參考文獻 |
1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
3. Furukawa, H.; Cordova, K. E.; O′Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
4. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
5. Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C., Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews 2016, 85 (3), 280.
6. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews 2014, 43 (16), 5561-5593.
7. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
8. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie 1985, 24, 1026-1040.
9. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
10. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
11. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
12. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B.; De Vos, D., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21, 2580-2582.
13. Parnham, E. R.; Morris, R. E., Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research 2007, 40 (10), 1005-1013.
14. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
15. Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X., Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today 2017, 20 (4), 191-209.
16. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E., Metal-Organic Framework ZIF-8 Films As Low-κ Dielectrics in Microelectronics. Chemistry of Materials 2013, 25 (1), 27-33.
17. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
18. Hartmann, M., Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chemistry of Materials 2005, 17 (18), 4577-4593.
19. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
20. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
21. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K., Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7 (49), 44507-44531.
22. Kim, H.; Hong, C. S., MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification. CrystEngComm 2021, 23 (6), 1377-1387.
23. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M., Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society 2005, 127 (5), 1504-1518.
24. Zhou, W.; Wu, H.; Yildirim, T., Enhanced H2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society 2008, 130 (46), 15268-15269.
25. Queen, W. L.; Hudson, M. R.; Bloch, E. D.; Mason, J. A.; Gonzalez, M. I.; Lee, J. S.; Gygi, D.; Howe, J. D.; Lee, K.; Darwish, T. A.; James, M.; Peterson, V. K.; Teat, S. J.; Smit, B.; Neaton, J. B.; Long, J. R.; Brown, C. M., Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science 2014, 5 (12), 4569-4581.
26. Rowsell, J. L.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 2006, 128 (4), 1304-15.
27. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R., Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc). Journal of the American Chemical Society 2012, 134 (16), 7056-7065.
28. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O′Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M., Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336 (6084), 1018-23.
29. Wei, T. H.; Wu, S. H.; Huang, Y. D.; Lo, W. S.; Williams, B. P.; Chen, S. Y.; Yang, H. C.; Hsu, Y. S.; Lin, Z. Y.; Chen, X. H.; Kuo, P. E.; Chou, L. Y.; Tsung, C. K.; Shieh, F. K., Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 2019, 10 (1), 5002.
30. Wang, L. J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M., Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorganic Chemistry 2014, 53 (12), 5881-5883.
31. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
32. Hsu, P.-H.; Chang, C.-C.; Wang, T.-H.; Lam, P. K.; Wei, M.-Y.; Chen, C.-T.; Chen, C.-Y.; Chou, L.-Y.; Shieh, F.-K., Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces 2021, 13 (44), 52014-52022.
33. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-40.
34. van Dongen, S. F.; Elemans, J. A.; Rowan, A. E.; Nolte, R. J., Processive catalysis. Angew Chem Int Ed Engl 2014, 53 (43), 11420-8.
35. Strohmeier, G. A.; Pichler, H.; May, O.; Gruber-Khadjawi, M., Application of designed enzymes in organic synthesis. Chem Rev 2011, 111 (7), 4141-64.
36. Longo, M. A.; Combes, D., Analysis of the thermal deactivation kinetics of α-chymotrypsin modified by chemoenzymatic glycosylation. In Progress in Biotechnology, Ballesteros, A.; Plou, F. J.; Iborra, J. L.; Halling, P. J., Eds. Elsevier: 1998; Vol. 15, pp 135-140.
37. Franssen, M. C.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P., Immobilised enzymes in biorenewables production. Chem Soc Rev 2013, 42 (15), 6491-533.
38. Agostinelli, E.; Belli, F.; Tempera, G.; Mura, A.; Floris, G.; Toniolo, L.; Vavasori, A.; Fabris, S.; Momo, F.; Stevanato, R., Polyketone polymer: a new support for direct enzyme immobilization. J Biotechnol 2007, 127 (4), 670-8.
39. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
40. Liang, J.; Liang, K., Biocatalytic Metal–Organic Frameworks: Prospects Beyond Bioprotective Porous Matrices. Advanced Functional Materials 2020, 30 (27), 2001648.
41. Xia, H.; Li, N.; Zhong, X.; Jiang, Y., Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Frontiers in Bioengineering and Biotechnology 2020, 8.
42. Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications Frontiers in bioengineering and biotechnology [Online], 2020, p. 695. PubMed. http://europepmc.org/abstract/MED/32695766
https://doi.org/10.3389/fbioe.2020.00695
https://europepmc.org/articles/PMC7338372
https://europepmc.org/articles/PMC7338372?pdf=render (accessed 2020).
43. Anwar, M. N.; Iftikhar, M.; Khush Bakhat, B.; Sohail, N. F.; Baqar, M.; Yasir, A.; Nizami, A. S., Sources of Carbon Dioxide and Environmental Issues. In Sustainable Agriculture Reviews 37: Carbon Sequestration Vol. 1 Introduction and Biochemical Methods, Inamuddin; Asiri, A. M.; Lichtfouse, E., Eds. Springer International Publishing: Cham, 2019; pp 13-36.
