博碩士論文 110223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.225.156.91
姓名 鄭雅云(Ya-Yun Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 台灣都會與工業區大氣甲烷變化及長期趨勢
相關論文
★ 蘭嶼大氣二氧化硫與臭氧濃度長期分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 甲烷作為重要的溫室氣體之一,對於地球暖化具有顯著貢獻。全球及台灣的觀測資料皆顯示甲烷濃度逐年上升,並且在近年來有較大幅度的成長率。目前關於台灣甲烷特性的研究相對有限,對於各行業的排放統計也未包含甲烷的排放估計,若能瞭解各場域的排放來源變化情形,能夠有效地制定減排策略及改善甲烷污染,並且對於台灣不同區域的甲烷污染特徵及差異能有更深入的理解。
為瞭解台灣的甲烷排放特性和各地區的污染來源,使用我國環保署空品站和背景站數據,探討台灣各區域甲烷的長期趨勢,及季節性等變化。進一步透過衛星資料分析東亞源區對於台灣的甲烷影響程度。最後利用光化站資料探討氣團老化程度,以分析各區域甲烷的可能來源特徵,並透過風場資料判斷高濃度事件主要的來源方向。
結果顯示,台灣各區域的甲烷濃度成長趨勢大致與背景站相同,並在2021年有顯著成長率。各區域季節及日夜變化與全球趨勢相同均為冬春季高;夏季最低,0-5時最高;中午最低。季節振盪在三月份時較高,透過衛星資料分析結果,顯示東亞源區對於台灣及鄰近地區甲烷具有貢獻。都會區受到日夜間交通及工業排放貢獻差異導致日夜震盪幅度小於工業區。都會區甲烷與VOCs相關性較好,顯示兩者來源的一致性較高,光化指標結果顯示高濃度甲烷皆發生在較為老化的氣團,說明都會區甲烷受到區域性排放的影響較大。工業區交通排放相對都會區較不顯著,與VOCs相關性較差,污染來源較不一致,光化指標顯示工業區高濃度甲烷來源較複雜,本地及區域性排放分別主導不同工業區的甲烷來源。
摘要(英) Methane, as one of the greenhouse gases, plays an important role in global warming. Observational data from both global and Taiwan sources have shown a steady increase in methane concentration over the years, with more substantial growth rates in recent times. Currently, research on the characteristics of methane in Taiwan is relatively limited. Understanding the variations in emission sources in different fields can effectively guide emission reduction strategies and improve the pollution of methane.
To gain insight into Taiwan′s methane emission characteristics and pollution sources in different regions, we utilized data from EPA stations and NOAA’s background stations to explore the long-term trends and seasonal variations of methane in Taiwan. Additionally, we analyzed satellite data to assess the impact of East Asian source regions on methane concentration in Taiwan. Furthermore, using PAMS data, we examined air mass aging levels to identify potential characteristics of methane sources in different regions and used wind field data to determine the main directions of high-concentration events.
The results indicate that methane concentration in different regions of Taiwan has exhibited similar growth trends as background stations, with a significant increase observed in 2021. The seasonal variations in all regions follow a pattern of higher methane concentration in winter and spring, and lower in summer. The diurnal variations of methane worsen at midnight. The seasonal oscillations are more pronounced in March. Satellite data revealed a contribution of East Asian source regions to methane levels in Taiwan and its neighboring areas. The metropolitan area exhibited smaller diurnal variations due to differing contributions from traffic and natural gas. A better correlation between methane and VOCs in the metropolitan area suggests a higher consistency in their sources. The non-methane hydrocarbon (NMHC) ratios pointed out that high methane concentrations occur in aged air masses, indicating a greater influence of regional emissions on methane levels in the metropolitan area. In contrast, industrial areas exhibited a worse correlation with traffic emissions, showing more diverse pollution sources. The NMHC ratios suggested that high methane concentrations in industrial areas are derived from both local and regional emissions.
In summary, this study provides valuable insights into the characteristics of methane emissions in Taiwan and sheds light on the pollution sources in different regions. The findings contribute to the formulation of effective emission reduction strategies and the improvement of methane pollution.
