博碩士論文 110223026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.148.115.51
姓名 劉欣蕊(Xin-Rui Lew)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計合成含苯並咪唑和 4-氨基嘧啶類型的電動 傳輸材料並分別探討其獨特的氟和鹽離子效應 對太陽能電池之影響
(Synthesis of Benzimidazole and Pyrimidin-4-amine Based Hole Transporting Materials and Investigation of Their Unique Fluorine and Salt Effects on Inverted Perovskite Solar Cells, Respectively.)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本文第一部分為延續先前學長所合成,benzimidazole為核心的化合物。在學長對對稱型結構比較後,單邊接上兩個 triphenylamine donor group 的溶解度和元件效率較好,所以我們將其結構延伸,合成出不含氟原子的苯環以及帶有氟原子的的苯環。接著,對此化合物應用於反式鈣鈦礦太陽能電池中電洞傳輸材料中,對其熱穩定性,光電轉換效率,電子電洞遷移率等數據進行探討,由此證明氟原子效應有效提升鈣太礦太陽能電池的光電轉換效率。

本文第二部分為研究合成 pyrimidin-4-amine 化合物作為 donating group。據該 pyrimidin-4-amine 類似衍生物的文獻指出,該結構擁有寬的吸收波且能有效地將電子電洞傳遞至其他元件組成。綜合上述特性,我們研究與設計出以用 benzene 作為 π-conjugation,在 para 位置上連接兩個pyrimidin-4-amine,合成 QA 系列最終產物出鹽類 QBAPS。最後,對化合物進行分子吸收度和熱穩定性等數據,應用於反式鈣鈦礦太陽能電池中電洞傳輸材料中,有望證明鹽類效應有效鈍化鈣太礦層未配位的離子,提升鈣太礦太陽能電池的光電轉換效率。
摘要(英) The first part article is continued on the structure of benzimidazole, which is widely used in our laboratory, and applied as a central core. Compare with imidazole, benzimidazole is a greater Lewis base, larger π-conjugation, and higher environmental and thermal stability, which is suitable for applied as hole transporting materials. According to previous works, we used two triphenylamines as donors connected on meta or ortho position at benzimidazole. The device tests found that meta position has greater power conversion efficiencies than ortho position. In this study, we synthesized IZB and IZF, in which IZB does not consist of fluorine but IZF consists of fluorine. Lastly, we investigate the relationship between fluorine effects and hydrophobicity applied as hole-transporting material in inverted perovskite solar cells. We expect the fluorine effect will passivate the defects of perovskite and its hydrophobic will reduce perovskite layer degradation, and enhance its power conversion efficiencies.

The second part article is about designing and synthesizing
pyrimidin-4-amine compounds as a central core in donors to synthesize QA series. Referring to literature reports, pyrimidin-4-amine is an excellent coplanarity structure, electron-donating group, great hole mobility, and UV light
absorption. In this study, we applied a fused ring and methoxyl phenyl group in pyrimidin-4-amine to extend π-conjugation. After that, benzene and biphenyl were used as π-conjugated linkers, and donors were connected to synthesize QBA and QPA. Because of QPA had solubility problem, we used QBA to further studies in salt effects. Moreover, we added pyridine to QBA to become QBAP and designed quaternary salts QBAPS, and compare them. Lastly, we applied QA series as hole-transporting material in inverted perovskite solar cells and expect QA series bring a suitable energy level, good solubility, and excellent thermal stability. For salt effects, we expect that QBAPS can passivate grain vacancies via perovskite layer to prevent carriers recombination.
