參考文獻 |
Aben, I., O. Hasekamp, and W. Hartmann (2007), Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth′s atmosphere, Journal of Quantitative Spectroscopy and Radiative Transfer, 104(3), 450-459, doi:https://doi.org/10.1016/j.jqsrt.2006.09.013.
Adounkpè, J., O. Ahoudji, and B. Sinsin (2021), Assessment of the Contribution of Flooded Rice Cultivation Systems to Methane Emissions in the Lower Ouémé Valley, in Benin Republic, Journal of Agricultural Chemistry and Environment, 10, 327-344, doi:10.4236/jacen.2021.103021.
Allan, W., H. Struthers, and D. C. Lowe (2007), Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, Journal of Geophysical Research: Atmospheres, 112(D4), doi:https://doi.org/10.1029/2006JD007369.
Allen, D. T., et al. (2013), Measurements of methane emissions at natural gas production sites in the United States, Proceedings of the National Academy of Sciences, 110(44), 17768-17773, doi:doi:10.1073/pnas.1304880110.
Alvarez, R. A., et al. (2018), Assessment of methane emissions from the U.S. oil and gas supply chain, Science, 361(6398), 186-188, doi:doi:10.1126/science.aar7204.
Balasus, N., D. Jacob, A. Lorente, J. Maasakkers, R. Parker, H. Boesch, Z. Chen, M. Kelp, H. Nesser, and D. Varon (2023), A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases, doi:10.5194/amt-2023-47.
Bhullar, G. S., P. J. Edwards, and H. Olde Venterink (2014), Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland, PLOS ONE, 9(2), e89588, doi:10.1371/journal.pone.0089588.
Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang (2013), Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales, Global Change Biology, 19(5), 1325-1346, doi:https://doi.org/10.1111/gcb.12131.
Buan, N. R. (2018), Methanogens: pushing the boundaries of biology, Emerg Top Life Sci, 2(4), 629-646, doi:10.1042/etls20180031.
Butz, A., O. P. Hasekamp, C. Frankenberg, J. Vidot, and I. Aben (2010), CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes, Journal of Geophysical Research: Atmospheres, 115(D24), doi:https://doi.org/10.1029/2010JD014514.
Chen, S.-P., W.-C. Liao, C.-C. Chang, Y.-C. Su, Y.-H. Tong, J. S. Chang, and J.-L. Wang (2014), Network monitoring of speciated vs. total non-methane hydrocarbon measurements, Atmospheric Environment, 90, 33-42, doi:https://doi.org/10.1016/j.atmosenv.2014.03.020.
Chen, W.-R., A. Singh, S. K. Pani, S.-Y. Chang, C. C. K. Chou, S.-C. Chang, M.-T. Chuang, N.-H. Lin, C.-H. Huang, and C.-T. Lee (2021), Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke, Atmospheric Research, 260, doi:10.1016/j.atmosres.2021.105686.
Chuang, M.-T., et al. (2016), The Simulation of Long-Range Transport of Biomass Burning Plume and Short-Range Transport of Anthropogenic Pollutants to a Mountain Observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment, Aerosol and Air Quality Research, 16(11), 2933-2949, doi:10.4209/aaqr.2015.07.0440.
Chuang, M.-T., M. C. G. Ooi, N.-H. Lin, J. S. Fu, C.-T. Lee, S.-H. Wang, M.-C. Yen, S. S.-K. Kong, and W.-S. Huang (2020), Study on the impact of three Asian industrial regions on PM2.5 in Taiwan and the process analysis during transport, Atmospheric Chemistry and Physics, 20(23), 14947-14967, doi:10.5194/acp-20-14947-2020.
Curry, C. L. (2007), Modeling the soil consumption of atmospheric methane at the global scale, Global Biogeochemical Cycles, 21(4), doi:https://doi.org/10.1029/2006GB002818.
Ehhalt, D., et al. (2001), Atmospheric Chemistry and Greenhouse Gases, Medium: ED; Size: HTML pp., Houghton, J. T. et al; Cambridge University Press, Cambridge, United Kingdom., United States.
