博碩士論文 110324090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.133.134.175
姓名 林璟淳(Ching-Chun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以雙深共熔溶劑系統對廢棄鋰離子電池進行選擇性回收及優化之研究
(Optimizing Selective Recycling of Spent Lithium-Ion Batteries by a Dual Deep Eutectic Solvent System)
相關論文
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 無機填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯複合型固 態電解質於鋰電池之應用
★ 運用芳香化合物與鋰金屬之化學預鋰化方法對鋰離子電池負極影響★ Li7La3Zr2O12與聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯 複合型電解質應用於類固態鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-14以後開放)
摘要(中) 本研究主要結合兩種深共熔溶劑 (Deep eutectic solvents, DESs),氯化膽鹼:乳酸(ChCl:LA)及氯化膽鹼:草酸(ChCl:OA)對廢棄鋰電池粉末-黑粉(Black mass, BM),進行石墨、鎳與鈷的分離回收,並對回收程序的溫度、組成進行討論。
分離程序總共分為三個步驟,在第一步驟我們利用ChCl:LA將大部分金屬離子溶解於浸出液,而黑粉中主要元素石墨則被保留於第一次沉澱物中;接著,在第二步驟中加入OA或ChCl:OA進行反應,我們發現加入ChCl:OA並在高溫120℃下反應能夠達到最好的Ni與Co分離率,這是因為高溫環境及ChCl:OA所提供之氯離子有助於穩定[CoCl4]2-結構,使Co溶解於第二次浸出液中,而Ni則與OA結合以NiC2O4·2H2O沉澱;在第三步驟中,加入H2O使[CoCl4]2-發生配位結構改變,由於CoC2O4·2H2O在水中的低溶解度,因此Co最終以CoC2O4·2H2O沉澱。
以雙深共熔溶劑回收所運用之材料相較於傳統溶劑回收法對於環境傷害更低,並且透過此程序,我們從黑粉中同時分離出可再利用的正極與負極材料。以回收石墨合成的再生負極展現出良好的電化學性能,在1C的電流密度下可以達到266 mAh/g的放電比電容值;而Co的回收率可以達到85%,經鍛燒後的回收物為Co3O4,能夠作為正極材料合成的前驅物,展現出優異的可再利用性,實現材料永續循環之目標。
摘要(英) This study mainly combines two types of deep eutectic solvents (DESs), choline chloride:lactic acid (ChCl:LA) and choline chloride:oxalic acid (ChCl:OA), for the separation and recovery of graphite, nickel, and cobalt from waste lithium battery powder, also known as black mass (BM). The temperature and composition of the recovery process are discussed.
In this research, the separation process consists of three steps. In the first step, we dissolve the majority of metal ions in the leaching solution using ChCl:LA, while the main element graphite in the black powder is retained in the 1st precipitate. Then, in the second step, we add OA or ChCl:OA for the reaction. We found that adding ChCl:OA and reacting at a high temperature of 120℃ achieves the best separation efficiency for Ni and Co. This is because the high-temperature environment and the chloride ions provided by ChCl:OA help stabilize the [CoCl4]2- structure, allowing Co to dissolve in the 2nd leaching solution, while Ni combines with OA to form NiC2O4·2H2O. In the third step, we add H2O to induce a coordination structure change in [CoCl4]2-. Due to the low solubility of CoC2O4·2H2O in water, Co ultimately precipitates as CoC2O4·2H2O.
In conclusion, this study demonstrates a more environmentally friendly way to recycle the black mass compared to conventional methods. Through this procedure, we are able to separate both cathode and anode materials from the black mass. The regenerated anode, synthesized from the recovered graphite, exhibits good electrochemical performance, with a discharge specific capacitance of 227.5 mAh/g at a current density of 1C (1C=372mA/g) after 500 cycles. The recovery efficiency of cobalt can reach 85%, and the material obtained after calcination is Co3O4, which can be used as a precursor for synthesizing cathode materials. The materials recycled from this procedure demonstrate excellent reusability, thus contributing to the achievement of the goal of material sustainability.