44. Sun, S.; Sun, H.; Williams, P. T.; Wu, C., Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels 2021, 5 (18), 4546-4559.
45. Armstrong, K.; Styring, P., Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction. Frontiers in Energy Research 2015, 3.
46. Kolbe, H., Ueber Synthese der Salicylsäure. Justus Liebigs Annalen der Chemie 1860, 113 (1), 125-127.
47. Mohammad, A. F.; El‐Naas, M. H.; Suleiman, M. I.; Musharfy, M. A., Optimization of a Solvay-Based Approach for CO2 Capture. International Journal of Chemical Engineering and Applications 2016, 7, 230-234.
48. Meessen, J., Urea synthesis. Chemie Ingenieur Technik 2014, 86 (12), 2180-2189.
49. Kruper, W. J.; Dellar, D. D., Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. The Journal of Organic Chemistry 1995, 60 (3), 725-727.
50. Saravanan, A.; Senthil kumar, P.; Vo, D.-V. N.; Jeevanantham, S.; Bhuvaneswari, V.; Anantha Narayanan, V.; Yaashikaa, P. R.; Swetha, S.; Reshma, B., A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science 2021, 236, 116515.
51. Sakakura, T.; Choi, J.-C.; Yasuda, H., Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387.
52. Nataly Echevarria Huaman, R.; Xiu Jun, T., Energy related CO2 emissions and the progress on CCS projects: A review. Renewable and Sustainable Energy Reviews 2014, 31, 368-385.
53. Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. M., A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews 2014, 43 (23), 8049-8080.
54. Kusakabe, K.; Kuroda, T.; Murata, A.; Morooka, S., Formation of a Y-Type Zeolite Membrane on a Porous α-Alumina Tube for Gas Separation. Industrial & Engineering Chemistry Research 1997, 36 (3), 649-655.
55. Rochelle, G. T., Amine Scrubbing for CO2 Capture. Science 2009, 325 (5948), 1652-1654.
56. Criado, Y. A.; Arias, B.; Abanades, J. C., Calcium looping CO2 capture system for back-up power plants. Energy & Environmental Science 2017, 10 (9), 1994-2004.
57. Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J. P.; Herzog, H. J.; Jackson, G.; Kemper, J.; Krevor, S.; Maitland, G. C.; Matuszewski, M.; Metcalfe, I. S.; Petit, C.; Puxty, G.; Reimer, J.; Reiner, D. M.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.; Trusler, J. P. M.; Webley, P.; Wilcox, J.; Mac Dowell, N., Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11 (5), 1062-1176.
58. Moss, M.; Reed, D. G.; Allen, R. W. K.; Styring, P., Integrated CO2 Capture and Utilization Using Non-Thermal Plasmolysis. Frontiers in Energy Research 2017, 5.
59. Weiland, R. H.; Dingman, J. C.; Cronin, D. B., Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N-Methyldiethanolamine-Based Blends with Carbon Dioxide. Journal of Chemical & Engineering Data 1997, 42 (5), 1004-1006.
60. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 724-781.
61. Bragg, W.; Thomson, J. In Mr Bragg, Diffraction of Short Electromagnetic Waves, etc. 43, Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences, Cambridge Philosophical Society: 1914; p 43.
62. Epp, J., 4 - X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Hübschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H.-G., Eds. Woodhead Publishing: 2016; pp 81-124.
63. Mohammed, A.; Abdullah, A. In Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018; pp 7-9.
64. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013.
65. Berberan-Santos, M., Beer′s law revisited. Journal of Chemical Education 1990, 67 (9), 757.
66. Thomas, R., Practical guide to ICP-MS: a tutorial for beginners. 2013.
67. Yang, J.-i.; Lee, S. H.; Ryu, J.-Y.; Lee, H. S.; Kang, S. G., A Novel NADP-Dependent Formate Dehydrogenase From the Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Frontiers in Microbiology 2022, 13.
68. Tishkov, V. I.; Popov, V. O., Catalytic mechanism and application of formate dehydrogenase. Biochemistry (Moscow) 2004, 69 (11), 1252-1267.
69. Cheng, F.; Wei, L.; Wang, C.; Xue, Y.; Zheng, Y., [Formate dehydrogenase and its application in biomanufacturing of chiral chemicals]. Sheng Wu Gong Cheng Xue Bao 2022, 38 (2), 632-649.
70. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album Limber. Eur J Biochem 1974, 47 (1), 91-7.
71. Pähler, A.; Banerjee, A.; Dattagupta, J. K.; Fujiwara, T.; Lindner, K.; Pal, G. P.; Suck, D.; Weber, G.; Saenger, W., Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin. Embo j 1984, 3 (6), 1311-4. |