關鍵字(中) ★ 太陽能電池 關鍵字(英) ★ solar cells
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
一、緒論 1
1-1 前言 1
1-2 太陽能電池的發展 3
1-3 鈣鈦礦太陽能電池 4
1-3-1 電池元件的基本架構 5
1-3-2 太陽能電池之工作原理 9
1-3-3 太陽能電池參數 10
1-4 電洞傳輸材料之文獻回顧 12
1-4-1 線型電洞傳輸材料 12
1-4-2 星型電洞傳輸材料 15
1-4-3 螺旋型電洞傳輸材料 17
二、結構設計與概念 20
第一部分:IZ series 20
第二部分:QA series 24
三、結果與討論 27
3-1 化合物合成策略 27
3-1-1 IZ series 27
3-1-2 QA series 30
3-2 化合物之密度泛函理論計算 33
3-2-1 IZ series 33
3-2-2 QA series 33
3-3 化合物之光物理及電化學性質 39
3-3-1 IZ series 40
3-3-2 QA series 43
3-4 化合物熱穩定性分析 46
3-4-1 IZ series 46
3-4-2 QA series 48
四、結論與未來展望 50
4-1 IZ series 50
4-2 QA series 50
五、儀器、藥品與實驗步驟 51
5-1實驗藥品 51
5-2 實驗儀器 51
5-2-1核磁共振光譜儀 51
5-2-2超高解析質譜儀 52
5-2-3電化學分析儀 52
5-2-4紫外光-可見光譜儀 53
5-2-5螢光光譜儀 53
5-2-6熱重分析儀 53
5-2-7熱式差掃描分析儀 54
5-3 實驗合成步驟 55
5-3-1 IZ系列之合成 55
5-3-2 QA系列之合成 63
參考文獻 67
附錄 71
參考文獻 1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. J. o. t. a. c. s., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. 2009, 131 (17), 6050-6051.
2. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. J. S. r., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. 2012, 2 (1), 591.
3. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. J. C. R., High-efficiency perovskite solar cells. 2020, 120 (15), 7867-7918.
4. Wang, Y. K.; Ma, H.; Chen, Q.; Sun, Q.; Liu, Z.; Sun, Z.; Jia, X.; Zhu, Y.; Zhang, S.; Zhang, J.; Yuan, N.; Ding, J.; Zhou, Y.; Song, B.; Li, Y., Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property. ACS Applied Materials & Interfaces 2021, 13 (6), 7705-7713.
5. Yang, C.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Bao, Q.; Ding, X.; Yang, X.; Cheng, M. J. A. E. L., Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. 2021, 6 (8), 2690-2696.
6. Joseph, V.; Xia, J.; Sutanto, A. A.; Jankauskas, V.; Momblona, C.; Ding, B.; Rakstys, K.; Balasaravanan, R.; Pan, C.-H.; Ni, J.-S. J. A. A. M.; Interfaces, Triarylamine-functionalized imidazolyl-capped bithiophene hole transporting material for cost-effective perovskite solar cells. 2022, 14 (19), 22053-22060.
7. Afraj, S. N.; Zheng, D.; Velusamy, A.; Ke, W.; Cuthriell, S.; Zhang, X.; Chen, Y.; Lin, C.; Ni, J.-S.; Wasielewski, M. R. J. A. E. L., 2, 3-Diphenylthieno [3, 4-b] pyrazines as hole-transporting materials for stable, high-performance perovskite solar cells. 2022, 7 (6), 2118-2127.
8. Wu, B.; Fu, Q.; Sun, L.; Liu, Y.; Sun, Z.; Xue, S.; Liu, Y.; Liang, M. J. A. E. L., Conjugation engineering of spiro-based hole transport materials for efficient and stable perovskite solar cells. 2022, 7 (8), 2667-2676.
9. Wang, H.; Wu, C.; Zhai, M.; Chen, C.; Tao, L.; Ding, X.; Miao, Y.; Cheng, M. J. A. A. E. M., Constructing Efficient Hole Transport Material through π-Conjunction Extension for Perovskite Solar Cell. 2022, 5 (11), 13261-13268.