關鍵字(中) ★ 甲烷
★ 非甲烷碳氫化合物
★ 氫氧自由基
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 viii
表目錄 x
一、緒論 1
二、文獻回顧 3
2-1 全球甲烷相關研究 3
2-1-1 甲烷濃度成長率趨勢 3
2-1-2 甲烷主要來源與排放分布 6
2-1-3 甲烷與氫氧自由基反應過程 10
2-2 台灣地區甲烷相關研究 11
三、研究方法 14
3-1 環保署空氣品質監測站與甲烷監測儀 14
3-2 空氣品質背景測站 18
3-3 光化學監測站與儀器簡介 24
3-4 衛星觀測資料簡介–GOSAT、TROPOMI 27
3-5 NOAA Curve Fitting Methods 30
四、結果與討論 34
4-1 台灣各區域及背景站甲烷長期變化 34
4-1-1 測站篩選及濃度修正方法 34
4-1-2 背景站成長趨勢及各區域修正濃度 39
4-1-3 台灣各區域季節及日夜變化 44
4-2 東亞地區甲烷長期變化及源區影響 47
4-2-1 衛星資料長期變化及差異 47
4-2-2 源區對台灣各區域甲烷影響 53
4-3 台灣都會區和工業區甲烷與光化變化特徵 59
4-3-1 空品及光化站選擇 59
4-3-2 甲烷與VOCs相關性 61
4-3-3 都會區光化特徵 64
4-3-4 工業區光化特徵 70
五、結論 77
參考文獻 79
參考文獻 Aben, I., O. Hasekamp, and W. Hartmann (2007), Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth′s atmosphere, Journal of Quantitative Spectroscopy and Radiative Transfer, 104(3), 450-459, doi:https://doi.org/10.1016/j.jqsrt.2006.09.013.
Adounkpè, J., O. Ahoudji, and B. Sinsin (2021), Assessment of the Contribution of Flooded Rice Cultivation Systems to Methane Emissions in the Lower Ouémé Valley, in Benin Republic, Journal of Agricultural Chemistry and Environment, 10, 327-344, doi:10.4236/jacen.2021.103021.
Allan, W., H. Struthers, and D. C. Lowe (2007), Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, Journal of Geophysical Research: Atmospheres, 112(D4), doi:https://doi.org/10.1029/2006JD007369.
Allen, D. T., et al. (2013), Measurements of methane emissions at natural gas production sites in the United States, Proceedings of the National Academy of Sciences, 110(44), 17768-17773, doi:doi:10.1073/pnas.1304880110.
Alvarez, R. A., et al. (2018), Assessment of methane emissions from the U.S. oil and gas supply chain, Science, 361(6398), 186-188, doi:doi:10.1126/science.aar7204.
Balasus, N., D. Jacob, A. Lorente, J. Maasakkers, R. Parker, H. Boesch, Z. Chen, M. Kelp, H. Nesser, and D. Varon (2023), A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases, doi:10.5194/amt-2023-47.
Bhullar, G. S., P. J. Edwards, and H. Olde Venterink (2014), Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland, PLOS ONE, 9(2), e89588, doi:10.1371/journal.pone.0089588.
Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang (2013), Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales, Global Change Biology, 19(5), 1325-1346, doi:https://doi.org/10.1111/gcb.12131.
Buan, N. R. (2018), Methanogens: pushing the boundaries of biology, Emerg Top Life Sci, 2(4), 629-646, doi:10.1042/etls20180031.
Butz, A., O. P. Hasekamp, C. Frankenberg, J. Vidot, and I. Aben (2010), CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes, Journal of Geophysical Research: Atmospheres, 115(D24), doi:https://doi.org/10.1029/2010JD014514.
Chen, S.-P., W.-C. Liao, C.-C. Chang, Y.-C. Su, Y.-H. Tong, J. S. Chang, and J.-L. Wang (2014), Network monitoring of speciated vs. total non-methane hydrocarbon measurements, Atmospheric Environment, 90, 33-42, doi:https://doi.org/10.1016/j.atmosenv.2014.03.020.
Chen, W.-R., A. Singh, S. K. Pani, S.-Y. Chang, C. C. K. Chou, S.-C. Chang, M.-T. Chuang, N.-H. Lin, C.-H. Huang, and C.-T. Lee (2021), Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke, Atmospheric Research, 260, doi:10.1016/j.atmosres.2021.105686.
Chuang, M.-T., et al. (2016), The Simulation of Long-Range Transport of Biomass Burning Plume and Short-Range Transport of Anthropogenic Pollutants to a Mountain Observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment, Aerosol and Air Quality Research, 16(11), 2933-2949, doi:10.4209/aaqr.2015.07.0440.
