博碩士論文 110329024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.223.108.71
姓名 張睿丰(Jui-Feng Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
(Development of liquid vortex gravity separation technology for recycling of PCB waste powder)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討
★ 高熵氧化物電極於類海水催化應用★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究
★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 近年來世界各國益發重視碳排放、碳稅及減碳技術等議題。歐盟通過「循環經濟模式的歐洲塑膠策略」以及循環經濟政策,迄2030年廢棄電子產品的原物料回收率需要達到70%等政策目標,其目的在改善以往對於塑膠產品的設計、製造、使用和回收方式。為了解決業界產生之電子廢棄物以及符合ESG政策趨勢,本研究將開發一環保無化學廢液產生,且效果卓越之分選製程,用於廢棄PCB成型板粉塵回收資源化。我們成功的利用液漩式重力分選放量處理公斤級PCB成型板粉塵,回收之上層非銅粉塵銅含量可降低至2 wt%以下,下層金屬銅含量可提升至50 wt%以上。後續為了改善取料方便性、密閉式系統等需求,近一步開發漏斗型液漩式分選製程,改良製程分選後回收之上層非銅粉塵的銅含量依舊能夠降低至2 wt%以下,而下層金屬銅含量更能提升至75 wt%。此外,本分選製程技術除了適用於38 um尺寸之粉塵回收外,更有機會以減壓蒸餾的方式達到分選液的重複利用,並且分選過程中完全沒有強酸強鹼等化學廢液排出。
分選後之非金屬粉塵後續能利用摻混、化學降解等方式,應用於建築材料、裝潢材料、工業塑料板、PCB板原料、黏著劑等領域,創造循環價值,實現減碳、廢棄物資源化、環境友善等ESG規範。
摘要(英) In recent years, countries around the world have paid more and more attention to issues such as carbon emissions, carbon taxes, and carbon reduction technologies. The European Union adopted the "European Plastics Strategy for the Circular Economy Model" and the Circular Economy Policy. The raw material recovery rate of waste electronic products needs to reach 70% in 2030. The purpose is to improve the design, manufacture, use and recycling of plastic products in the past. In order to solve the electronic waste generated by the industry and comply with the ESG policy trend, this research will develop an environmentally friendly, chemical-free waste liquid and excellent separation process for the recycling of waste PCB molded board dust. We have successfully processed kilogram-level PCB molded board dust by liquid swirl gravity separation. The copper content of the recovered upper layer of non-copper dust can be reduced to less than 2 wt%, and the lower layer of metal copper content can be increased to more than 50 wt%. In the follow-up, in order to improve the convenience of retrieving materials and the needs of closed systems, we will further develop a funnel-type liquid-vortex sorting process. After the improved process is sorted, the copper content of the recovered upper layer of non-copper dust can still be reduced to below 2 wt%. The copper content of the lower layer metal can be increased to 75 wt%.
In addition, this sorting process technology is not only suitable for the dust recovery of 38 um size, but also has the opportunity to achieve the reuse of sorting liquid distillation, and there is no discharge of chemical waste liquid such as strong acid and alkali during the sorting process, which is environmentally friendly. After sorting, the metal dust can be used in the fields of building materials, decoration materials, industrial plastic boards, PCB board raw materials, adhesives, etc. by means of blending and chemical degradation, so as to achieve the effect of giving circular value and realize carbon reduction. ESG indicators such as waste recycling and environmental friendliness.
關鍵字(中) ★ 循環經濟
★ 液漩式重力分選
★ 廢棄物資源化
★ ESG
★ 減碳
關鍵字(英) ★ Circular economy
★ Liquid vortex gravity separation
★ Waste recycling
★ ESG
★ Carbon reduction
論文目次 目錄
中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
第二章 文獻回顧 4
2-1 玻璃纖維環氧樹脂基板介紹 4
2-2 現行廢棄PCB板廢氣處理流程 5
2-3 環氧樹脂化學降解 11
2-4 泡沫浮選回收 13
2-5 水力旋流器分選PCB中貴金屬 14
第三章 實驗步驟 16
3-1 化學藥品 16
3-2 PCB成型板粉液漩式重力分選製程 16
3-2-1 公斤級反應釜液漩重力分選 16
3-2-2 漏斗型液漩式重力分選 17
3-3 分析儀器 19
3-3-1 掃描式電子顯微鏡 (FE-SEM) 19
3-3-2 X-ray繞射分析儀 (XRD) 20
3-3-3 感應耦合電漿質譜儀 ( ICP-MS ) 21
3-3-4 雷射粒徑分析儀 22
3-3-5 熱重分析儀 ( TGA ) 22
3-3-6 真密度測定儀 23
3-3-7 雷射顯微鏡 24
第四章 結果與討論 25
4-1 PCB成型板粉塵之材料分析與討論 25
4-1-1 原始成型板粉塵之形貌及粒徑分析 25
4-1-2 原始成型板粉塵成分組成分析 28
4-2分選製程之結果與比較 34
4-2-1 反應釜液漩式重力分選 34
4-2-2漏斗型液漩式重力分選 37
4-3 液漩重力分選製程與業界分選技術比較 40
4-4 非銅粉塵之應用嘗試及未來工作 43
第五章 結論 47
參考文獻 48
參考文獻 1. 健鼎科技2021年永續報告書. 2022/8/1.