10. Tingare, Y. S.; Su, C.; Lin, J. H.; Hsieh, Y. C.; Lin, H. J.; Hsu, Y. C.; Li, M. C.; Chen, G. L.; Tseng, K. W.; Yang, Y. H. J. A. F. M., Benzimidazole Based Hole‐Transporting Materials for High‐performance Inverted Perovskite Solar Cells. 2022, 32 (33), 2201933.
11. Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L. J. N. e., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. 2019, 4 (5), 408-415.
12. Wang, B.; Wang, H.; Sathiyan, G.; Chen, C.; Xu, Y.; Cheng, M. J. A. A. E. M., Constructing efficient hole-transporting materials by tuning fluorine substitution for inverted perovskite solar cells with efficiency exceeding 20%. 2022, 5 (5), 5901-5908.
13. Zhen, Y.; Zhang, F.; Liu, H.; Yan, Y.; Li, X.; Wang, S. J. J. o. M. C. C., Impact of peripheral groups on pyrimidine acceptor-based HLCT materials for efficient deep blue OLED devices. 2022, 10 (27), 9953-9960.
14. Wong, K.-T.; Fang, F.-C.; Cheng, Y.-M.; Chou, P.-T.; Lee, G.-H.; Wang, Y. J. T. J. o. O. C., A new series of pyrimidine-containing linear molecules: their elegant crystal structures and intriguing photophysical properties. 2004, 69 (23), 8038-8044.
15. Achelle, S.; Rodrı́guez-López, J.; Robin-le Guen, F. J. T. J. o. O. C., Synthesis and photophysical studies of a series of quinazoline chromophores. 2014, 79 (16), 7564-7571.
16. Wang, X.; Li, J.; Huang, Y.; Zhu, J.; Hu, R.; Wu, W.; Jiang, H. J. T. J. o. O. C., Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. 2018, 83 (17), 10453-10464.
17. Zhang, Q.; Luo, L.; Xu, H.; Hu, Z.; Brommesson, C.; Wu, J.; Sun, Z.; Tian, Y.; Uvdal, K. J. N. J. o. C., Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives. 2016, 40 (4), 3456-3463.
18. Bouihi, F.; Schmaltz, B.; Mathevet, F.; Kreher, D.; Faure-Vincent, J.; Yildirim, C.; Elhakmaoui, A.; Bouclé, J.; Akssira, M.; Tran-Van, F. J. M., D-π-A-Type Pyrazolo [1, 5-a] pyrimidine-Based Hole-Transporting Materials for Perovskite Solar Cells: Effect of the Functionalization Position. 2022, 15 (22), 7992.
19. Irfan, A.; Al-Sehemi, A. G.; Al-Assiri, M. S. J. J. o. F. C., The effect of donors–acceptors on the charge transfer properties and tuning of emitting color for thiophene, pyrimidine and oligoacene based compounds. 2014, 157, 52-57.
20. Chen, Y.-C.; Lin, D.-Z.; Wang, J.-C.; Ni, J.-S.; Yu, Y.-Y.; Chen, C.-P. J. M. C. F., Facile star-shaped tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells. 2021, 5 (3), 1373-1387.
21. Wang, J.; Zhan, X. J. A. o. C. R., Fused-ring electron acceptors for photovoltaics and beyond. 2020, 54 (1), 132-143.
22. Lu, H.; Wu, F.; Yang, Y.; Li, S.; Hua, Y.; Zhu, L. J. J. o. M. C. C., Hole transport materials based on a twisted molecular structure with a single aromatic heterocyclic core to boost the performance of conventional perovskite solar cells. 2020, 8 (38), 13415-13421.
23. Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y. J. C. o. M., Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. 2015, 27 (2), 562-569.
24. Schloemer, T. H.; Christians, J. A.; Luther, J. M.; Sellinger, A. J. C. S., Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. 2019, 10 (7), 1904-1935.