Chuang, M.-T., M. C. G. Ooi, N.-H. Lin, J. S. Fu, C.-T. Lee, S.-H. Wang, M.-C. Yen, S. S.-K. Kong, and W.-S. Huang (2020), Study on the impact of three Asian industrial regions on PM2.5 in Taiwan and the process analysis during transport, Atmospheric Chemistry and Physics, 20(23), 14947-14967, doi:10.5194/acp-20-14947-2020.
Curry, C. L. (2007), Modeling the soil consumption of atmospheric methane at the global scale, Global Biogeochemical Cycles, 21(4), doi:https://doi.org/10.1029/2006GB002818.
Ehhalt, D., et al. (2001), Atmospheric Chemistry and Greenhouse Gases, Medium: ED; Size: HTML pp., Houghton, J. T. et al; Cambridge University Press, Cambridge, United Kingdom., United States.
Ehret, T., A. De Truchis, M. Mazzolini, J.-M. Morel, A. d’Aspremont, T. Lauvaux, R. Duren, D. Cusworth, and G. Facciolo (2022), Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery, Environmental Science & Technology, 56(14), 10517-10529, doi:10.1021/acs.est.1c08575.
Flores, E., G. C. Rhoderick, J. Viallon, P. Moussay, T. Choteau, L. Gameson, F. R. Guenther, and R. I. Wielgosz (2015), Methane Standards Made in Whole and Synthetic Air Compared by Cavity Ring Down Spectroscopy and Gas Chromatography with Flame Ionization Detection for Atmospheric Monitoring Applications, Analytical Chemistry, 87(6), 3272-3279, doi:10.1021/ac5043076.
Frankenberg, C., I. Aben, P. Bergamaschi, E. J. Dlugokencky, R. van Hees, S. Houweling, P. van der Meer, R. Snel, and P. Tol (2011), Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, Journal of Geophysical Research: Atmospheres, 116(D4), doi:https://doi.org/10.1029/2010JD014849.
Gogoi, M. M., S. S. Babu, R. Imasu, and M. Hashimoto (2022), Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of Aerosol Black Carbon over India, Atmos. Chem. Phys. Discuss., 2022, 1-27, doi:10.5194/acp-2022-555.
He, Y. J., I. Uno, Z. F. Wang, P. Pochanart, J. Li, and H. Akimoto (2008), Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region, Atmos. Chem. Phys., 8(24), 7543-7555, doi:10.5194/acp-8-7543-2008.
Heard, D., L. Carpenter, D. Creasey, J. Hopkins, J. Lee, A. Lewis, M. Pilling, P. Seakins, N. Carslaw, and K. Emmerson (2004), High levels of the hydroxyl radical in the winter urban troposphere, Geophysical Research Letters, 31, doi:10.1029/2004GL020544.
Heerdegen, R. (1991), Book reviews: Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. 1990: Climate change - the IPCC scientific assessment. Cambridge: Cambridge University Press for the Intergovernmental Panel on Climate Change (World Meteorological Organisation/United Nations Environmental Programme). xi + 368 pp. £40.00 cloth, £15.00 paper. ISBN 0 521 40360 X, Progress in Physical Geography: Earth and Environment, 15(3), 321-323, doi:10.1177/030913339101500310.
Hong, X., C. Liu, C. Zhang, Y. Tian, H. Wu, Y. Hao, Y. Zhu, and Y. Cheng (2023), Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: A case study for megafires in the Australian ‘black summer’, Science of The Total Environment, 866, 161387, doi:10.1016/j.scitotenv.2023.161387.
Hsiao, T.-C., W.-N. Chen, W.-C. Ye, N.-H. Lin, S.-C. Tsay, T.-H. Lin, C.-T. Lee, M.-T. Chuang, P. Pantina, and S.-H. Wang (2017), Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants, Atmospheric Environment, 150, 366-378, doi:https://doi.org/10.1016/j.atmosenv.2016.11.031.
Hsu, C.-H., and F.-Y. Cheng (2019), Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19(5), 1139-1151, doi:10.4209/aaqr.2018.09.0348.
Huang, Y. S., and C. C. Hsieh (2020), VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan, Atmospheric Environment, 240, 117741, doi:https://doi.org/10.1016/j.atmosenv.2020.117741.
