博碩士論文 104683003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.134.244.233
姓名 黃冠瀚(Guan-Han Huang)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 日冕洞與開放磁場區的特性與差異以及長期觀測
(Coronal Holes and Open Magnetic Field Regions: Properties, Differences and Long-term Behaviors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 日冕洞(coronal hole)是日冕持續且不斷發生的現象。他們是在太陽盤面上低亮度且由單一磁極主導的區域,或是磁場線延伸至行星際空間中的「開放」磁場(open magnetic field)區域。這兩種定義雖然具有關聯,但是卻不完全一樣。在此研究中,我們只把具有第一種性質的現象稱呼為日冕洞,並且量化日冕洞與開放磁場區的差異,接著研究造成此差異的來源;以及研究開放磁場區在長時間尺度下的演變。
我們根據太陽動力學天文台(SolarDynamicsObservatory)自卡靈頓週期(Carrington rotation number)2099至2227的極紫外光(extreme ultraviolet)資料與磁場資料,建立這兩種物理量的綜觀影像(synoptic map),並從中擷取出日冕洞;以及使用勢場(potential field)、無作用力場(force-free field)、熱磁流體(thermal magnetohydrodynamic)為基礎建立出開放磁場區;接著再比較日冕洞與開放磁場區的差異。我們也由熱磁流體的資料建立出日冕洞,與同為熱磁流體資料所建立的開放磁場區作比較,藉此來驗證我們的發現。
將日冕洞、開放磁場區與高速太陽風(high-speed solar wind stream)比較之後,我們發現開放磁場區比起日冕洞與高速太陽風更為相關;造成此差異的來源可分為亮度較高的開放磁場區,以及具有封閉磁場線的日冕洞兩種。分析結果指出:一、極紫外線的亮度與磁場線的擴張因子(expansion factor)在對數上有正相關,因此擴張因子較大的開放磁場區會有較高的亮度,而被判斷為非日冕洞區;二、日冕洞的封閉磁場線可以跨日冕洞與非日冕洞區或與其他日冕洞連接,因此對日冕洞的單一磁極也有貢獻;三、開放磁場區在長時間尺度會形成「極至極跨赤道(pole-to-pole trans-equatorial)」的遷移,並且遷移的速度與子午流(meridional flow)的速度相當。
本研究使用到的 EUV 與磁場綜觀影像、合成 EUV 影像、日冕洞、高速太陽風,皆發表於https://doi.org/10.34740/kaggle/ds/2783160。
摘要(英) Coronal holes are persistent and recurrent features in the solar corona. They are observationally defined as dark patches with predominantly unipolar magnetic field, or theoretically as regions with magnetic field lines extending far into the interplanetary space ("open" magnetic field regions). The two definitions, however, do not always coincide with each other. In this study, the first definition will be referred to as coronal hole (CH) and the second definition as open magnetic field (OMF) region. We aim to quantify the difference between the two physical phenomena, investigate the sources of inconsistencies between the two, and study the long-term evolution of the OMF regions.
The CHs are extracted from the synoptic maps constructed using the magnetic field and extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO). The time period of the synoptic maps spans from the Carrington Rotation (CR) number 2099 to CR2227. The extracted CHs are compared with the OMF regions constructed from potential field model, linear force-free model, and thermal magnetohydrodynamic (MHD) model. The OMF regions from the MHD model are also compared with the CHs extracted from the thermal MHD data for theoretical analysis.
By comparing the CHs and the OMF regions with the high-speed solar wind streams (HSSs), we found that the HSS source regions are more consistent with the OMF regions than with CHs. The inconsistency between the CHs and the OMF regions can come from two sources: OMF regions with high EUV intensities and CHs with closed magnetic field structures. Our analysis shows that (1) the EUV intensity is approximately positively correlated with the expansion factor of magnetic flux in logarithmic scale, which means that an OMF region with a sufficiently large expansion factor is likely to be bright in EUV images, and therefore not be qualified as a CH; (2) the closed magnetic field lines can cross the CH boundaries to connect with non-CH regions or with different CHs, thereby contributing a non-negligible amount of unipolarity to the CHs; (3) the long-term evolution of the OMF regions forms a pole-to-pole trans-equatorial migration pattern, and the speed of the migration is comparable to the measured meridional flow speed. The data used in this study, including the EUV and magnetic field synoptic maps, the synthetic EUV maps, the identified coronal holes, and the identified high-speed solar wind streams, are distributed on https://doi.org/10.34740/kaggle/ds/2783160.