25. Ma, S.; Zhang, X.; Liu, X.; Ghadari, R.; Cai, M.; Ding, Y.; Mateen, M.; Dai, S. J. J. o. E. C., Pyridine-triphenylamine hole transport material for inverted perovskite solar cells. 2021, 54, 395-402.
26. Liu, X.; Ma, S.; Ding, Y.; Gao, J.; Liu, X.; Yao, J.; Dai, S. J. S. R., Molecular engineering of simple carbazole‐triphenylamine hole transporting materials by replacing benzene with pyridine unit for perovskite solar cells. 2019, 3 (5), 1800337.
27. Akula, S. B.; Su, C.; Wang, Y.-T.; Tingare, Y. S.; Chen, B.-R.; Jheng, Y.-C.; Lin, Y.-J.; Lan, H.-C.; Chang, Y.-C.; Lekphet, W. J. J. o. P. S., Novel thieno-imidazole salt-based hole transport material for dopant-free, efficient inverted perovskite solar cell applications. 2021, 483, 229177.
28. Tingare, Y. S.; Li, M.-C.; Teng, S.-H.; Lin, J.-H.; Su, C.; Lin, S.-J.; Lew, X.-R.; Tsai, H.; Nie, W.; Li, W.-R. J. A. a. S., Imidazolium Salts-Based Hole Transporting Materials for Inverted Perovskite Solar Cells.
29. Li, H.; Mei, M.; Wang, D.; Zhou, L. J. O. C. F., Synthesis of mono-fluorinated heterocycles with a ring-junction nitrogen atom via Rh (iii)-catalyzed CF 3-carbenoid C–H functionalization and defluorinative annulation. 2023, 10 (6), 1544-1550.
30. Held, F. E.; Guryev, A. A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; von Bojničić-Kninski, C.; Mattes, D. S. J. N. c., Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. 2017, 8 (1), 15071.
31. Fathalla, W.; Pazdera, P.; Khalifa, M. E.; Ali, I. A.; El Rayes, S. M. J. J. o. H. C., Novel domino synthesis of 2‐(2, 3.4‐substituted phenyl) quinazolin‐4‐amine. 2022, 59 (5), 933-942.
32. Jia, F.-C.; Zhou, Z.-W.; Xu, C.; Cai, Q.; Li, D.-K.; Wu, A.-X. J. O. l., Expeditious synthesis of 2-phenylquinazolin-4-amines via a Fe/Cu relay-catalyzed domino strategy. 2015, 17 (17), 4236-4239.
33. Zhang, G.; Wang, X.; Li, C.; Yin, D. J. S. C., Palladium-catalyzed cross-coupling of electron-deficient heteroaromatic amines with heteroaryl halides. 2013, 43 (3), 456-463.
34. Shawky, A. M.; Almalki, F. A.; Abdalla, A. N.; Abdelazeem, A. H.; Gouda, A. M. J. P., A comprehensive overview of globally approved JAK inhibitors. 2022, 14 (5), 1001.
35. Li, X.; Yang, T.; Hu, M.; Yang, Y.; Tang, M.; Deng, D.; Liu, K.; Fu, S.; Tan, Y.; Wang, H. J. B. C., Synthesis and biological evaluation of 6-(pyrimidin-4-yl)-1H-pyrazolo [4, 3-b] pyridine derivatives as novel dual FLT3/CDK4 inhibitors. 2022, 121, 105669.
36. Shang, X.-F.; Lin, H.; Lin, H.-K. J. J. o. f. c., The synthesis and recognition properties of colorimetric fluoride receptors bearing sulfonamide. 2007, 128 (5), 530-534.
37. Shao, J.; Chang, J.; Chi, C. J. O.; Chemistry, B., Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. 2012, 10 (35), 7045-7052.
38. Ganesan, P.; Fu, K.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K. J. E.; Science, E., A simple spiro-type hole transporting material for efficient perovskite solar cells. 2015, 8 (7), 1986-1991
指導教授 李文仁(Wen-Ren Li) 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明