Hung, W.-T., C.-H. Lu, S.-H. Wang, S.-P. Chen, F. Tsai, and C. C. K. Chou (2019), Investigation of long-range transported PM2.5 events over Northern Taiwan during 2005-2015 winter seasons, Atmospheric Environment, 217, doi:10.1016/j.atmosenv.2019.116920.
IEA (2022), Global Methane Tracker 2022, IEA, Paris https://www.iea.org/reports/global-methane-tracker-2022, License: CC BY 4.0
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC (2014a). Contribution of Working Groups I, II and III to the 5th AssessmentReport of the Intergovernmental Panel on Climate Change. Climate Change 2014:Synthesis Report. Geneva, Switzerland: IPCC. (2014).
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
Jackson, R. B., M. Saunois, P. Bousquet, J. G. Canadell, B. Poulter, A. R. Stavert, P. Bergamaschi, Y. Niwa, A. Segers, and A. Tsuruta (2020), Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources, Environmental Research Letters, 15(7), 071002, doi:10.1088/1748-9326/ab9ed2.
Jongaramrungruang, S., G. Matheou, A. K. Thorpe, Z. C. Zeng, and C. Frankenberg (2021), Remote sensing of methane plumes: instrument tradeoff analysis for detecting and quantifying local sources at global scale, Atmos. Meas. Tech., 14(12), 7999-8017, doi:10.5194/amt-14-7999-2021.
Kirschke, S., et al. (2013), Three decades of global methane sources and sinks, Nature Geoscience, 6(10), 813-823, doi:10.1038/ngeo1955.
Knief, C. (2015), Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker, Frontiers in Microbiology, 6, doi:10.3389/fmicb.2015.01346.
Koukouli, M. E., et al. (2022), Volcanic SO2 layer height by TROPOMI/S5P: evaluation against IASI/MetOp and CALIOP/CALIPSO observations, Atmos. Chem. Phys., 22(8), 5665-5683, doi:10.5194/acp-22-5665-2022.
Lan, X., et al. (2021), Improved Constraints on Global Methane Emissions and Sinks Using δ13C-CH4, Global Biogeochemical Cycles, 35(6), e2021GB007000, doi:https://doi.org/10.1029/2021GB007000.
Laskar, A. H., L. C. Lin, X. Jiang, and M. C. Liang (2018), Distribution of CO(2) in Western Pacific, Studied Using Isotope Data Made in Taiwan, OCO-2 Satellite Retrievals, and CarbonTracker Products, Earth Space Sci, 5(11), 827-842, doi:10.1029/2018ea000415.
Laughner, J. L., et al. (2021), Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change, Proceedings of the National Academy of Sciences, 118(46), e2109481118, doi:doi:10.1073/pnas.2109481118.
Lee, C.-T., et al. (2011), The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45(32), 5784-5794, doi:10.1016/j.atmosenv.2011.07.020.
Lee, S., et al. (2017), Aerosol Property Retrieval Algorithm over Northeast Asia from TANSO-CAI Measurements Onboard GOSAT, Remote Sensing, 9(7), 687.
Lin, C.-Y., C. Zhao, X. Liu, N.-H. Lin, and W.-N. Chen (2014), Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia, Tellus B: Chemical and Physical Meteorology, doi:10.3402/tellusb.v66.23733.
Lin, N.-H., et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment, 78, 1-19, doi:https://doi.org/10.1016/j.atmosenv.2013.04.066.
Liu, C.-W., and C.-Y. Wu (2004), Evaluation of methane emissions from Taiwanese paddies, Science of The Total Environment, 333(1), 195-207, doi:https://doi.org/10.1016/j.scitotenv.2004.05.013.
Maithani, S., and M. Pradhan (2020), Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems, Journal of Chemical Sciences, 132(1), 114, doi:10.1007/s12039-020-01817-x.
Maity, A., S. Maithani, and M. Pradhan (2021), Cavity Ring-Down Spectroscopy: Recent Technological Advancements, Techniques, and Applications, Analytical Chemistry, 93(1), 388-416, doi:10.1021/acs.analchem.0c04329.
Matsueda, H., K. Tsuboi, S. Takatsuji, T. Kawasaki, M. Nakamura, K. Saito, A. Takizawa, K. Dehara, and S. Hosokawa (2018), Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments, Papers in Meteorology and Geophysics, 67, 57-67, doi:10.2467/mripapers.67.57.
Nan, J., S. Wang, Y. Guo, Y. Xiang, and B. Zhou (2017), Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai, China, Atmospheric Environment, 154, 167-178, doi:https://doi.org/10.1016/j.atmosenv.2017.01.046.
