博碩士論文 110324087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:18.188.175.66
姓名 林蕙瑜(Hui-Yu Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類多能幹細胞在不同塗佈細胞外間質上分化視網膜色素上皮細胞
(Differentiation of human pluripotent stem cells into retinal pigmented epithelial cells on different ECM-coated surface)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-20以後開放)
摘要(中) 老年性黃斑部病變是不可逆視力損害的主要原因,與感光細胞及視網膜色素上皮細胞的功能損害有關。人類多能幹細胞衍生的視網膜色素上皮細胞的移植被認為為治療老年性黃斑部病變的方法。人類多能幹細胞可區分為人類胚胎幹細胞和人類誘導多能幹細胞,因為其具有無限的自我更新特性,所以可以提供作為分化視網膜色素上皮細胞的來源。此外,微環境在人類多能幹細胞的分化中起非常重要的作用。因此,我們研究了不同的培養方案及細胞培養生物材料對人類多能幹細胞向視網膜色素上皮細胞分化的影響,本研究使用修正後的NIC84 和 Activin A 製程去提升人類多能幹細胞分化為成熟視網膜色素上皮的效率,並選擇 Matrigel-、Laminin-521-、Laminin-511-、Synthemax II- 和Recombinant vitronectin (rVN)塗層表面作為細胞培養生物材料,以研究視網膜色素上皮細胞的最佳分化條件。我們觀察到人類誘導多能幹細胞 (HPS0077) 衍生的視網膜色素上皮細胞表現多邊形形態,並且經由流式細胞儀測試和免疫染色分析發現其表達成熟視網膜色素上皮細胞的標記(ZO-1 和 RPE65)。因視網膜色素上皮細胞有色素沉澱之功能,細胞呈棕色,而本研究之人類誘導多能幹細胞衍生的視網膜色素上皮細胞也呈棕色細胞。在不同培養基質中,與Synthemax II 和rVN表面相較之下,Matrigel和Laminin-521塗層表面更可以支持人類誘導多能幹細胞有效分化為視網膜色素上皮細胞。
摘要(英) Age-related macular degeneration (AMD), which is the leading cause of irreversible visual impairment, is associated with the progressive dysfunction and death of photoreceptor cells and their supportive retinal pigment epithelial (RPE) cells. Transplantation of human pluripotent stem cell (hPSC)-derived RPE cells is considered as a promising approach to regenerate cell function and cure AMD. Human PSCs, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), can provide unlimited source of RPE cells because of indefinite self-renewal characteristics. Moreover, microenvironment plays an important role in differentiation of hPSCs. Therefore, I investigated the effect of cell culture biomaterials on the differentiation of hPSCs into RPE cells where Matrigel-, Laminin-521-, Laminin-511-, Synthemax II- and Recombinant vitronectin-coated surface were selected as the cell culture biomaterials in this study. Human PSCs were differentiated into RPE cells on different extracellular matrix (ECM) protein-coated surface using some different protocols (i.e., NIC84 and Activin A protocols) in order to investigate the optimal differentiation conditions into RPE cells. I observed the polygonal morphologies of hiPSCs (HPS0077)-derived RPE cells, which expressed RPE specific markers (ZO-1 and RPE65) by flow cytometry and immunostaining analysis using both protocols. Finally, hiPSCs-derived RPE cells showed brown color (pigmented) cells. Matrigel-, Laminin-521- and Laminin-511-coated surfaces could support the differentiation of hPSCs into RPE cells efficiently, which were compared with Synthemax II- and Recombinant vitronectin-coated surfaces. This is explained that RPE cells are ectodermal lineage of the cells where Laminin preferably supports ectodermal cells via integrin α6β1 rather than integrin αVβ5, which is the main binding site of vitronectin.