Ehret, T., A. De Truchis, M. Mazzolini, J.-M. Morel, A. d’Aspremont, T. Lauvaux, R. Duren, D. Cusworth, and G. Facciolo (2022), Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery, Environmental Science & Technology, 56(14), 10517-10529, doi:10.1021/acs.est.1c08575.
Flores, E., G. C. Rhoderick, J. Viallon, P. Moussay, T. Choteau, L. Gameson, F. R. Guenther, and R. I. Wielgosz (2015), Methane Standards Made in Whole and Synthetic Air Compared by Cavity Ring Down Spectroscopy and Gas Chromatography with Flame Ionization Detection for Atmospheric Monitoring Applications, Analytical Chemistry, 87(6), 3272-3279, doi:10.1021/ac5043076.
Frankenberg, C., I. Aben, P. Bergamaschi, E. J. Dlugokencky, R. van Hees, S. Houweling, P. van der Meer, R. Snel, and P. Tol (2011), Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, Journal of Geophysical Research: Atmospheres, 116(D4), doi:https://doi.org/10.1029/2010JD014849.
Gogoi, M. M., S. S. Babu, R. Imasu, and M. Hashimoto (2022), Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of Aerosol Black Carbon over India, Atmos. Chem. Phys. Discuss., 2022, 1-27, doi:10.5194/acp-2022-555.
He, Y. J., I. Uno, Z. F. Wang, P. Pochanart, J. Li, and H. Akimoto (2008), Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region, Atmos. Chem. Phys., 8(24), 7543-7555, doi:10.5194/acp-8-7543-2008.
Heard, D., L. Carpenter, D. Creasey, J. Hopkins, J. Lee, A. Lewis, M. Pilling, P. Seakins, N. Carslaw, and K. Emmerson (2004), High levels of the hydroxyl radical in the winter urban troposphere, Geophysical Research Letters, 31, doi:10.1029/2004GL020544.
Heerdegen, R. (1991), Book reviews: Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. 1990: Climate change - the IPCC scientific assessment. Cambridge: Cambridge University Press for the Intergovernmental Panel on Climate Change (World Meteorological Organisation/United Nations Environmental Programme). xi + 368 pp. £40.00 cloth, £15.00 paper. ISBN 0 521 40360 X, Progress in Physical Geography: Earth and Environment, 15(3), 321-323, doi:10.1177/030913339101500310.
Hong, X., C. Liu, C. Zhang, Y. Tian, H. Wu, Y. Hao, Y. Zhu, and Y. Cheng (2023), Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: A case study for megafires in the Australian ‘black summer’, Science of The Total Environment, 866, 161387, doi:10.1016/j.scitotenv.2023.161387.
Hsiao, T.-C., W.-N. Chen, W.-C. Ye, N.-H. Lin, S.-C. Tsay, T.-H. Lin, C.-T. Lee, M.-T. Chuang, P. Pantina, and S.-H. Wang (2017), Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants, Atmospheric Environment, 150, 366-378, doi:https://doi.org/10.1016/j.atmosenv.2016.11.031.
Hsu, C.-H., and F.-Y. Cheng (2019), Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19(5), 1139-1151, doi:10.4209/aaqr.2018.09.0348.
Huang, Y. S., and C. C. Hsieh (2020), VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan, Atmospheric Environment, 240, 117741, doi:https://doi.org/10.1016/j.atmosenv.2020.117741.
Hung, W.-T., C.-H. Lu, S.-H. Wang, S.-P. Chen, F. Tsai, and C. C. K. Chou (2019), Investigation of long-range transported PM2.5 events over Northern Taiwan during 2005-2015 winter seasons, Atmospheric Environment, 217, doi:10.1016/j.atmosenv.2019.116920.
IEA (2022), Global Methane Tracker 2022, IEA, Paris https://www.iea.org/reports/global-methane-tracker-2022, License: CC BY 4.0
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC (2014a). Contribution of Working Groups I, II and III to the 5th AssessmentReport of the Intergovernmental Panel on Climate Change. Climate Change 2014:Synthesis Report. Geneva, Switzerland: IPCC. (2014).