Nara, H., H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata, and C. W. Rella (2012), Effect of air composition (N<sub>2</sub>, O<sub>2</sub>, Ar, and H<sub>2</sub>O) on CO<sub>2</sub> and CH<sub>4</sub> measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy, Atmos. Meas. Tech., 5(11), 2689-2701, doi:10.5194/amt-5-2689-2012.
Nisbet, E. G., et al. (2016), Rising atmospheric methane: 2007–2014 growth and isotopic shift, Global Biogeochemical Cycles, 30(9), 1356-1370, doi:https://doi.org/10.1002/2016GB005406.
Oh, Y., et al. (2022), Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase, Communications Earth & Environment, 3(1), 159, doi:10.1038/s43247-022-00488-5.
Ou-Yang, C.-F., H.-C. Hsieh, F.-Y. Cheng, N.-H. Lin, S.-C. Chang, and J.-L. Wang (2020), Decadal Trends of Speciated Non-methane Hydrocarbons in Taipei, Journal of Geophysical Research: Atmospheres, 125(16), e2019JD031578, doi:https://doi.org/10.1029/2019JD031578.
Ou-Yang, C.-F., N.-H. Lin, C.-C. Lin, S.-H. Wang, G.-R. Sheu, C.-T. Lee, R. Schnell, P. Lang, T. Kawasato, and J.-L. Wang (2014), Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia, Atmospheric Environment, 89, 613-622, doi:10.1016/j.atmosenv.2014.02.060.
Pandey, K., and L. K. Sahu (2014), Emissions of volatile organic compounds from biomass burning sources and their ozone formation potential over India, Current Science, 106(9), 1270-1279.
Pani, S. K., C.-F. Ou-Yang, S.-H. Wang, J. A. Ogren, P. J. Sheridan, G.-R. Sheu, and N.-H. Lin (2019), Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia, Atmospheric Environment, 210, 86-99, doi:https://doi.org/10.1016/j.atmosenv.2019.04.053.
Parker, R. J., et al. (2020), A decade of GOSAT Proxy satellite CH4 observations, Earth Syst. Sci. Data, 12(4), 3383-3412, doi:10.5194/essd-12-3383-2020.
Patra, P. K., T. Hajima, R. Saito, N. Chandra, Y. Yoshida, K. Ichii, M. Kawamiya, M. Kondo, A. Ito, and D. Crisp (2021), Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2, Progress in Earth and Planetary Science, 8(1), 25, doi:10.1186/s40645-021-00420-z.
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP 1988, Numerical Recipes in C: The Art of Scientific Computing (1st ed.), New York: Cambridge University Press
Qu, Z., et al. (2021), Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments, Atmospheric Chemistry and Physics, 21, 14159-14175, doi:10.5194/acp-21-14159-2021.
Rella, C. W., et al. (2013), High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6(3), 837-860, doi:10.5194/amt-6-837-2013.
Reum, F., C. Gerbig, J. V. Lavric, C. W. Rella, and M. Göckede (2017), An improved water correction function for Picarro greenhouse gas analyzers, Atmos. Meas. Tech. Discuss., 2017, 1-30, doi:10.5194/amt-2017-174.
Saunois, M., et al. (2016), The global methane budget 2000–2012, Earth Syst. Sci. Data, 8(2), 697-751, doi:10.5194/essd-8-697-2016.
Saunois, M., et al. (2020), The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12(3), 1561-1623, doi:10.5194/essd-12-1561-2020.
Schepers, D., et al. (2012), Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, Journal of Geophysical Research: Atmospheres, 117(D10), doi:https://doi.org/10.1029/2012JD017549.
Smartt, A. D., K. R. Brye, C. W. Rogers, R. J. Norman, E. E. Gbur, J. T. Hardke, and T. L. Roberts (2016), Previous Crop and Cultivar Effects on Methane Emissions from Drill-Seeded, Delayed-Flood Rice Grown on a Clay Soil, Applied and Environmental Soil Science, 2016, 9542361, doi:10.1155/2016/9542361.
Smith, C., Z. R. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M. Palmer, and M. Watanabe (2021), The Earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material, Climate change.
Tan, H., L. Zhang, X. Lu, Z. Yuanhong, B. Yao, R. Parker, and H. Boech (2021), An integrated analysis of contemporary methane emissions and concentration trends over China using in situ, satellite observations, and model simulations, doi:10.5194/acp-2021-464.
