參考文獻 |
1. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi,
M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003,
423 (6941), 705-714.
2. Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.;
Habibzadeh, S.; Formela, K.; Saeb, M. R. Metal-Organic Framework
(MOF)/Epoxy Coatings: A Review Materials [Online], 2020.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The
Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341
(6149), 1230444.
4. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic
Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012,
112 (2), 1196-1231.
5. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and
Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage
in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.
6. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.;
Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks
in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
7. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From
Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
8. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R.
P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors.
Chemical Reviews 2012, 112 (2), 1105-1125.
9. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for
Separations. Chemical Reviews 2012, 112 (2), 869-932.
10. Hoskins, B. F.; Robson, R., Design and construction of a new class of
scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked
molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures
and the synthesis and structure of the diamond-related frameworks
[N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-
tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American
Chemical Society 1990, 112 (4), 1546-1554.
11. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry.
Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
12. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., MicrowaveAssisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40
58
(2), 321-330.
13. Ameloot, R.; Pandey, L.; Auweraer, M. V. d.; Alaerts, L.; Sels, B. F.;
De Vos, D. E., Patterned film growth of metal–organic frameworks based on
galvanic displacement. Chemical Communications 2010, 46 (21), 3735-3737.
14. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a
microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
15. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile
synthesis of nanocrystals of a microporous metal–organic framework by an
ultrasonic method and selective sensing of organoamines. Chemical
Communications 2008, (31), 3642-3644.
16. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs):
Routes to Various MOF Topologies, Morphologies, and Composites. Chemical
Reviews 2012, 112 (2), 933-969.
17. Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X.,
Well-Defined Metal–Organic Framework Hollow Nanocages. Angewandte
Chemie International Edition 2014, 53 (2), 429-433.
18. Li, A.-L.; Ke, F.; Qiu, L.-G.; Jiang, X.; Wang, Y.-M.; Tian, X.-Y.,
Controllable synthesis of metal–organic framework hollow nanospheres by a
versatile step-by-step assembly strategy. CrystEngComm 2013, 15 (18), 3554-
3559.
19. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as
Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
20. Kim, H.; Lah, M. S., Templated and template-free fabrication strategies for
zero-dimensional hollow MOF superstructures. Dalton Transactions 2017, 46
(19), 6146-6158.
21. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe,
M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of
Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1),
58-67.
22. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic
Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129
(17), 5314-5315.
23. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic
imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions.
Chemical Communications 2011, 47 (37), 10275-10277.
24. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.;
Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for GasPhase Heterogeneous Catalysis with Selectivity Control. Journal of the American
59
Chemical Society 2012, 134 (35), 14345-14348.
25. Morabito, J. V.; Chou, L.-Y.; Li, Z.; Manna, C. M.; Petroff, C. A.;
Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C.-K., Molecular
Encapsulation beyond the Aperture Size Limit through Dissociative Linker
Exchange in Metal–Organic Framework Crystals. Journal of the American
Chemical Society 2014, 136 (36), 12540-12543.
26. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed
Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with
Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45
(10), 1557-1559.
27. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M.,
Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic
Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130
(38), 12626-12627.
28. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming
Metal Organic Frameworks with Exceptional Stability. Journal of the American
Chemical Society 2008, 130 (42), 13850-13851.
29. Han Yitong, L. I. U. M. L. I. K. Z. U. O. Y. Z. G. Z. Z. G. U. O. X., Preparation
and Application of High Stability Metal-Organic Framework UiO-66. Chinese
Journal of Applied Chemistry 2016, 33 (4), 367-378.
30. Winarta, J.; Shan, B.; McIntyre, S. M.; Ye, L.; Wang, C.; Liu, J.; Mu,
B., A Decade of UiO-66 Research: A Historic Review of Dynamic Structure,
Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–
Organic Framework. Crystal Growth & Design 2020, 20 (2), 1347-1362.
31. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R., Enzyme
immobilization: an update. Journal of Chemical Biology 2013, 6 (4), 185-205.
32. Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.;
Nadda, A. K.; Stevanato, R.; Bilal, M.; Iqbal, H. M. N., Industrial applications
of immobilized nano-biocatalysts. Bioprocess and Biosystems Engineering 2022,
45 (2), 237-256.
33. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y.,
Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF-67@ZIF-8 as
Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie
International Edition 2015, 54 (37), 10889-10893.