關鍵字(中) ★ 深共熔溶劑
★ 鋰離子電池回收
關鍵字(英) ★ Deep eutectic solvent
★ spent lithium ion batteries recycling
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 7
圖目錄 11
表目錄 16
第1章、 緒論 18
1-1 前言: 18
1-2 研究動機: 21
第2章、 文獻回顧 23
2-1 黑粉介紹 23
2-2 廢電池回收技術現況 24
2-2-1 物理前處理 24
2-2-2 金屬回收 26
2-2-3 材料再生 27
2-3 深共熔溶劑 (Deep Eutectic Solvents, DESs) 29
2-3-1 DESs種類 33
2-3-2 DESs微觀結構 36
2-3-3 水對DESs的影響 40
2-3-4 DESs應用 41
2-4 DESs應用於金屬氧化物溶解 43
2-4-1 影響溶解度因素 43
2-4-2 浸出動力學 51
2-4-3 浸出效率計算 52
2-4-4 DESs應用於廢棄LIBs正極材料回收 52
2-4-5 DESs應用於廢棄LIBs負極材料回收 53
2-4-6 DESs可回收性 55
第3章、 實驗方法 56
3-1 實驗藥品 56
3-2 實驗設備 56
3-3 實驗步驟 57
3-3-1 氯化膽鹼:乳酸(1:2)與氯化膽鹼:草酸(1:1)深共熔溶劑合成 57
3-3-2 單深共熔溶劑分離步驟 (見圖 3 2) 57
3-3-3 雙深共熔溶劑分離步驟(見圖 3 3) 58
3-3-4 第三次分離沉澱物煅燒 60
3-3-5 半電池組裝(CR2032): 60
3-4 材料分析與鑑定 60
3-4-1 粉末X光繞射儀 (Powder X-ray diffractometer, PXRD) 60
3-4-2 冷場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscopy, FE-SEM) 61
3-4-3 能量散射X射線譜(Energy-dispersive X-ray spectroscopy, EDS) 61
3-4-4 傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 61
3-4-5 紫外線/可見光分光光譜儀 (Ultraviolet–visible spectroscopy, UV-Vis) 61
3-4-6 感應耦合電漿光學發射光譜儀 (Inductively Coupled Plasma-Optical Emission Spectrometry, ICP-OES) 61
3-4-7 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 62
3-4-8 原子吸收光譜儀 (Atomic Absorption Spectroscopy, AAS) 62
3-4-9 熱重分析儀 (Thermo gravimetric Analyzer, TGA) 62
3-5 電化學性質分析與鑑定: 62
3-5-1 計時電位法 62
第4章、 結果與討論 63
4-1 黑粉組成 63
4-2 ChCl:LA與ChCl:OA的結構與形成 65
4-3 第一次分離 68
4-3-1 不同時間對ChCl:LA與BM溶解度影響 69
4-3-2 第一次分離浸出液分析 (@105℃, 5hr) 71
4-3-3 第一次分離沉澱物分析(XRD、SEM、Raman) 74
4-3-4 再生負極電化學測試 77
4-4 第二次分離 82
4-4-1 溫度影響 84
4-4-2 加入不同比例之OA與ChCl:OA DES對分離效率影響 86
4-5 第三次分離分析 89
4-5-1 回收率計算 93
第5章、 結論與未來展望 94
第6章、 附錄 96
參考文獻 101
參考文獻 參考文獻
1. Duan, X.; Zhu, W.; Ruan, Z.; Xie, M.; Chen, J.; Ren, X., Recycling of Lithium Batteries—A Review. Energies 2022, 15 (5), 1611.
2. Meng, F.; McNeice, J.; Zadeh, S. S.; Ghahreman, A., Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Miner. Process. Extr. Metall. Rev. 2019, 42 (2), 123-141.
3. Ahui Zhu, X. B., Weijiang Han, Dianxue Cao, Yong Wen, Kai Zhu, Shubin Wang, The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour. Conserv. Recycl. 2023, 188, 106690.
4. Sommerville, R.; Zhu, P.; Rajaeifar, M. A.; Heidrich, O.; Goodship, V.; Kendrick, E., A Qualitative Assessment of Lithium Ion Battery Recycling Processes. Resour. Conserv. Recycl. 2021, 165, 105219.
