參考文獻 |
1. Tewary, M., N. Shakiba, and P.W. Zandstra, Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 2018. 19(10): p. 595-614.
2. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet, 2012. 379(9817): p. 713-720.
3. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015. 14(10): p. 681-692.
4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-156.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
6. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404.
7. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
8. Vazin, T. and W.J. Freed, Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorative Neurology and Neuroscience, 2010. 28(4): p. 589-603.
9. Adewumi, O., et al., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007. 25(7): p. 803-816.
10. Stojkovic, M., et al., Derivation, growth and applications of human embryonic stem cells. Reproduction, 2004. 128(3): p. 259-267.
11. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
12. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem Cell Research & Therapy, 2019. 10.
13. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
14. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
15. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
16. Maherali, N., et al., A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008. 3(3): p. 340-345.
17. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362.
18. Stadtfeld, M., et al., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008. 2(3): p. 230-240.
19. Okita, K., et al., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008. 322(5903): p. 949-953.
20. Kim, D., et al., Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 2009. 4(6): p. 472-476.
21. Warren, L., et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-630.
22. Singh, V.K., et al., Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015. 3.
23. Yamanaka, S., Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012. 10(6): p. 678-684.
24. Hentze, H., et al., Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Research, 2009. 2(3): p. 198-210.
25. Gore, A., et al., Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011. 471(7336): p. 63-U76.
26. Zhao, T.B., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212-U251.
27. Wu, D.C., A.S. Boyd, and K.J. Wood, Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience-Landmark, 2007. 12: p. 4525-4535.
28. Hussein, S.M., et al., Copy number variation and selection during reprogramming to pluripotency. Nature, 2011. 471(7336): p. 58-U67.
29. Kotini, A.G., et al., Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell, 2017. 20(3): p. 315-+.
30. Taoka, K., et al., Using patient-derived iPSCs to develop humanized mouse models for chronic myelomonocytic leukemia and therapeutic drug identification, including liposomal clodronate. Scientific Reports, 2018. 8.
31. Tian, Z.J., et al., Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. International Journal of Molecular Sciences, 2016. 17(4).
32. Luo, M.Y. and Y.X. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. International Journal of Ophthalmology, 2018. 11(1): p. 150-159.
33. Schwartz, S.D., et al., Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt′s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet, 2015. 385(9967): p. 509-16.
34. Stadtfeld, M. and K. Hochedlinger, Induced pluripotency: history, mechanisms, and applications. Genes & Development, 2010. 24(20): p. 2239-2263.
35. Rowe, R.G. and G.Q. Daley, Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019. 20(7): p. 377-388.
36. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
37. Stern, J.H., et al., Regenerating eye tissues to preserve and restore vision. Cell stem cell, 2018. 22(6): p. 834-849.
38. Dellatore, S.M., A.S. Garcia, and W.M. Miller, Mimicking stem cell niches to increase stem cell expansion. Current Opinion in Biotechnology, 2008. 19(5): p. 534-540.
39. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
40. Tong, Z.X., et al., Application of biomaterials to advance induced pluripotent stem cell research and therapy. Embo Journal, 2015. 34(8): p. 987-1008.
41. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
42. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
43. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 2005. 11(2): p. 228-232.
44. Kawase, E. and N. Nakatsuji, Development of substrates for the culture of human pluripotent stem cells. Biomaterials Science, 2023.
45. Huang, G.Y., et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017. 117(20): p. 12764-12850.
46. Chen, G.K., et al., Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011. 8(5): p. 424-U76.
47. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
48. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32.
49. Miner, J.H. and P.D. Yurchenco, Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol, 2004. 20: p. 255-84.
50. Nishiuchi, R., et al., Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol, 2006. 25(3): p. 189-97.
51. Lu, H.F., et al., A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials, 2014. 35(9): p. 2816-26.
52. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun, 2014. 5: p. 3195.
53. Sung, T.C., et al., Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. Journal of Materials Chemistry B, 2023. 11(7): p. 1389-1415.
54. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun, 2012. 3: p. 1236.
55. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem cells, 2008. 26(9): p. 2257-2265.
56. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
57. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
58. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
59. Villa-Diaz, L.G., et al., Concise Review: The Evolution of Human Pluripotent Stem Cell Culture: From Feeder Cells to Synthetic Coatings. Stem Cells, 2013. 31(1): p. 1-7.
60. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
61. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep, 2015. 5: p. 18136.
62. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7(1): p. 1-16.
63. Haruta, M., et al., In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investigative Ophthalmology & Visual Science, 2004. 45(3): p. 1020-1025.
64. Boulton, M. and P. Dayhaw-Barker, The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye, 2001. 15: p. 384-389.
65. Nazari, H., et al., Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Progress in Retinal and Eye Research, 2015. 48: p. 1-39.
66. Kwon, W. and S.A. Freeman, Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Frontiers in Immunology, 2020. 11.
67. Rizzolo, L.J., Barrier properties of cultured retinal pigment epithelium. Exp Eye Res, 2014. 126: p. 16-26.
68. Yang, S., J. Zhou, and D.W. Li, Functions and Diseases of the Retinal Pigment Epithelium. Frontiers in Pharmacology, 2021. 12.
69. Lakkaraju, A., et al., The cell biology of the retinal pigment epithelium. Prog Retin Eye Res, 2020: p. 100846.
70. Okorienta, S.M., G.P. Einstein, and O.L. Tulp, Proposed Mechanisms of Age Related Macular Degeneration. Faseb Journal, 2018. 32(1).
71. Gehrs, K.M., et al., Age-related macular degeneration - emerging pathogenetic and therapeutic concepts. Annals of Medicine, 2006. 38(7): p. 450-471.
72. Sharma, R., et al., Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annual review of pharmacology and toxicology, 2020. 60: p. 553-572.
73. Regent, F., et al., Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci Rep, 2019. 9(1): p. 10646.
74. Maruotti, J., et al., A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med, 2013. 2(5): p. 341-54.
75. Choudhary, P., et al., Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med, 2017. 6(2): p. 490-501.
76. Jin, Z.B., et al., Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res, 2019. 69: p. 38-56.
77. Buchholz, D.E., et al., Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells Into Retinal Pigmented Epithelium. Stem Cells Translational Medicine, 2013. 2(5): p. 384-393.
78. Klimanskaya, I., et al., Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004. 6(3): p. 217-45.
79. Buchholz, D.E., et al., Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 2009. 27(10): p. 2427-34.
80. Luo, M. and Y. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. Int J Ophthalmol, 2018. 11(1): p. 150-159.
81. Kashani, A.H., et al., A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine, 2018. 10(435): p. eaao4097.
82. Dehghan, S., et al., Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Research & Therapy, 2022. 13(1).
83. Maruotti, J., et al., Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10950-5.
84. Smith, E.N., et al., Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem cell reports, 2019. 12(6): p. 1342-1353.
85. Yang, J.M., et al., Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Experimental & molecular medicine, 2021. 53(4): p. 631-642.
86. Michelet, F., et al., Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther, 2020. 11(1): p. 47.
87. Hongisto, H., et al., Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther, 2017. 8(1): p. 291.
88. Sharma, R., et al., Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine, 2019. 11(475).
89. Reichman, S., et al., Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells, 2017. 35(5): p. 1176-1188.
90. Limnios, I.J., et al., Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther, 2021. 12(1): p. 248.
91. Smith, E.N., et al., Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci. Stem Cell Reports, 2019. 12(6): p. 1342-1353.
92. Marquardt, T.M., T); Ashery-Padan, R (Ashery-Padan, R); Andrejewski, N (Andrejewski, N); Scardigli, R (Scardigli, R); Guillemot, F (Guillemot, F); Gruss, P (Gruss, P), Pax6 Is Required for the Multipotent state of retinal progenitor cells. CELL, 2001. 105(1): p. 43-55.
93. Vugler, A., et al., Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol, 2008. 214(2): p. 347-61.
94. Osafune, K., et al., Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008. 26(3): p. 313-315.
95. Cowan, C.A., et al., Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 2004. 350(13): p. 1353-1356. |