, and ocean wave velocity characteristics. SAR finds extensive applications in various fields such as military, meteorology, oceanography, geology, and urban planning. To facilitate the research, development, and to execute related projects by the Council of Agriculture, National Central University has previously established the TaiSAR airborne SAR system. Designed by Mitsubishi Corporation, the system had initially undergone preliminary functional verification, successfully conducting aerial surveys and obtaining images. However, due to contract acceptance issues, and the original aircraft platform was damaged during landing. As a result, the system remained unused for several years, leading to equipment scatter and damages to both software and hardware components. Additionally, rapid advancements in information and electronic technology resulted in material and accessory shortages and discontinued production, further increasing the difficulty of repair.
This study is dedicated to the restoration of the TaiSAR system. During the initial experiments, scattered equipment was gradually retrieved and assembled. For discontinued and missing equipment, alternative components were sourced, and equipment replacements were carried out. Furthermore, software was upgraded, and reprogrammed to finally restore the system′s functionality and normal operation. The process and methods employed in the system repair and difficulties overcome can provide valuable references for radar system research, remote sensing instrument maintenance, and assembly for various industries.
Moreover, to validate the performance and functionality restoration of the TaiSAR system, and to improve traditional satellite and airborne SAR systems′ related limiting factors, the experiment designed the installation of the TaiSAR system within a vehicle compartment to execute missions. During the experiments, SAR radiometric experiments were conducted over the Xionglin river valley in Hsinchu County and the Guishan island in Yilan County. In the Xionglin river valley experiment, although signals were received, discerning the target object proved challenging. In contrast, the Guishan island experiment successfully acquired SAR images after adjusting parameters such as the visible distance. The obtained images were then compared with the island′s characteristics through antenna angle adjustments, confirming the match between the images and the island′s wider bottom and narrower top features. The experimental results not only demonstrated the successful restoration of the TaiSAR system but also provided a new, highly mobile, time-saving, cost-efficient ground verification method. This research is believed to be suitable as a pre-launch testing procedure for airborne and satellite SAR equipment and can serve as a technical reference for conducting SAR ground tests.
關鍵字(中) ★ 合成孔徑雷達載具分析
★ 機載合成孔徑雷達
★ 車載合成孔徑雷達系統改裝
★ 車載合成孔徑雷達系統實驗
關鍵字(英) ★ Synthetic Aperture Radar
★ Airborne SAR
★ Automobile-based SAR
★ TaiSAR
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2研究動機 1
1.3研究方法 4
1.4論文架構 5
第二章 SAR的基本原理與分析 6
2.1 SAR原理 6
2.2 SAR相關數學公式 6
2.3 SAR應用 7
2.4 SAR載具分析 8
2.4.1 衛星(Satellite)SAR 8
2.4.2 空載(Airborne) SAR 10
2.4.3 地基(Ground-based) SAR 11
2.4.4 車載(Automobile-based) SAR 13
第三章 車載TaiSAR改裝與測試 16
3.1 TaiSAR系統與硬體介紹 16
3.1.1機櫃1 17
3.1.2機櫃2 21
3.1.3飛航管理與運動補償系統 26
3.1.4天線 27
3.1.5系統主要功能與規格 29
3.2 TaiSAR硬體及系統修復 33
3.2.1 MTC Circulator修復 33
3.2.2排線檢整 35
3.2.3 GPS天線安裝及更新 38
3.2.4加裝變壓器與更換變壓器線材 38
3.2.5電腦硬碟修復 40
3.2.6 行波管放大器檢整 41
3.3 TaiSAR車載硬體改裝 41
3.3.1車載車廂改裝 41
3.3.2車廂及天線基座改裝 42
3.3.3 TaiSAR系統進入車廂 44
3.3.4機櫃固定 45
3.3.5電力系統配置 46
3.3.6車廂發電機排煙與散熱改裝 47
3.3.7車載平台架構與參數 47
3.4 車載系統測試與取像試拍作業 51
3.4.1實驗室自測 51
3.4.2車載SAR戶外觀測驗證 52
3.4.3 車載SAR系統調整與實驗 55
3.5車載SAR系統龜山島取像驗證作業 56
第四章 結果分析與討論 61
4.1新竹縣芎林鄉實驗結果與分析 61
4.2龜山島實驗結果與分析 62
第五章 結論與未來研究方向 67
5.1結論 67
5.2未來研究方向 68
參考文獻 70
參考文獻 [1] S. Skrunes, C. Brekke, T. Eltoft, V. Miegebielle, in: Proc. 36th Arctic and Marine Oilspill Program (AMOP) Technical Seminar on Environmental Contamination and Response, Halifax, Canada, 2013, pp. 498–514.
[2] 林務局農林航空測量所. (2013). 「機載合成孔徑雷達系統採購案」總報告. 國立中央大學.
[3] DEREK M. BURRAGE, DAVID W. WANG, AND JOEL C. WESSON,(2013). Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations, DOI: 10.1175/JTECH-D-12-00239.1
[4] Cho, B. L., Kong, Y. K., Park, H. G., & Kim, Y. S. (2006). Automobile-based SAR/InSAR system for ground experiments. IEEE Geoscience and Remote Sensing Letters, 3(3), 401-405.
[5] Gromek, D., Krysik, P., Kulpa, K., et al.: ‘Ground-based mobile passive imagery based on a DVB-T signal of opportunity’. 2014 Int. Radar Conf., Lille, 2014, pp. 1–4
[6] Damian Gromek, Krzysztof Radecki, Jędrzej Drozdowicz, Piotr Samczyński, Jerzy Szabatin . Passive SAR imaging using DVB-T illumination for airborne applications. IET Radar Sonar Navig., 2019, Vol. 13 Iss. 2, pp. 213-221.
[7] Samczyński, P. (2018, June). Applications of a Modern micro-SAR System for Small UAV Operations (From Active to Passive SAR Technology). In2018 19th International Radar Symposium (IRS)(pp. 1-8). IEEE.

[8] Otten, M., Maas, N., Bolt, R., Caro-Cuenca, M., & Medenblik, H. (2018, September). Circular micro-SAR for mini-UAV. In 2018 15th European Radar Conference (EuRAD) (pp. 321-324). IEEE.
[9] Qiu, T., Hong, J., Wang, Y., Xing, K., Du, S., & Qi, Y. (2022, April). MEO-SAR in-orbit Elevation Antenna Pattern Determination Using Nano Calibration Satellite. In2022 Photonics & Electromagnetics Research Symposium (PIERS)(pp. 278-282). IEEE.
[10] Matar, J., Rodriguez-Cassola, M., Krieger, G., López-Dekker, P., & Moreira, A. (2019). MEO SAR: System concepts and analysis.IEEE Transactions on Geoscience and Remote Sensing,58(2), 1313-1324.
[11]餘騰鐸. (2021). 應用地基合成孔徑雷達干涉技術於邊坡崩塌預警系統建置. 水保技術, 15(3), 36-37.
[12] Jung, D. H., & Park, S. O. (2018, June). Experimental demonstration of ku-band FMCW automobile-based SAR in stripmap mode. In EUSAR 2018; 12th European Conference on Synthetic Aperture Radar (pp. 1-3). VDE.
[13]戴國夢, 潘斌, & 劉磊. (2020). 車載雙天線干涉 SAR DEM 提取方法. 測繪學報. 49(12):1609-1618.
指導教授 趙吉光 于羾(Chi-Kuang Chao Gung Yu) 審核日期 2023-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明