5. Li, Y.; Lv, W.; Huang, H.; Yan, W.; Li, X.; Ning, P.; Cao, H.; Sun, Z., Recycling of Spent Lithium-Ion Batteries in View of Green Chemistry. Green Chem. 2021, 23 (17), 6139-6171.
6. Dadé, M.; Wallmach, T.; Laugier, O., Detailed Microparticle Analyses Providing Process Relevant Chemical and Microtextural Insights into the Black Mass. Minerals 2022, 12 (2), 119.
7. Punt, T.; Bradshaw, S. M.; van Wyk, P.; Akdogan, G., The Efficiency of Black Mass Preparation by Discharge and Alkaline Leaching for LIB Recycling. Minerals 2022, 12 (6), 753.
8. Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G. P.; Zaghib, K., Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13 (3), 801.
9. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of Novel, Moisture-Stable, Lewis-acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun. 2001, (19), 2010-1.
10. El Achkar, T.; Greige-Gerges, H.; Fourmentin, S., Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19 (4), 3397-3408.
11. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-82.
12. Hammond, O. S.; Bowron, D. T.; Edler, K. J., Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (reline) from Neutron Diffraction and Atomistic Modelling. Green Chem. 2016, 18 (9), 2736-2744.
13. Hammond, O. S.; Bowron, D. T.; Jackson, A. J.; Arnold, T.; Sanchez-Fernandez, A.; Tsapatsaris, N.; Garcia Sakai, V.; Edler, K. J., Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration. J. Phys. Chem. B 2017, 121 (31), 7473-7483.
14. Du, C.; Zhao, B.; Chen, X. B.; Birbilis, N.; Yang, H., Effect of Water Presence on Choline Chloride-2urea Ionic Liquid and Coating Platings from the Hydrated Ionic Liquid. Sci. Rep. 2016, 6, 29225.
15. Azizi, N.; Dezfooli, S.; Hashemi, M. M., A Sustainable Approach to the Ugi Reaction in Deep Eutectic Solvent. C. R. Chim. 2013, 16 (12), 1098-1102.
16. Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F. S., Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Ph. Equilibria. 2017, 441, 43-48.
17. Hammond, O. S.; Bowron, D. T.; Edler, K. J., The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem., Int. Ed. Engl. 2017, 56 (33), 9782-9785.
18. Kumari, P.; Shobhna; Kaur, S.; Kashyap, H. K., Influence of Hydration on the Structure of Reline Deep Eutectic Solvent: A Molecular Dynamics Study. ACS Omega 2018, 3 (11), 15246-15255.
19. Al-Murshedi, A. Y. M.; Alesary, H. F.; Al-Hadrawi, R., Thermophysical Properties in Deep Eutectic Solvents with/without Water. J. Phys. Conf. Ser. 2019, 1294 (5), 052041.
20. Rozas, S.; Benito, C.; Alcalde, R.; Atilhan, M.; Aparicio, S., Insights on the Water Effect on Deep Eutectic Solvents Properties and Structuring: The Archetypical Case of Choline Chloride + Ethylene Glycol. J. Mol. Liq. 2021, 344, 117717.
21. Andrew P. Abbott, G. C., David L. Davies, Katy J. McKenzie, and Stephen U. Obi, Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. 2006, 51, 1280-1282.
22. Chen, Y.; Han, X.; Liu, Z.; Yu, D.; Guo, W.; Mu, T., Capture of Toxic Gases by Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020, 8 (14), 5410-5430.
23. Wen Cheng Su, D. S. H. W., and Meng Hui Li, Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide +2-Hydroxy-N,N,N-trimethylethanaminium Chloride. J. Chem. Eng. 2009, 54, 1951–1955.
24. Bernasconi, R.; Panzeri, G.; Accogli, A.; Liberale, F.; Nobili, L.; Magagnin, L., Electrodeposition from Deep Eutectic Solvents. Intech. Prog. Dev. Lon. Liq. 2017, 235-261.
25. Gao, W.; Liu, C.; Cao, H.; Zheng, X.; Lin, X.; Wang, H.; Zhang, Y.; Sun, Z., Comprehensive Evaluation on Effective Leaching of Critical Metals from Spent Lithium-Ion Batteries. Waste Manage. 2018, 75, 477-485.