關鍵字(中) ★ 日冕洞
★ 開放磁場區
關鍵字(英) ★ coronal hole
★ open magnetic field region
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures vii
Chapter I Introduction 1
Chapter II Data and Models 4
2-1 Magnetic Field and EUV Images . . . . . . . . . . . . . . . . . . . . . . . . . 4
2-2 Magnetic Field Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2-2-1 Potential Field Source Surface (PFSS) Model . . . . . . . . . . . . . . 4
2-2-2 Linear Force-Free Field (LFFF) Model . . . . . . . . . . . . . . . . . 5
2-2-3 Magnetohydrodynamic (MHD) Model . . . . . . . . . . . . . . . . . . 6
2-3 Solar Wind Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2-4 Sunspot Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter III Method 10
3-1 Constructing Synoptic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-2 Constructing Synthetic EUV Maps . . . . . . . . . . . . . . . . . . . . . . . . 11
3-3 Identification of Coronal Holes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-4 Field Line Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
v
3-5 DeterminationofTheHigh-speedSolarWindStream(HSS)andItsSourceRegion 19
Chapter IV Results 21
4-1 The Uncertainty of Coronal Hole Identification . . . . . . . . . . . . . . . . . 21
4-2 Uncertainties of OMFs due to Different Assumptions in The Magnetic Field
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4-3 The Consistency to the HSS sources . . . . . . . . . . . . . . . . . . . . . . . 31
4-4 Open Magnetic Field Regions with High EUV Intensities . . . . . . . . . . . . 37
4-5 The Magnetic Structure inside The Coronal Holes . . . . . . . . . . . . . . . . 51
4-6 Long-term Evolution of Open Magnetic Field Regions . . . . . . . . . . . . . 58
Chapter V Discussion 72
5-1 Formation Mechanisms of Boundary-crossing Closed Field Lines . . . . . . . 72
5-2 Location of The Footpoints of Boundary-crossing Closed Field Lines in The
Coronal Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter VI Conclusions 84
References 87
參考文獻 [1] Harvey, K. L. and Recely, F. . Polar Coronal Holes During Cycles 22 and 23. Sol. Phys.,211:31–52, December 2002. doi:10.1023/A:1022469023581. ADS:2002SoPh..211...31H. (Cited on page 1)
[2] Henney, C. J. and Harvey, J. W. . Automated Coronal Hole Detection using He 1083 nm Spectroheliograms and Photospheric Magnetograms. In Sankarasubramanian, K. , Penn, M. , and Pevtsov, A. , editors, Large-scale Structures and their Role in Solar Activity, volume 346 of Astronomical Society of the Pacific Conference Series, page 261, December 2005. ADS:2005ASPC..346..261H. (Cited on page 1)
[3] Waldmeier, M. . The Coronal Hole at the 7 March 1970 Solar Eclipse. Sol. Phys., 40(2): 351–358, February 1975. doi:10.1007/BF00162382. ADS:1975SoPh...40..351W. (Cited on page 1)