34. Lapointe, S.; Sullivan, R.; Sirard, M.-A., Binding of a Bovine Oviductal
Fluid Catalase to Mammalian Spermatozoa1. Biology of Reproduction 1998, 58
(3), 747-753.
60
35. Chen, S.-Y.; Lo, W.-S.; Huang, Y.-D.; Si, X.; Liao, F.-S.; Lin, S.-W.;
Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y.; Sun, T.; Ma, Y.; Yang,
H.-C.; Chou, L.-Y.; Shieh, F.-K.; Tsung, C.-K., Probing Interactions between
Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure.
Nano Letters 2020, 20 (9), 6630-6635.
36. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh,
F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding
against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a
de Novo Approach. Journal of the American Chemical Society 2017, 139 (19),
6530-6533.
37. Das, A.; Mukhopadhyay, C., Urea-Mediated Protein Denaturation: A
Consensus View. The Journal of Physical Chemistry B 2009, 113 (38), 12816-
12824.
38. Liang, W.; Xu, H.; Carraro, F.; Maddigan, N. K.; Li, Q.; Bell, S. G.;
Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; Vaccari, L.;
Sumby, C. J.; Falcaro, P.; Doonan, C. J., Enhanced Activity of Enzymes
Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the
American Chemical Society 2019, 141 (6), 2348-2355.
39. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 1997, 88 (605), 428-438.
40. Shaw, D. J., 7 - Charged interfaces. In Introduction to Colloid and Surface
Chemistry (Fourth Edition), Shaw, D. J., Ed. Butterworth-Heinemann: Oxford,
1992; pp 174-209.
41. Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A., High-concentration
zeta potential measurements using light-scattering techniques. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 2010, 368 (1927), 4439-4451.
42. Han, Y.; Liu, M.; Li, K.; Sun, Q.; Song, C.; Zhang, G.; Zhang, Z.;
Guo, X., Cu2O Mediated Synthesis of Metal–Organic Framework UiO-66 in
Nanometer Scale. Crystal Growth & Design 2017, 17 (2), 685-692.
43. He, Y.; Tang, Y. P.; Ma, D.; Chung, T.-S., UiO-66 incorporated thin-film
nanocomposite membranes for efficient selenium and arsenic removal. Journal of
Membrane Science 2017, 541, 262-270.
44. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou,
L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K.,
Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous
Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–
61
Organic Framework Microcrystals. Journal of the American Chemical Society
2015, 137 (13), 4276-4279.
45. Bradford, M. M., A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical Biochemistry 1976, 72 (1), 248-254.
46. de Moreno, M. R.; Smith, J. F.; Smith, R. V., Mechanism Studies of
Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical
Sciences 1986, 75 (9), 907-911.
47. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production
during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
48. Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu,
F.; Ouyang, G., Modulating the Biofunctionality of Metal–Organic-FrameworkEncapsulated Enzymes through Controllable Embedding Patterns. Angewandte
Chemie International Edition 2020, 59 (7), 2867-2874.
49. Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G., Embedding
Functional Biomacromolecules within Peptide-Directed Metal–Organic
Framework (MOF) Nanoarchitectures Enables Activity Enhancement.
Angewandte Chemie International Edition 2020, 59 (33), 13947-13954.
50. Maddigan, N. K.; Tarzia, A.; Huang, D. M.; Sumby, C. J.; Bell, S. G.;
Falcaro, P.; Doonan, C. J., Protein surface functionalisation as a general strategy
for facilitating biomimetic mineralisation of ZIF-8. Chemical Science 2018, 9 (18),
4217-4223.
51. Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.;
Ouyang, G., Atomically unveiling the structure-activity relationship of
biomacromolecule-metal-organic frameworks symbiotic crystal. Nature
Communications 2022, 13 (1), 951.
52. Kumar, A.; Dixit, C. K., 3 - Methods for characterization of nanoparticles. In
Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh,
S.; Chandra, R.; Gupta, N., Eds. Woodhead Publishing: 2017; pp 43-58.
53. Lv, Y.; Liang, Q.; Li, Y.; Li, X.; Liu, X.; Zhang, D.; Li, J., Effects of
metal ions on activity and structure of phenoloxidase in Penaeus vannamei.
International Journal of Biological Macromolecules 2021, 174, 207-215.
54. Banaszak, L. J.; Watson, H. C.; Kendrew, J. C., The binding of cupric and
zinc ions to crystalline sperm whale myoglobin. Journal of Molecular Biology
1965, 12 (1), 130-137. |