博碩士論文 110222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.223.195.20
姓名 張乃軒(Nai-Hsuan Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Design and Performance Verification of Flux-Driven Josephson Parametric Amplifier)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ 工程化超導電路上三維腔量子電動力學系統
★ Characterizing single-qubit gate fidelity on superconducting qubits★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator
★ 超導雙量子位元電路的實現★ Developing Flux-Driven Josephson Parametric Amplifer
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 約瑟夫森參量放大器是一種外加噪聲可以低至半光子量子理論極限的線性放大器,其優異的噪聲表現能有效地降低系統噪聲,使小訊號的量測有更好的信噪比。其應用包括了超導量子位元的single shot量測、暗物質軸子探測、微波量子雷達等。這篇文章採用的約瑟夫森參量放大器版本是參考至2008年Yamamoto的設計,其結構為一個四分之一波長微波共振腔透過超導量子干涉元件接地;由於超導量子干涉元件的電感會隨著外加磁通量而產生週期性的變化,因此此元件為工作頻率可調的元件。 衡量一個約瑟夫森參量放大器性能的指標有增益和頻寬的乘積、外加噪聲、調頻能力。我們的元件在4.6 GHz-5.05 GHz的增益頻寬乘積達到20-60 MHz,且外加噪聲也低於一個光子能量。內文會介紹此元件的理論、設計以及量測表現。
摘要(英) Josephson Parametric Amplifier(JPA) is a linear amplifier whose add noise can be as low as the half-photon quantum limit. Its excellent noise performance can effectively reduce the system noise and enable the measurement of small signals to have a better signal-to-noise ratio. Its applications include single shot measurement of superconducting qubits, dark matter axion detection, microwave quantum radar etc.
The version of the JPA used in this work is based on the design of Yamamoto in 2008. It is structurally a quarter-wavelength microwave resonator grounded by a superconducting quantum interference device (SQUID). The inductance of SQUID
will periodically depend on the external magnetic flux, so the operating frequency is adjustable. The criteria to judge the JPA performance includes the Gain Bandwidth Product, added noise, and frequency tunability. Our JPA has a Gain-Bandwidth Product of 20-60 MHz at 4.6 GHz-5.05 GHz, and the added noise is lower than one photon. The thesis will introduce the theory, design and the measurement results of this device.
關鍵字(中) ★ 約瑟夫森參量放大器
★ 超導電路
關鍵字(英) ★ Josephson Parametric Amplifier
★ Superconducting circuit
論文目次 1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Parametric Amplification . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Amplifier Added Noise and System Noise . . . . . . . . . . . . . . . . 4
2 Theory 6
2.1 Quantum Limits on Noise in Linear Amplifiers . . . . . . . . . . . . . 6
2.2 Josephson Tunneling Effect . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 DC-SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Operation Principle of Josephson Parametric Amplifier . . . . . . . . 11
2.3.1 Input-Output Theory . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Equivalent Circuit to Duffing Oscillator . . . . . . . . . . . . . 13
2.3.3 Eigenfrequency Modulation (Three Photon Mixing) . . . . . . 14
2.3.4 Sinusoidal Driving Force (Four Photon Mixing) . . . . . . . . 17
2.3.5 Phase Sensitive Gain . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Lumped Element Model for a Transmission Line Resonator . . . . . . 19
2.5 Flux-Driven Josephson Parametric Amplifier . . . . . . . . . . . . . . 24
3 Experimental Setup 28
3.1 Device Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Device Wiring and Measurement Setup . . . . . . . . . . . . . . . . 29
4 Experimental results 33
4.1 Flux-Dependence of the Resonator Frequency . . . . . . . . . . . . . 33
4.2 Non-Degenerate Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Working Range . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Gain Bandwidth Performance . . . . . . . . . . . . . . . . . . 37
4.2.3 System Noise Improvement . . . . . . . . . . . . . . . . . . . 37
4.2.4 Saturation Power . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Degenerate Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Noise Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Conclusion 48
Bibliography 50
參考文獻 1] Tsuyoshi Yamamoto, K Inomata, M Watanabe, K Matsuba, T Miyazaki,
William D Oliver, Yasunobu Nakamura, and JS Tsai. Flux-driven josephson
parametric amplifier. Applied Physics Letters, 93(4):042510, 2008.
[2] Daniel Arweiler. Multi-squid josephson parametric amplifiers. pages 1–122,
2018.
[3] Xin Zhou, Vivien Schmitt, Patrice Bertet, Denis Vion,WaltrautWustmann, Vitaly
Shumeiko, and Daniel Esteve. High-gain weakly nonlinear flux-modulated
josephson parametric amplifier using a squid array. Physical Review B,
89(21):214517, 2014.
[4] Stefan Pogorzalek, Kirill G Fedorov, Ling Zhong, Jan Goetz, Friedrich
Wulschner, Michael Fischer, Peter Eder, Edwar Xie, Kunihiro Inomata,
Tsuyoshi Yamamoto, et al. Flux-driven josephson parametric amplifiers: Hysteretic
flux response and nondegenerate gain measurements. arXiv preprint
arXiv:1609.09041, 2016.
[5] Philip Krantz. Parametrically pumped superconducting circuits. Chalmers
Tekniska Hogskola (Sweden), 2013.
[6] Carlton M Caves. Quantum limits on noise in linear amplifiers. Physical Review
D, 26(8):1817, 1982.
49
[7] Manuel Angel Castellanos Beltran. Development of a Josephson parametric
amplifier for the preparation and detection of nonclassical states of microwave
fields. PhD thesis, University of Colorado at Boulder, 2010.
[8] Yoshihisa Yamamoto and Kouichi Semba. Principles and Methods of Quantum
Information Technologies, volume 624. Springer, 2016.
[9] A Baust. Characterization of flux-driven Josephson parametric amplifiers. PhD
thesis, 2010.
[10] Waltraut Wustmann and Vitaly Shumeiko. Parametric resonance in tunable
superconducting cavities. Physical Review B, 87(18):184501, 2013.
[11] Christopher Eichler and Andreas Wallraff. Controlling the dynamic range of a
josephson parametric amplifier. EPJ Quantum Technology, 1(1):1–19, 2014.
[12] Samuel Boutin, David M Toyli, Aditya V Venkatramani, Andrew W Eddins,
Irfan Siddiqi, and Alexandre Blais. Effect of higher-order nonlinearities on
amplification and squeezing in josephson parametric amplifiers. Physical Review
Applied, 8(5):054030, 2017.
[13] L Zhong, EP Menzel, R Di Candia, P Eder, M Ihmig, A Baust, M Haeberlein,
E Hoffmann, K Inomata, T Yamamoto, et al. Squeezing with a flux-driven
josephson parametric amplifier. New Journal of Physics, 15(12):125013, 2013.
[14] JY Mutus, TC White, Evan Jeffrey, Daniel Sank, Rami Barends, Joerg
Bochmann, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth, et al. Design
and characterization of a lumped element single-ended superconducting
microwave parametric amplifier with on-chip flux bias line. Applied Physics
Letters, 103(12):122602, 2013.
[15] Teemu Elo, TS Abhilash, MR Perelshtein, I Lilja, EV Korostylev, and PJ Hakonen.
Broadband lumped-element josephson parametric amplifier with singlestep
lithography. Applied Physics Letters, 114(15):152601, 2019.
指導教授 陳永富(Yung-Fu Chen) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明