26. Wang, M.; Tan, Q.; Liu, L.; Li, J., A Low-Toxicity and High-Efficiency Deep Eutectic Solvent for the Separation of Aluminum Foil and Cathode Materials from Spent Lithium-Ion Batteries. J. Hazard. Mater. 2019, 380, 120846.
27. Sun, L.; Qiu, K., Organic Oxalate as Leachant and Precipitant for the Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Waste Manage. 2012, 32 (8), 1575-82.
28. Pateli, I. M.; Thompson, D.; Alabdullah, S. S. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M., The Effect of pH and Hydrogen Bond Donor on the Dissolution of Metal Oxides in Deep Eutectic Solvents. Green Chem. 2020, 22 (16), 5476-5486.
29. Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G., Selective Extraction of Transition Metals from Spent LiNi(x) Co(y) Mn(1-x-y) O(2) Cathode via Regulation of Coordination Environment. Angew. Chem., Int. Ed. Engl. 2022, 61 (24), e202202558.
30. Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z., A Novel Method for Screening Deep Eutectic Solvent to Recycle the Cathode of Li-Ion Batteries. Green Chem. 2020, 22 (14), 4473-4482.
31. Damilano, G.; Laitinen, A.; Willberg-Keyrilainen, P.; Lavonen, T.; Hakkinen, R.; Dehaen, W.; Binnemans, K.; Kuutti, L., Effects of Thiol Substitution in Deep-Eutectic Solvents (DESs) as Solvents for Metal Oxides. RSC Adv. 2020, 10 (39), 23484-23490.
32. Abbott, A. P.; Capper, G.; Gray, S., Design of Improved Deep Eutectic Solvents Using Hole Theory. Chemphyschem 2006, 7 (4), 803-6.
33. Morina, R.; Callegari, D.; Merli, D.; Alberti, G.; Mustarelli, P.; Quartarone, E., Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents. ChemSusChem 2022, 15 (2), e202102080.
34. D′Agostino, C.; Harris, R. C.; Abbott, A. P.; Gladden, L. F.; Mantle, M. D., Molecular Motion and Ion Diffusion in Choline Chloride Based Deep Eutectic Solvents Studied by 1H Pulsed Field Gradient NMR Spectroscopy. Phys. Chem. Chem. Phys. 2011, 13 (48), 21383-91.
35. Alcalde, R.; Atilhan, M.; Aparicio, S., On the Properties of (Choline Chloride + Lactic Acid) Deep Eutectic Solvent with Methanol Mixtures. J. Mol. Liq. 2018, 272, 815-820.
36. Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M., Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2 (10), 2416-2425.
37. Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G., Selective Extraction of Transition Metals from Spent LiNi(x) Co(y) Mn(1-x-y) O(2) Cathode via Regulation of Coordination Environment. Angew Chem Int Ed Engl 2022, 61 (24), e202202558.
38. Lai, Y.; Zhu, X.; Li, J.; Gou, Q.; Li, M.; Xia, A.; Huang, Y.; Zhu, X.; Liao, Q., Recovery and Regeneration of Anode Graphite from Spent Lithium-Ion Batteries through Deep Eutectic Solvent Treatment: Structural Characteristics, Electrochemical Performance and Regeneration Mechanism. J. Chem. Eng. 2023, 457, 141196.
39. Tran, M. K.; Rodrigues, M.-T. F.; Kato, K.; Babu, G.; Ajayan, P. M., Deep Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. Nat. Energy 2019, 4 (4), 339-345.
40. Lu, Q.; Chen, L.; Li, X.; Chao, Y.; Sun, J.; Ji, H.; Zhu, W., Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustain. Chem. Eng. 2021, 9 (41), 13851-13861.
41. Chen, L.; Chao, Y.; Li, X.; Zhou, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W., Engineering a Tandem Leaching System for the Highly Selective Recycling of Valuable Metals from Spent Li-Ion Batteries. Green Chem. 2021, 23 (5), 2177-2184.
42. Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q., Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustain. Chem. Eng. 2021, 10 (3), 1149-1159.
43. Thompson, D. L.; Pateli, I. M.; Lei, C.; Jarvis, A.; Abbott, A. P.; Hartley, J. M., Separation of Nickel from Cobalt and Manganese in Lithium Ion Batteries Using Deep Eutectic Solvents. Green Chem. 2022, 24 (12), 4877-4886.