關鍵字(中) ★ 細胞外基質
★ 生醫材料
★ 人類多能幹細胞
★ 細胞分化
★ 視網膜色素上皮細胞
關鍵字(英) ★ extracellular matrix
★ biomaterials
★ human pluripotent stem cells
★ cell differentiation
★ retinal pigment epithelium
論文目次 Abstract I
中文摘要 II
Index of content III
Index of Figure VI
Index of table X
Chapter 1. Introduction 1
1-1 Stem cells 1
1-1-1 Embryonic stem cells 2
1-1-2 Induced pluripotent stem cells 4
1-1-3 The limitation of human pluripotent stem cells 5
1-1-4 Human pluripotent stem cells for therapeutic application in future 6
1-2 Cultivation of human pluripotent stem cells 8
1-2-1 Feeder cell layers for hPSC cultivation 9
1-2-2 Feeder-free and xeno-contained substrates for hPSC cultivation 10
1-2-3 Feeder-free and xeno-free ECMs for hPSCs cultivation 11
1-2-3-1 ECM receptors 11
1-2-3-2 Laminin 13
1-2-3-3 Vitronectin 15
1-2-4 Feeder-free and xeno-free synthetic surfaces for hPSCs cultivation 15
1-3 Retinal pigmented epithelial (RPE) cells 16
1-3-1 Efficient methods for RPE cells differentiation 18
1-3-1-1 Spontaneous differentiation method 19
1-3-1-2 Directed differentiation method 19
1-3-2 Characterization of RPE cells 22
1-3-2-1 Morphology of hPSCs-derived RPE cells 23
1-3-2-2 Flow cytometry analysis of hPSCs-derived RPE cells 24
1-3-2-3 Immunofluorescence staining analysis of hPSCs-derived RPE cells 24
1-5 The goal of this study 25
Chapter 2. Materials and Methods 26
2-1 Materials 26
2-1-1 Cell Line 26
2-1-2 Commercial Culture Dishes 26
2-1-3 Commercial Coated Substrates 26
2-1-4 Medium and chemicals for hPSCs maintenance, passage and cryopreservation 26
2-1-5 Phosphate buffer saline solution (PBS) 27
2-1-6 Medium and chemicals for RPE differentiation 27
2-1-7 Chemicals for flow cytometry 28
2-1-8 Chemicals for immunostaining 29
2-2 Methods 30
2-2-1 Cultivation and passages of human pluripotent stem cells 30
2-2-2 Seeding density measurements of hPSCs 30
2-2-3 Preparation of ECM protein-coated dishes 31
2-3 Retinal pigmented epithelial cells (RPE) differentiation 32
2-3-1 Preparation of differentiation medium 32
2-3-2 Differentiation protocols of hPSCs into retinal pigmented epithelial cells 33
2-4 Characterization of hPSC-derived RPE cells 35
2-4-1 Immunofluorescence staining of hPSC-derived RPE cells 35
2-4-2 Flow cytometry measurements of hPSC-derived RPE 38
Chapter 3. Results and Discussion 40
3-1 Generation of hiPSC-derived RPE using NIC84 Protocol 40
3-1-1 Modification of NIC 84 protocol 40
3-1-2 Two-day interval version of hiPSC-RPE differentiation NIC84 protocol 41
3-1-3 Three-day interval version of hiPSC-RPE differentiation NIC84 protocol 42
3-1-4 hiPSCs-derived RPE on different ECM protein-coated dishes using three-day interval version of hiPSC-RPE differentiation NIC84 protocol (50 nM) 45
3-1-4-1 Morphology of hiPSCs-RPE on different ECM-coated dishes 45
3-1-4-2 Cell proliferation rate of hiPSCs-RPE on different ECM-coated dishes 49
3-1-4-3 RPE marker expression of hiPSCs-RPE on different ECM-coated dishes by flow cytometry analysis 51
3-1-4-4 Immunostaining of hiPSCs-RPE on different ECM-coated dishes 53
3-1-4-5 Morphology of hESCs-RPE on different ECM-coated dishes 58
3-2 Generation of hiPSC-derived RPE using Activin A Protocol 59
3-2-1 Original of Activin A Protocol 59
3-2-2 Modification of Activin A Protocol 60
3-2-2-1 25 ng/ml treatment of modified Activin A protocol 60
3-2-2-2 10 ng/ml treatment of modified Activin A protocol 65
Chapter 4. Conclusion 68
Reference 70
參考文獻 1. Tewary, M., N. Shakiba, and P.W. Zandstra, Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 2018. 19(10): p. 595-614.
2. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet, 2012. 379(9817): p. 713-720.
3. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015. 14(10): p. 681-692.
4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-156.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
6. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404.
7. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
8. Vazin, T. and W.J. Freed, Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorative Neurology and Neuroscience, 2010. 28(4): p. 589-603.
9. Adewumi, O., et al., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007. 25(7): p. 803-816.
10. Stojkovic, M., et al., Derivation, growth and applications of human embryonic stem cells. Reproduction, 2004. 128(3): p. 259-267.
11. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
12. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem Cell Research & Therapy, 2019. 10.
13. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
14. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
15. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
16. Maherali, N., et al., A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008. 3(3): p. 340-345.
17. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362.
18. Stadtfeld, M., et al., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008. 2(3): p. 230-240.
19. Okita, K., et al., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008. 322(5903): p. 949-953.
20. Kim, D., et al., Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 2009. 4(6): p. 472-476.
21. Warren, L., et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-630.
22. Singh, V.K., et al., Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015. 3.
23. Yamanaka, S., Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012. 10(6): p. 678-684.
24. Hentze, H., et al., Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Research, 2009. 2(3): p. 198-210.
25. Gore, A., et al., Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011. 471(7336): p. 63-U76.
26. Zhao, T.B., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212-U251.
27. Wu, D.C., A.S. Boyd, and K.J. Wood, Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience-Landmark, 2007. 12: p. 4525-4535.
28. Hussein, S.M., et al., Copy number variation and selection during reprogramming to pluripotency. Nature, 2011. 471(7336): p. 58-U67.
29. Kotini, A.G., et al., Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell, 2017. 20(3): p. 315-+.
30. Taoka, K., et al., Using patient-derived iPSCs to develop humanized mouse models for chronic myelomonocytic leukemia and therapeutic drug identification, including liposomal clodronate. Scientific Reports, 2018. 8.
31. Tian, Z.J., et al., Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. International Journal of Molecular Sciences, 2016. 17(4).
32. Luo, M.Y. and Y.X. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. International Journal of Ophthalmology, 2018. 11(1): p. 150-159.
33. Schwartz, S.D., et al., Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt′s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet, 2015. 385(9967): p. 509-16.
34. Stadtfeld, M. and K. Hochedlinger, Induced pluripotency: history, mechanisms, and applications. Genes & Development, 2010. 24(20): p. 2239-2263.
35. Rowe, R.G. and G.Q. Daley, Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019. 20(7): p. 377-388.
36. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
37. Stern, J.H., et al., Regenerating eye tissues to preserve and restore vision. Cell stem cell, 2018. 22(6): p. 834-849.
38. Dellatore, S.M., A.S. Garcia, and W.M. Miller, Mimicking stem cell niches to increase stem cell expansion. Current Opinion in Biotechnology, 2008. 19(5): p. 534-540.
39. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
40. Tong, Z.X., et al., Application of biomaterials to advance induced pluripotent stem cell research and therapy. Embo Journal, 2015. 34(8): p. 987-1008.
41. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
42. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
43. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 2005. 11(2): p. 228-232.
44. Kawase, E. and N. Nakatsuji, Development of substrates for the culture of human pluripotent stem cells. Biomaterials Science, 2023.
45. Huang, G.Y., et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017. 117(20): p. 12764-12850.
46. Chen, G.K., et al., Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011. 8(5): p. 424-U76.
47. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
48. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32.
49. Miner, J.H. and P.D. Yurchenco, Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol, 2004. 20: p. 255-84.
50. Nishiuchi, R., et al., Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol, 2006. 25(3): p. 189-97.
51. Lu, H.F., et al., A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials, 2014. 35(9): p. 2816-26.
52. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun, 2014. 5: p. 3195.
53. Sung, T.C., et al., Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. Journal of Materials Chemistry B, 2023. 11(7): p. 1389-1415.
54. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun, 2012. 3: p. 1236.
55. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem cells, 2008. 26(9): p. 2257-2265.
56. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
57. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
58. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
59. Villa-Diaz, L.G., et al., Concise Review: The Evolution of Human Pluripotent Stem Cell Culture: From Feeder Cells to Synthetic Coatings. Stem Cells, 2013. 31(1): p. 1-7.
60. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
61. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep, 2015. 5: p. 18136.
62. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7(1): p. 1-16.
63. Haruta, M., et al., In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investigative Ophthalmology & Visual Science, 2004. 45(3): p. 1020-1025.
64. Boulton, M. and P. Dayhaw-Barker, The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye, 2001. 15: p. 384-389.
65. Nazari, H., et al., Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Progress in Retinal and Eye Research, 2015. 48: p. 1-39.
66. Kwon, W. and S.A. Freeman, Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Frontiers in Immunology, 2020. 11.
67. Rizzolo, L.J., Barrier properties of cultured retinal pigment epithelium. Exp Eye Res, 2014. 126: p. 16-26.
68. Yang, S., J. Zhou, and D.W. Li, Functions and Diseases of the Retinal Pigment Epithelium. Frontiers in Pharmacology, 2021. 12.
69. Lakkaraju, A., et al., The cell biology of the retinal pigment epithelium. Prog Retin Eye Res, 2020: p. 100846.
70. Okorienta, S.M., G.P. Einstein, and O.L. Tulp, Proposed Mechanisms of Age Related Macular Degeneration. Faseb Journal, 2018. 32(1).
71. Gehrs, K.M., et al., Age-related macular degeneration - emerging pathogenetic and therapeutic concepts. Annals of Medicine, 2006. 38(7): p. 450-471.
72. Sharma, R., et al., Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annual review of pharmacology and toxicology, 2020. 60: p. 553-572.
73. Regent, F., et al., Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci Rep, 2019. 9(1): p. 10646.
74. Maruotti, J., et al., A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med, 2013. 2(5): p. 341-54.
75. Choudhary, P., et al., Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med, 2017. 6(2): p. 490-501.
76. Jin, Z.B., et al., Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res, 2019. 69: p. 38-56.
77. Buchholz, D.E., et al., Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells Into Retinal Pigmented Epithelium. Stem Cells Translational Medicine, 2013. 2(5): p. 384-393.
78. Klimanskaya, I., et al., Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004. 6(3): p. 217-45.
79. Buchholz, D.E., et al., Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 2009. 27(10): p. 2427-34.
80. Luo, M. and Y. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. Int J Ophthalmol, 2018. 11(1): p. 150-159.
81. Kashani, A.H., et al., A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine, 2018. 10(435): p. eaao4097.
82. Dehghan, S., et al., Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Research & Therapy, 2022. 13(1).
83. Maruotti, J., et al., Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10950-5.
84. Smith, E.N., et al., Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem cell reports, 2019. 12(6): p. 1342-1353.
85. Yang, J.M., et al., Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Experimental & molecular medicine, 2021. 53(4): p. 631-642.
86. Michelet, F., et al., Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther, 2020. 11(1): p. 47.
87. Hongisto, H., et al., Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther, 2017. 8(1): p. 291.
88. Sharma, R., et al., Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine, 2019. 11(475).
89. Reichman, S., et al., Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells, 2017. 35(5): p. 1176-1188.
90. Limnios, I.J., et al., Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther, 2021. 12(1): p. 248.
91. Smith, E.N., et al., Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci. Stem Cell Reports, 2019. 12(6): p. 1342-1353.
92. Marquardt, T.M., T); Ashery-Padan, R (Ashery-Padan, R); Andrejewski, N (Andrejewski, N); Scardigli, R (Scardigli, R); Guillemot, F (Guillemot, F); Gruss, P (Gruss, P), Pax6 Is Required for the Multipotent state of retinal progenitor cells. CELL, 2001. 105(1): p. 43-55.
93. Vugler, A., et al., Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol, 2008. 214(2): p. 347-61.
94. Osafune, K., et al., Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008. 26(3): p. 313-315.
95. Cowan, C.A., et al., Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 2004. 350(13): p. 1353-1356.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明