[4] Zirker, J. B. . Coronal holes and high-speed wind streams. Reviews of Geophysics and Space Physics, 15:257–269, August 1977. doi:10.1029/RG015i003p00257. ADS:1977RvGSP..15..257Z. (Cited on page 1)
[5] Cranmer, S. R. . Coronal Holes. Living Reviews in Solar Physics, 6:3, September 2009. doi:10.12942/lrsp-2009-3. ADS:2009LRSP....6....3C. (Cited on page 1)
[6] Heinemann, S. G. , Saqri, J. , Veronig, A. M. , Hofmeister, S. J. , and Temmer, M. . Statistical Approach on Differential Emission Measure of Coronal Holes using the CATCH Catalog. Sol. Phys., 296(1):18, January 2021. doi:10.1007/s11207-020-01759-0. ADS:2021SoPh..296...18H. (Cited on pages 1 and 74)
[7] Hofmeister, S. J. , Veronig, A. , Reiss, M. A. , Temmer, M. , Vennerstrom, S. , Vršnak, B. , and Heber, B. . Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24. ApJ, 835(2):268, February 2017. doi:10.3847/1538-4357/835/2/268. ADS:2017ApJ...835..268H. (Cited on page 1)
[8] Hofmeister, S. J. , Utz, D. , Heinemann, S. G. , Veronig, A. , and Temmer, M. . Photospheric magnetic structure of coronal holes. A&A, 629:A22, September 2019. doi:10.1051/0004-6361/201935918. ADS:019A&A...629A..22H. (Cited on page 1)
[9] Heinemann, S. G. , Jerčić, V. , Temmer, M. , Hofmeister, S. J. , Dumbović, M. , Vennerstrom, S. , Verbanac, G. , and Veronig, A. M. . A statistical study of the long-term evolution of coronal hole properties as observed by SDO. A&A, 638:A68, June 2020. doi:10.1051/0004-6361/202037613. ADS:020A&A...638A..68H. (Cited on page 1)
[10] Hewins, I. M. , Gibson, S. E. , Webb, D. F. , McFadden, R. H. , Kuchar, T. A. , Emery, B. A. , and McIntosh, S. W. . The Evolution of Coronal Holes over Three Solar Cycles Using the McIntosh Archive. Sol. Phys., 295(11):161, November 2020. doi:10.1007/s11207-020-01731-y. ADS:2020SoPh..295..161H. (Cited on page 1)
[11] Waldmeier, M. . Cyclic Variations of the Polar Coronal Hole. Sol. Phys., 70(2):251–258, April 1981. doi:10.1007/BF00151332. ADS:1981SoPh...70..251W. (Cited on pages 1 and 62)
[12] Wang, Y. M. . Coronal Holes and Open Magnetic Flux. Space Sci. Rev., 144(1-4):383–399, April 2009. doi:10.1007/s11214-008-9434-0. ADS:2009SSRv..144..383W. (Cited on page 1)
[13] Lowder, C. , Qiu, J. , Leamon, R. , and Liu, Y. . Measurements of EUV Coronal Holes and Open Magnetic Flux. ApJ, 783:142, March 2014. doi:10.1088/0004-637X/783/2/142. ADS:2014ApJ...783..142L. (Cited on pages 1, 2, and 84)
[14] Hudson, H. S. . Coronal holes as seen in soft X-rays by Yohkoh. In Wilson, A. , editor, From Solar Min to Max: Half a Solar Cycle with SOHO, volume 508 of ESA Special Publication, pages 341–349, June 2002. ADS:2002ESASP.508..341H. (Cited on page 1)
[15] Wiegelmann, T. and Solanki, S. K. . Similarities and Differences between Coronal Holes and the Quiet Sun: Are Loop Statistics the Key? Sol. Phys., 225(2):227–247, December 2004. doi:10.1007/s11207-004-3747-2. ADS:2004SoPh..225..227W. (Cited on page 1)