44. Ma, C.; Svärd, M.; Forsberg, K., Recycling Cathode Material LiCo1/3Ni1/3Mn1/3O2 by Leaching with a Deep Eutectic Solvent and Metal Recovery with Antisolvent Crystallization. Resour. Conserv. Recycl. 2022, 186, 106579.
45. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel Solvent Properties of Choline Chloride/Urea Mixtures. ChemComm. 2003, (1), 70-1.
46. Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F., Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37-43.
47. Al-Risheq, D. I. M.; Nasser, M. S.; Qiblawey, H.; Ba-Abbad, M. M.; Benamor, A.; Hussein, I. A., Destabilization of stable bentonite colloidal suspension using choline chloride based deep eutectic solvent: Optimization study. Journal of Water Process Engineering 2021, 40, 101885.
48. Wang, H.; Jia, Y.; Wang, X.; Yao, Y.; Jing, Y., Physical–Chemical Properties of Nickel Analogs Ionic Liquid Based on Choline Chloride. J. Therm. Anal. Calorim. 2013, 115 (2), 1779-1785.
49. Zhang, Y.; Han, J.; Liao, C., Insights into the Properties of Deep Eutectic Solvent Based on Reline for Ga-Controllable CIGS Solar Cell in One-Step Electrodeposition. J. Electrochem. Soc. 2016, 163 (13), D689-D693.
50. Schiavi, P. G.; Altimari, P.; Branchi, M.; Zanoni, R.; Simonetti, G.; Navarra, M. A.; Pagnanelli, F., Selective Recovery of Cobalt from Mixed Lithium Ion Battery Wastes Using Deep Eutectic Solvent. J. Chem. Eng. 2021, 417, 129249.
51. Hartley, J. M.; Ip, C. M.; Forrest, G. C.; Singh, K.; Gurman, S. J.; Ryder, K. S.; Abbott, A. P.; Frisch, G., EXAFS Study into the Speciation of Metal Salts Dissolved in Ionic Liquids and Deep Eutectic Solvents. Inorg. Chem. 2014, 53 (12), 6280-8.
52. Xing, T.; Li, L. H.; Hou, L.; Hu, X.; Zhou, S.; Peter, R.; Petravic, M.; Chen, Y., Disorder in Ball-Milled Graphite Revealed by Raman Spectroscopy. Carbon 2013, 57, 515-519.
53. Zhao, L.; Bennett, J. C.; Obrovac, M. N., Hexagonal Platelet Graphite and Its Application in Li-Ion Batteries. Carbon 2018, 134, 507-518.
54. Yang, J.; Fan, E.; Lin, J.; Arshad, F.; Zhang, X.; Wang, H.; Wu, F.; Chen, R.; Li, L., Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Appl. Energy Mater. 2021, 4 (6), 6261-6268.
55. Gao, Y.; Wang, C.; Zhang, J.; Jing, Q.; Ma, B.; Chen, Y.; Zhang, W., Graphite Recycling from the Spent Lithium-Ion Batteries by Sulfuric Acid Curing–Leaching Combined with High-Temperature Calcination. ACS Sustain. Chem. Eng. 2020, 8 (25), 9447-9455.
56. Wang, H.; Huang, Y.; Huang, C.; Wang, X.; Wang, K.; Chen, H.; Liu, S.; Wu, Y.; Xu, K.; Li, W., Reclaiming Graphite from Spent Lithium Ion Batteries Ecologically and Economically. Electrochim. Acta 2019, 313, 423-431.
57. Yang, K.; Gong, P.; Tian, Z.; Lai, Y.; Li, J., Recycling Spent Carbon Cathode by a Roasting Method and Its Application in Li-ion Batteries Anodes. J. Clean. Prod. 2020, 261, 121090.
58. Chen, Q.; Huang, L.; Liu, J.; Luo, Y.; Chen, Y., A New Approach to Regenerate High-Performance Graphite from Spent Lithium-Ion Batteries. Carbon 2022, 189, 293-304.
59. Wang, D.; Wang, Q.; Wang, T., Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors. Inorg. Chem. 2011, 50 (14), 6482-92.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明