Thanwerdas, J., M. Saunois, A. Berchet, I. Pison, D. Hauglustaine, M. Ramonet, C. Crevoisier, B. Baier, C. Sweeney, and P. Bousquet (2019), Impact of atomic chlorine on the modelling of total methane and its 13C:12C isotopic ratio at global scale, Atmos. Chem. Phys. Discuss., 2019, 1-28, doi:10.5194/acp-2019-925.
Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989), Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, Journal of Geophysical Research: Atmospheres, 94(D6), 8549-8565, doi:https://doi.org/10.1029/JD094iD06p08549.
Tomita, H., K. Watanabe, Y. Takiguchi, J. Kawarabayashi, and T. Iguchi (2006), Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis, Journal of Nuclear Science and Technology - J NUCL SCI TECHNOL, 43, 311-315, doi:10.3327/jnst.43.311.
Tsai, D. H., J. L. Wang, C. H. Wang, and C. C. Chan (2008), A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan, J Environ Monit, 10(1), 109-118, doi:10.1039/b714479b.
Van Dop, H., and M. Krol (1996), Changing trends in tropospheric methane and carbon monoxide: A sensitivity analysis of the OH-radical, Journal of Atmospheric Chemistry, 25(3), 271-288, doi:10.1007/BF00053796.
Wang, S.-H., et al. (2013), Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 124-133, doi:10.1016/j.atmosenv.2012.11.013.
Wang, C.-H., H.-C. Hua, W.-C. Lin, H.-C. Hsieh, and J.-L. Wang (2018), A New Gas Chromatography Method for Continuous Monitoring of Non-Methane Hydrocarbons as an Analogy of Volatile Organic Compounds in Flue Gas, Aerosol and Air Quality Research, 18(12), 2913-2921, doi:10.4209/aaqr.2018.05.0193.
Wang, G., S. Jia, R. Li, S. Ma, X. Chen, Z. Wu, G. Shi, and X. Niu (2020), Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou, Journal of Environmental Sciences, 95, 58-64, doi:https://doi.org/10.1016/j.jes.2020.03.045.
Wennberg, P. O. (2006), Radicals follow the Sun, Nature, 442(7099), 145-146, doi:10.1038/442145a.
Yacovitch, T. I., C. Daube, and S. C. Herndon (2020), Methane Emissions from Offshore Oil and Gas Platforms in the Gulf of Mexico, Environmental Science & Technology, 54(6), 3530-3538, doi:10.1021/acs.est.9b07148.
Yang, C.-F. O., N.-H. Lin, G.-R. Sheu, C.-T. Lee, and J.-L. Wang (2012), Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia, Atmospheric Environment, 46, 279-288, doi:10.1016/j.atmosenv.2011.09.060.
Yasuike, M., A. Oshime, and Y. Sakuno (2014), Estimation of the Overland PM 2.5 Distribution Using GOSAT CAI, Journal of The Remote Sensing Society of Japan, 306-313, doi:10.11440/rssj.34.306.
Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50, doi:https://doi.org/10.1016/j.atmosenv.2012.11.015.
Yver Kwok, C., et al. (2015), Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4</sub> and CO, Atmos. Meas. Tech., 8(9), 3867-3892, doi:10.5194/amt-8-3867-2015.
Zalicki, P., and R. N. Zare (1995), Cavity ring‐down spectroscopy for quantitative absorption measurements, The Journal of Chemical Physics, 102(7), 2708-2717, doi:10.1063/1.468647.
Zhou, X., X. Zhou, C. Wang, and H. Zhou (2023), Environmental and human health impacts of volatile organic compounds: A perspective review, Chemosphere, 313, 137489, doi:https://doi.org/10.1016/j.chemosphere.2022.137489.
Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu (2004), Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, 18(3), doi:https://doi.org/10.1029/2004GB002239.
張世杰、莊振義、鍾欣民,2018:臺灣大氣甲烷源匯模式評估計畫,行政院環境保護署委託專案計畫,EPA-107-FA11-03-A031。
張世杰、鍾欣民,2019:碳氫化合物監測精進計畫,行政院環境保護署委託專案計畫。
江偉立、張順欽 (2011) 。南海聯合監測空氣品質監測資料分析。行政院環境保護署環境監測及資訊處技術彙刊,頁64-76。
指導教授 林能暉 歐陽長風 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明