[16] Krieger, A. S. , Timothy, A. F. , and Roelof, E.C. . A Coronal Hole and Its Identification as the Source of a High Velocity Solar Wind Stream. Sol. Phys., 29(2):505–525, April 1973. doi:10.1007/BF00150828. ADS:1973SoPh...29..505K. (Cited on page 1)
[17] Krieger, A. S. , Timothy, A. F. , Vaiana, G. S. , Lazarus, A. J. , and Sullivan, J. D. . X-ray observations of coronal holes and their relation to high velocity solar wind streams. In Russell, C. T. , editor, Solar Wind Three, pages 132–139, January 1974. ADS:1974sowi.conf..132K. (Cited on page 1)
[18] Kopp, R. A. and Holzer, T. E. . Dynamics of coronal hole regions. I - Steady polytropic flows with multiple critical points. Sol. Phys., 49:43–56, July 1976. doi:10.1007/BF00221484. ADS:1976SoPh...49...43K. (Cited on pages 2 and 37)
[19] Wang, Y.-M. and Sheeley, N. R. , Jr. Solar wind speed and coronal flux-tube expansion. ApJ, 355:726–732, June 1990. doi:10.1086/168805. ADS:1990ApJ...355..726W. (Cited on pages 2 and 37)
[20] Linker, J. A. , Caplan, R. M. , Downs, C. , Riley, P. , Mikic, Z. , Lionello, R. , Henney, C. J. , Arge, C. N. , Liu, Y. , Derosa, M. L. , Yeates, A. , and Owens, M. J. . The Open Flux Problem. ApJ, 848(1):70, October 2017. doi:10.3847/1538-4357/aa8a70. ADS:2017ApJ...848...70L. (Cited on pages 2 and 84)
[21] Levine, R. H. . Open Magnetic Fields and the Solar Cycle - Part One - Photospheric Sources of Open Magnetic Flux. Sol. Phys., 79(2):203–230, August 1982. doi:10.1007/BF00146241. ADS:1982SoPh...79..203L. (Cited on pages 2 and 84)
[22] Mogilevsky, E. I. , Obridko, V. N. , and Shilova, N. S. . Large-Scale Magnetic Field Structures and Coronal Holes on the Sun. Sol. Phys., 176(1):107–121, November 1997. doi:10.1023/A:1004908014970. ADS:1997SoPh..176..107M. (Cited on page 2)
[23] Neugebauer, M. , Forsyth, R. J. , Galvin, A. B. , Harvey, K. L. , Hoeksema, J. T. , Lazarus, A. J. , Lepping, R. P. , Linker, J. A. , Mikic, Z. , Steinberg, J. T. , von Steiger, R. , Wang, Y. M. , and Wimmer-Schweingruber, R. F. . Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res., 103(A7):14587–14600, July 1998. doi:10.1029/98JA00798. ADS:1998JGR...10314587N. (Cited on pages 2 and 84)
[24] Ioshpa, B. A. , Mogilevsky, E. I. , and Obridko, V. N. . Evolution of the Filament/CH/Magnetic Field Complex. In Webb, D. F. , Schmieder, B. , and Rust, D. M. , editors, IAU Colloq. 167: New Perspectives on Solar Prominences, volume 150 of Astronomical Society of the Pacific Conference Series, page 393, January 1998. ADS:1998ASPC..150..393I. (Cited on page 2)
[25] Obridko, V. N. and Shelting, B. D. . Coronal holes as indicators of large-scale magnetic fields in the corona. Sol. Phys., 124(1):73–80, March 1989. doi:10.1007/BF00146520. ADS:1989SoPh..124...73O. (Cited on page 2)