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
Jackson, R. B., M. Saunois, P. Bousquet, J. G. Canadell, B. Poulter, A. R. Stavert, P. Bergamaschi, Y. Niwa, A. Segers, and A. Tsuruta (2020), Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources, Environmental Research Letters, 15(7), 071002, doi:10.1088/1748-9326/ab9ed2.
Jongaramrungruang, S., G. Matheou, A. K. Thorpe, Z. C. Zeng, and C. Frankenberg (2021), Remote sensing of methane plumes: instrument tradeoff analysis for detecting and quantifying local sources at global scale, Atmos. Meas. Tech., 14(12), 7999-8017, doi:10.5194/amt-14-7999-2021.
Kirschke, S., et al. (2013), Three decades of global methane sources and sinks, Nature Geoscience, 6(10), 813-823, doi:10.1038/ngeo1955.
Knief, C. (2015), Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker, Frontiers in Microbiology, 6, doi:10.3389/fmicb.2015.01346.
Koukouli, M. E., et al. (2022), Volcanic SO2 layer height by TROPOMI/S5P: evaluation against IASI/MetOp and CALIOP/CALIPSO observations, Atmos. Chem. Phys., 22(8), 5665-5683, doi:10.5194/acp-22-5665-2022.
Lan, X., et al. (2021), Improved Constraints on Global Methane Emissions and Sinks Using δ13C-CH4, Global Biogeochemical Cycles, 35(6), e2021GB007000, doi:https://doi.org/10.1029/2021GB007000.
Laskar, A. H., L. C. Lin, X. Jiang, and M. C. Liang (2018), Distribution of CO(2) in Western Pacific, Studied Using Isotope Data Made in Taiwan, OCO-2 Satellite Retrievals, and CarbonTracker Products, Earth Space Sci, 5(11), 827-842, doi:10.1029/2018ea000415.
Laughner, J. L., et al. (2021), Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change, Proceedings of the National Academy of Sciences, 118(46), e2109481118, doi:doi:10.1073/pnas.2109481118.
Lee, C.-T., et al. (2011), The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45(32), 5784-5794, doi:10.1016/j.atmosenv.2011.07.020.
Lee, S., et al. (2017), Aerosol Property Retrieval Algorithm over Northeast Asia from TANSO-CAI Measurements Onboard GOSAT, Remote Sensing, 9(7), 687.
Lin, C.-Y., C. Zhao, X. Liu, N.-H. Lin, and W.-N. Chen (2014), Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia, Tellus B: Chemical and Physical Meteorology, doi:10.3402/tellusb.v66.23733.
Lin, N.-H., et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment, 78, 1-19, doi:https://doi.org/10.1016/j.atmosenv.2013.04.066.
Liu, C.-W., and C.-Y. Wu (2004), Evaluation of methane emissions from Taiwanese paddies, Science of The Total Environment, 333(1), 195-207, doi:https://doi.org/10.1016/j.scitotenv.2004.05.013.
Maithani, S., and M. Pradhan (2020), Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems, Journal of Chemical Sciences, 132(1), 114, doi:10.1007/s12039-020-01817-x.
Maity, A., S. Maithani, and M. Pradhan (2021), Cavity Ring-Down Spectroscopy: Recent Technological Advancements, Techniques, and Applications, Analytical Chemistry, 93(1), 388-416, doi:10.1021/acs.analchem.0c04329.
Matsueda, H., K. Tsuboi, S. Takatsuji, T. Kawasaki, M. Nakamura, K. Saito, A. Takizawa, K. Dehara, and S. Hosokawa (2018), Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments, Papers in Meteorology and Geophysics, 67, 57-67, doi:10.2467/mripapers.67.57.
Nan, J., S. Wang, Y. Guo, Y. Xiang, and B. Zhou (2017), Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai, China, Atmospheric Environment, 154, 167-178, doi:https://doi.org/10.1016/j.atmosenv.2017.01.046.
Nara, H., H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata, and C. W. Rella (2012), Effect of air composition (N<sub>2</sub>, O<sub>2</sub>, Ar, and H<sub>2</sub>O) on CO<sub>2</sub> and CH<sub>4</sub> measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy, Atmos. Meas. Tech., 5(11), 2689-2701, doi:10.5194/amt-5-2689-2012.