2. 華通電腦企業永續報告書. 2022/8/1.
3. 2021欣興電子永續報告書. 2022/8/1.
4. melody, 熱塑性與熱固性塑膠. 2010/8/1.
5. Luda, M.P., Recycling of printed circuit boards, in Integrated Waste Management-Volume II. 2011, IntechOpen.
6. Oluokun, O.O. and I.O. Otunniyi, Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching. Hydrometallurgy, 2020. 193: p. 105320.
7. Wan, X., et al., Reaction mechanisms of waste printed circuit board recycling in copper smelting: The impurity elements. Minerals Engineering, 2021. 160: p. 106709.
8. Kang, K.D., et al., Assessment of Pre-Treatment Techniques for Coarse Printed Circuit Boards (PCBs) Recycling. Minerals, 2021. 11(10): p. 1134.
9. Ning, C., et al., Waste printed circuit board (PCB) recycling techniques. Topics in Current Chemistry, 2017. 375(2): p. 43.
10. Tang, C., et al., Electrochemical dissolution and recovery of tin from printed circuit board in methane–sulfonic acid solution. Hydrometallurgy, 2021. 205: p. 105726.
11. Hubau, A., et al., Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Separation and Purification Technology, 2020. 238: p. 116481.
12. 莊貴貽、邱國展/工研院材化所, PCB材料循環再利用技術. 2019/9/5.
13. Cui, J. and E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review. Journal of Hazardous Materials, 2003. 99(3): p. 243-263.
14. Cayumil, R., et al., High temperature investigations on optimising the recovery of copper from waste printed circuit boards. Waste Management, 2018. 73: p. 556-565.
15. Lim, Y., et al., The ammonia leaching of alloy produced from waste printed circuit boards smelting process. Geosystem Engineering, 2013. 16(3): p. 216-224.
16. Yang, J.-g., Y.-t. Wu, and J. Li, Recovery of ultrafine copper particles from metal components of waste printed circuit boards. Hydrometallurgy, 2012. 121: p. 1-6.
17. Yazici, E. and H. Deveci, Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4–CuSO4–NaCl solutions. Hydrometallurgy, 2013. 139: p. 30-38.
18. Segura-Bailón, B. and G.T. Lapidus, Selective recovery of copper contained in waste PCBs from cellphones with impurity inhibition in the citrate-phosphate system. Hydrometallurgy, 2021. 203: p. 105699.
19. Liu, K., et al., A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. Journal of Hazardous Materials, 2022. 433: p. 128702.
20. Bas, A.D., H. Deveci, and E.Y. Yazici, Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy, 2013. 138: p. 65-70.
21. Işıldar, A., et al., Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 2016. 57: p. 149-157.
22. Chen, Z., et al., Recycling waste circuit board efficiently and environmentally friendly through small-molecule assisted dissolution. Scientific reports, 2019. 9(1): p. 1-9.
23. Luthy, R.G., et al., Dissolution of PCB congeners from an Aroclor and an Aroclor/hydraulic oil mixture. Water Research, 1997. 31(3): p. 561-573.
24. Chen, Z., et al., Recyclable thermosetting polymers for digital light processing 3D printing. Materials & Design, 2021. 197: p. 109189.
25. Sousa, P.M., et al., A closed and zero-waste loop strategy to recycle the main raw materials (gold, copper and fiber glass layers) constitutive of waste printed circuit boards. Chemical Engineering Journal, 2022. 434: p. 134604.
26. 工研院材化所, 莊., 可再生熱固樹脂技術發展. 2021/10/5.
27. Azuma, S., et al., Preparation of silicon carbide slurry for UV curing stereolithography. Materials Today: Proceedings, 2019. 16: p. 72-77.
28. Mu, Q., et al., Fast and sustainable recycling of epoxy and composites using mixed solvents. Polymer Degradation and Stability, 2022. 199: p. 109895.
29. Chen, Z., et al., Recycling Waste Circuit Board Efficiently and Environmentally Friendly through Small-Molecule Assisted Dissolution. Scientific Reports, 2019. 9(1): p. 17902.
30. Li, B., et al., Increase in wettability difference between organic and mineral matter to promote low-rank coal flotation by using ultrasonic treatment. Applied Surface Science, 2019. 481: p. 454-459.
31. Yao, Y., et al., Efficient recovery of valuable metals in the disposal of waste printed circuit boards via reverse flotation. Journal of Cleaner Production, 2021. 284: p. 124805.
32. Chen, L., et al., Efficient recovery of valuable metals from waste printed circuit boards via ultrasound-enhanced flotation. Process Safety and Environmental Protection, 2023. 169: p. 869-878.
33. Ji, L., et al., Emerging application of hydrocyclone in biotechnology and food processing. Separation and Purification Technology, 2023. 309: p. 122992.
34. Bilesan, M.R., et al., Efficient separation of precious metals from computer waste printed circuit boards by hydrocyclone and dilution-gravity methods. Journal of Cleaner Production, 2021. 286: p. 125505.
35. Kim, I., et al., Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics. Additive Manufacturing, 2022. 52: p. 102659.
36. Huang, X., et al., Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP -based ceramic stereolithography. Journal of the European Ceramic Society, 2021. 41(6): p. 3743-3754.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明