[26] Obridko, V. N. and Shelting, B. D. . Structure and Cyclic Variations of Open Magnetic Fields in the sun. Sol. Phys., 187(1):185–205, June 1999. doi:10.1023/A:1005188600022. ADS:1999SoPh..187..185O. (Cited on page 2)
[27] Bertello, L. , Pevtsov, A. A. , Petrie, G. J. D. , and Keys, D. . Uncertainties in Solar Synoptic Magnetic Flux Maps. Sol. Phys., 289(7):2419–2431, July 2014. doi:10.1007/s11207-014-0480-3. ADS:2014SoPh..289.2419B. (Cited on page 2)
[28] Caplan, R. M. , Downs, C. , Linker, J. A. , and Mikic, Z. . Variations in Finite-difference Potential Fields. ApJ, 915(1):44, July 2021. doi:10.3847/1538-4357/abfd2f. ADS:2021ApJ...915...44C. (Cited on page 2)
[29] Linker, J. A. , Heinemann, S. G. , Temmer, M. , Owens, M. J. , Caplan, R. M. , Arge, C. N. , Asvestari, E. , Delouille, V. , Downs, C. , Hofmeister, S. J. , Jebaraj, I. C. , Madjarska, M. S. , Pinto, R. F. , Pomoell, J. , Samara, E. , Scolini, C. , and Vršnak, B. . Coronal Hole Detection and Open Magnetic Flux. ApJ, 918(1):21, September 2021. doi:10.3847/1538-4357/ac090a. ADS:2021ApJ...918...21L. (Cited on page 2)
[30] Asvestari, E. , Heinemann, S. G. , Temmer, M. , Pomoell, J. , Kilpua, E. , Magdalenic, J. , and Poedts, S. . Reconstructing Coronal Hole Areas With EUHFORIA and Adapted WSA Model: Optimizing the Model Parameters. Journal of Geophysical Research (Space Physics), 124(11):8280–8297, November 2019. doi:10.1029/2019JA027173. ADS:2019JGRA..124.8280A. (Cited on page 2)
[31] Huang, G. H. , Lin, C. H. , and Lee, L. C. . Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal. Scientific Reports, 7:9488, August 2017. doi:10.1038/s41598-017-09862-2. ADS:2017NatSR...7.9488H. (Cited on pages 3, 61, 63, 64, 66, and 68)
[32] Huang, G.-H. , Lin, C.-H. , and Lee, L.-C. . Examination of the EUV Intensity in the Open Magnetic Field Regions Associated with Coronal Holes. ApJ, 874(1):45, March 2019. doi:10.3847/1538-4357/ab06f0. ADS:2019ApJ...874...45H. (Cited on pages 3, 14, 39, 40, 42, 43, 44, 46, 48, 61, and 71)
[33] Huang, G.-H. , Lin, C.-H. , and Lee, L.-C. . Existence of the Closed Magnetic Field Lines Crossing the Coronal Hole Boundaries. ApJ, 933(2):237, July 2022. doi:10.3847/1538-4357/ac7786. ADS:2022ApJ...933..237H. (Cited on pages 3, 16, 22, 23, 25, 26, 51, 54, 55, 59, 60, 73, 78, and 83)
[34] Schatten, K. H. , Wilcox, J. M. , and Ness, N. F. . A model of interplanetary and coronal magnetic fields. Sol. Phys., 6:442–455, March 1969. doi:10.1007/BF00146478. ADS:1969SoPh....6..442S. (Cited on page 4)
[35] Jiang, C. and Feng, X. . A Unified and Very Fast Way for Computing the Global Potential and Linear Force-Free Fields. Sol. Phys., 281(2):621–637, December 2012. doi:10.1007/s11207-012-0074-x. ADS:2012SoPh..281..621J. (Cited on page 5)
[36] Lionello, R. , Linker, J. A. , and Mikić, Z. . Multispectral Emission of the Sun During the First Whole Sun Month: Magnetohydrodynamic Simulations. ApJ, 690(1):902–912, January 2009. doi:10.1088/0004-637X/690/1/902. ADS:2009ApJ...690..902L. (Cited on pages 6, 7, and 84)