Nisbet, E. G., et al. (2016), Rising atmospheric methane: 2007–2014 growth and isotopic shift, Global Biogeochemical Cycles, 30(9), 1356-1370, doi:https://doi.org/10.1002/2016GB005406.
Oh, Y., et al. (2022), Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase, Communications Earth & Environment, 3(1), 159, doi:10.1038/s43247-022-00488-5.
Ou-Yang, C.-F., H.-C. Hsieh, F.-Y. Cheng, N.-H. Lin, S.-C. Chang, and J.-L. Wang (2020), Decadal Trends of Speciated Non-methane Hydrocarbons in Taipei, Journal of Geophysical Research: Atmospheres, 125(16), e2019JD031578, doi:https://doi.org/10.1029/2019JD031578.
Ou-Yang, C.-F., N.-H. Lin, C.-C. Lin, S.-H. Wang, G.-R. Sheu, C.-T. Lee, R. Schnell, P. Lang, T. Kawasato, and J.-L. Wang (2014), Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia, Atmospheric Environment, 89, 613-622, doi:10.1016/j.atmosenv.2014.02.060.
Pandey, K., and L. K. Sahu (2014), Emissions of volatile organic compounds from biomass burning sources and their ozone formation potential over India, Current Science, 106(9), 1270-1279.
Pani, S. K., C.-F. Ou-Yang, S.-H. Wang, J. A. Ogren, P. J. Sheridan, G.-R. Sheu, and N.-H. Lin (2019), Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia, Atmospheric Environment, 210, 86-99, doi:https://doi.org/10.1016/j.atmosenv.2019.04.053.
Parker, R. J., et al. (2020), A decade of GOSAT Proxy satellite CH4 observations, Earth Syst. Sci. Data, 12(4), 3383-3412, doi:10.5194/essd-12-3383-2020.
Patra, P. K., T. Hajima, R. Saito, N. Chandra, Y. Yoshida, K. Ichii, M. Kawamiya, M. Kondo, A. Ito, and D. Crisp (2021), Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2, Progress in Earth and Planetary Science, 8(1), 25, doi:10.1186/s40645-021-00420-z.
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP 1988, Numerical Recipes in C: The Art of Scientific Computing (1st ed.), New York: Cambridge University Press
Qu, Z., et al. (2021), Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments, Atmospheric Chemistry and Physics, 21, 14159-14175, doi:10.5194/acp-21-14159-2021.
Rella, C. W., et al. (2013), High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6(3), 837-860, doi:10.5194/amt-6-837-2013.
Reum, F., C. Gerbig, J. V. Lavric, C. W. Rella, and M. Göckede (2017), An improved water correction function for Picarro greenhouse gas analyzers, Atmos. Meas. Tech. Discuss., 2017, 1-30, doi:10.5194/amt-2017-174.
Saunois, M., et al. (2016), The global methane budget 2000–2012, Earth Syst. Sci. Data, 8(2), 697-751, doi:10.5194/essd-8-697-2016.
Saunois, M., et al. (2020), The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12(3), 1561-1623, doi:10.5194/essd-12-1561-2020.
Schepers, D., et al. (2012), Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, Journal of Geophysical Research: Atmospheres, 117(D10), doi:https://doi.org/10.1029/2012JD017549.
Smartt, A. D., K. R. Brye, C. W. Rogers, R. J. Norman, E. E. Gbur, J. T. Hardke, and T. L. Roberts (2016), Previous Crop and Cultivar Effects on Methane Emissions from Drill-Seeded, Delayed-Flood Rice Grown on a Clay Soil, Applied and Environmental Soil Science, 2016, 9542361, doi:10.1155/2016/9542361.
Smith, C., Z. R. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M. Palmer, and M. Watanabe (2021), The Earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material, Climate change.
Tan, H., L. Zhang, X. Lu, Z. Yuanhong, B. Yao, R. Parker, and H. Boech (2021), An integrated analysis of contemporary methane emissions and concentration trends over China using in situ, satellite observations, and model simulations, doi:10.5194/acp-2021-464.