[37] Jacques,S.A.. Momentumandenergytransportbywavesinthesolaratmosphereandsolar wind. ApJ, 215:942–951, August 1977. doi:10.1086/155430. ADS:1977ApJ...215..942J. (Cited on page 6)
[38] Athay, R. G. . Radiation Loss Rates in Lyman Alpha for Solar Conditions. ApJ, 308:975, September 1986. doi:10.1086/164565. ADS:1986ApJ...308..975A. (Cited on page 6)
[39] Rosner, R. , Tucker, W. H. , and Vaiana, G. S. . Dynamics of the quiescent solar corona. ApJ, 220:643–645, March 1978. doi:10.1086/155949. ADS:1978ApJ...220..643R. (Cited on page 7)
[40] Riley, P. , Linker, J. A. , Lionello, R. , Mikić, Z. , and Wijaya, J. . A Rough Guide to the MAS Code. http://shadow.predsci.com/mas/doc/User-Guide.pdf, November 2020. (Cited on page 8)
[41] Yee, K. . Numerical solution of initial boundary value problems involving maxwell′s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3): 302–307, 1966. doi:10.1109/TAP.1966.1138693. (Cited on page 8)
[42] Brecht, S. H. , Lyon, J. G. , Fedder, J. A. , and Hain, K. . A time-dependent three-dimensional simulation of the Earth′s magnetosphere: Reconnection events. Interim Report Naval Research Lab., Washington, DC. Geophysical and Plasma Dynamics Branch., December 1981. ADS:1981nrl..reptS....B. (Cited on page 8)
[43] Hathaway, D. H. . The Solar Cycle. Living Reviews in Solar Physics, 12(1):4, September 2015. doi:10.1007/lrsp-2015-4. ADS:2015LRSP...12....4H. (Cited on page 9)
[44] Svalgaard, L. , Duvall, T. , and Scherrer, P. . The strength of the Sun′s polar fields. Sol. Phys., 58:225–239, July 1978. doi:10.1007/BF00157268. (Cited on page 10)
[45] Petrie, G. J. D. and Patrikeeva, I. . The strength of the Sun′s polar fields. ApJ, 699:871, June 2009. doi:10.1088/0004-637X/699/1/871.
[46] Gosain, S. and Pevtsov, A. A. . Resolving Azimuth Ambiguity Using Vertical Nature of Solar Quiet-Sun Magnetic Fields. Sol. Phys., 283:195–205, March 2013. doi:10.1007/s11207-012-0135-1. (Cited on page 10)
[47] Snodgrass, H. B. . Magnetic rotation of the solar photosphere. ApJ, 270:288–299, July 1983. doi:10.1086/161121. ADS:1983ApJ...270..288S. (Cited on page 10)
[48] Roddy, P. J. and McEwen, J. D. . Sifting Convolution on the Sphere. IEEE Signal Processing Letters, 28:304–308, January 2021. doi:10.1109/LSP.2021.3050961. ADS:2021ISPL...28..304R. (Cited on page 10)
[49] Freeland, S. L. and Handy, B. N. . Data Analysis with the SolarSoft System. Sol. Phys., 182(2):497–500, October 1998. doi:10.1023/A:1005038224881. ADS:1998SoPh..182..497F. (Cited on page 10)
[50] Dere, K. P. , Landi, E. , Young, P. R. , Del Zanna, G. , Landini, M. , and Mason, H. E. . CHIANTI - an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. A&A, 498(3):915–929, May 2009. doi:10.1051/0004-6361/200911712.
ADS:009A&A...498..915D. (Cited on page 11)
[51] Krista, L. D. and Gallagher, P. T. . Automated Coronal Hole Detection Using Local Intensity Thresholding Techniques. Sol. Phys., 256:87–100, May 2009. doi:10.1007/s11207-009-9357-2. ADS:2009SoPh..256...87K. (Cited on page 13)
[52] Heinemann, S. G. , Temmer, M. , Heinemann, N. , Dissauer, K. , Samara, E. , Jerčić, V. , Hofmeister, S. J. , and Veronig, A. M. . Statistical Analysis and Catalog of Non-polar Coronal Holes Covering the SDO-Era Using CATCH. Sol. Phys., 294(10):144, October 2019. doi:10.1007/s11207-019-1539-y. ADS:2019SoPh..294..144H. (Cited on pages 13,
15, and 21)
[53] Markwardt, C. B. . Non-linear Least-squares Fitting in IDL with MPFIT. In Bohlender, D. A. , Durand, D. , and Dowler, P. , editors, Astronomical Data Analysis Software and Systems XVIII, volume 411 of Astronomical Society of the Pacific Conference Series, page 251, September 2009. ADS:2009ASPC..411..251M. (Cited on page 13)
[54] Caplan, R. M. , Downs, C. , and Linker, J. A. . Synchronic Coronal Hole Mapping Using Multi-instrument EUV Images: Data Preparation and Detection Method. ApJ, 823:53, May 2016. doi:10.3847/0004-637X/823/1/53. ADS:2016ApJ...823...53C. (Cited on page 15)
[55] Haralick, R. M. , Sternberg, S. R. , and Zhuang, X. . Image Analysis Using Mathematical Morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9: 532–550, July 1987. doi:10.1109/TPAMI.1987.4767941. (Cited on page 19)
[56] Xystouris, G. , Sigala, E. , and Mavromichalaki, H. . A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23. Sol. Phys., 289:995–1012, March 2014. doi:10.1007/s11207-013-0355-z. ADS:2014SoPh..289..995X. (Cited on page 19)
[57] Zdaniuk, B. . Ordinary Least-Squares (OLS) Model, pages 4515–4517. Springer Netherlands, Dordrecht, 2014. ISBN 978-94-007-0753-5. doi:10.1007/978-94-007-0753-5_2008. URLhttps://doi.org/10.1007/978-94-007-0753-5_2008. (Cited on page 41)
[58] Mayer, R. , Bucholtz, F. , and Scribner, D. . Object detection by using "whitening/dewhitening" to transform target signatures in multitemporal hyperspectral and multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(5):1136–1142, May 2003. doi:10.1109/TGRS.2003.813553. ADS:2003ITGRS..41.1136M. (Cited
on page 41)
[59] Lowder, C. , Qiu, J. , and Leamon, R. . Coronal Holes and Open Magnetic Flux over Cycles 23 and 24. Sol. Phys., 292(1):18, January 2017. doi:10.1007/s11207-016-1041-8. ADS:2017SoPh..292...18L. (Cited on page 58)
[60] Bravo, S. and Otaola, J. A. . Polar Coronal Holes and the Sunspot Cycle - a New Method to Predict Sunspot Numbers. Sol. Phys., 122(2):335–343, September 1989. doi:10.1007/BF00913000. ADS:1989SoPh..122..335B. (Cited on page 61)
[61] Wang, Y. M. and Sheeley, N. R. . Sunspot activity and the long-term variation of the Sun′s open magnetic flux. Journal of Geophysical Research (Space Physics), 107(A10):1302, October2002. doi:10.1029/2001JA000500. ADS:2002JGRA..107.1302W. (Cited on page 61)
[62] Duvall, J. , T. L. Large-scale solar velocity fields. Sol. Phys., 63(1):3–15, August 1979. doi:10.1007/BF00155690. ADS:1979SoPh...63....3D. (Cited on page 62)
[63] Ikhsanov, R. N. and Ivanov, V. G. . Properties of space and time distribution of solar coronal holes. Sol. Phys., 188(2):245–258, September 1999. doi:10.1023/A:1005109200233. ADS:1999SoPh..188..245I. (Cited on page 62)
[64] Hess Webber, S. A. , Karna, N. , Pesnell, W. D. , and Kirk, M. S. . Areas of Polar Coronal Holes from 1996 Through 2010. Sol. Phys., 289(11):4047–4067, November 2014. doi:10.1007/s11207-014-0564-0. ADS:2014SoPh..289.4047H. (Cited on pages 62 and 67)
[65] Karna, N. , Hess Webber, S. A. , and Pesnell, W. D. . Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24. Sol. Phys., 289(9):3381–3390, September 2014. doi:10.1007/s11207-014-0541-7. ADS:2014SoPh..289.3381K. (Cited on page 67)
[66] Haralick, R. and Shapiro, L. . Computer and Robot Vision, volume 1, pages 346–351. Addison-Wesley Publishing Company, 1992. (Cited on page 81)
指導教授 林佳賢 李羅權(Chia-Hsien Lin Lou-Chuang Lee) 審核日期 2023-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明