Thanwerdas, J., M. Saunois, A. Berchet, I. Pison, D. Hauglustaine, M. Ramonet, C. Crevoisier, B. Baier, C. Sweeney, and P. Bousquet (2019), Impact of atomic chlorine on the modelling of total methane and its 13C:12C isotopic ratio at global scale, Atmos. Chem. Phys. Discuss., 2019, 1-28, doi:10.5194/acp-2019-925.
Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989), Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, Journal of Geophysical Research: Atmospheres, 94(D6), 8549-8565, doi:https://doi.org/10.1029/JD094iD06p08549.
Tomita, H., K. Watanabe, Y. Takiguchi, J. Kawarabayashi, and T. Iguchi (2006), Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis, Journal of Nuclear Science and Technology - J NUCL SCI TECHNOL, 43, 311-315, doi:10.3327/jnst.43.311.
Tsai, D. H., J. L. Wang, C. H. Wang, and C. C. Chan (2008), A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan, J Environ Monit, 10(1), 109-118, doi:10.1039/b714479b.
Van Dop, H., and M. Krol (1996), Changing trends in tropospheric methane and carbon monoxide: A sensitivity analysis of the OH-radical, Journal of Atmospheric Chemistry, 25(3), 271-288, doi:10.1007/BF00053796.
Wang, S.-H., et al. (2013), Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 124-133, doi:10.1016/j.atmosenv.2012.11.013.
Wang, C.-H., H.-C. Hua, W.-C. Lin, H.-C. Hsieh, and J.-L. Wang (2018), A New Gas Chromatography Method for Continuous Monitoring of Non-Methane Hydrocarbons as an Analogy of Volatile Organic Compounds in Flue Gas, Aerosol and Air Quality Research, 18(12), 2913-2921, doi:10.4209/aaqr.2018.05.0193.
Wang, G., S. Jia, R. Li, S. Ma, X. Chen, Z. Wu, G. Shi, and X. Niu (2020), Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou, Journal of Environmental Sciences, 95, 58-64, doi:https://doi.org/10.1016/j.jes.2020.03.045.
Wennberg, P. O. (2006), Radicals follow the Sun, Nature, 442(7099), 145-146, doi:10.1038/442145a.
Yacovitch, T. I., C. Daube, and S. C. Herndon (2020), Methane Emissions from Offshore Oil and Gas Platforms in the Gulf of Mexico, Environmental Science & Technology, 54(6), 3530-3538, doi:10.1021/acs.est.9b07148.
Yang, C.-F. O., N.-H. Lin, G.-R. Sheu, C.-T. Lee, and J.-L. Wang (2012), Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia, Atmospheric Environment, 46, 279-288, doi:10.1016/j.atmosenv.2011.09.060.
Yasuike, M., A. Oshime, and Y. Sakuno (2014), Estimation of the Overland PM 2.5 Distribution Using GOSAT CAI, Journal of The Remote Sensing Society of Japan, 306-313, doi:10.11440/rssj.34.306.
Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50, doi:https://doi.org/10.1016/j.atmosenv.2012.11.015.
Yver Kwok, C., et al. (2015), Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4</sub> and CO, Atmos. Meas. Tech., 8(9), 3867-3892, doi:10.5194/amt-8-3867-2015.
Zalicki, P., and R. N. Zare (1995), Cavity ring‐down spectroscopy for quantitative absorption measurements, The Journal of Chemical Physics, 102(7), 2708-2717, doi:10.1063/1.468647.
Zhou, X., X. Zhou, C. Wang, and H. Zhou (2023), Environmental and human health impacts of volatile organic compounds: A perspective review, Chemosphere, 313, 137489, doi:https://doi.org/10.1016/j.chemosphere.2022.137489.
Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu (2004), Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, 18(3), doi:https://doi.org/10.1029/2004GB002239.
張世杰、莊振義、鍾欣民,2018:臺灣大氣甲烷源匯模式評估計畫,行政院環境保護署委託專案計畫,EPA-107-FA11-03-A031。
張世杰、鍾欣民,2019:碳氫化合物監測精進計畫,行政院環境保護署委託專案計畫。
江偉立、張順欽 (2011) 。南海聯合監測空氣品質監測資料分析。行政院環境保護署環境監測及資訊處技術彙刊,頁64-76。 |