博碩士論文 110683002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.144.43.194
姓名 李柏翰(Po-Han Lee)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 利用二十五史研究探討西元107-1825年期間極光、 極端天氣災害、瘟疫對太陽活動之響應
(Using Chinese official historical records to study responses of auroras, severe weather disasters, and epidemics to solar activities from 107 to 1825 Common Era)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 本研究目的為探討二十五史紀錄中不同季節和地理位置之極光、極端天氣災害與瘟疫對太陽活動的響應。自西元前91年司馬遷完成史記後,二十五史提供連續且完整的觀測紀錄,內容包含特殊天象 (如太陽黑子與極光等)、極端天氣災害 (如氣溫與降水異常、乾旱、洪水等) 與瘟疫等。這些正史資料是為研究近兩千年來太空天氣與太空氣候對自然環境與民生影響的最佳資料庫。將史書原文中描述特殊天象、極端天氣和自然災害的文字轉換為可用於統計研究的數位資料,包括發生時間和地點等詳細資訊,總計約3000筆記錄。依據太陽黑子和冰芯、年輪等紀錄反演太陽活動強度,將西元107-1825年區分為9個低太陽活動時期與8個高太陽活動時期。計算各類事件紀錄年份於各個太陽活動時期所占比例,並藉由統計信賴區間探討高低兩太陽活動期間發生年比例差異。季節變化:計算各類紀錄於四季所占比例,並以全年標準差作為統計檢定門檻,進而比較高低太陽活動於四季之影響。地理位置變化:以秦嶺-淮河為氣候分界線,分為北方省分與南方省分;以海陸地區,分為內陸省分與臨海省分,計算各區域於高低太陽活動期間發生年比例差異,並比較太陽活動對地理位置之效應。
統計研究發現整體類極光現象較常發生在高太陽活動時期,其中以紅色類極光最為顯著。其出現時間、顏色與觀測地點緯度均符合現今之中低緯度極光特性,因而可推測史書中所記載的紅色類極光是為中低緯度極光;白色類極光較常發生在高太陽活動時期,但其結果並不通過統計顯著性,推測此一類極光可能混淆了大氣光學現象 (日暈、月暈等) 或中高緯度夜光雲等;藍色的類極光現象則較常出現在低太陽活動時期,此類紀錄可能與實際極光發生無關。
研究結果顯示極端天氣災害較常發生在低太陽活動時期,其中異常多雨、異常低溫與洪水均於此時期明顯增加;反之,乾旱、異常高溫則大多出現在高太陽活動時期。整體而言,各個季節中極端天氣災害頻繁發生在低太陽活動時期。地理位置以秦嶺-淮河作為氣候分界線,北方省分顯著於低太陽活動時期出現極端天氣災害。低太陽活動時期有更多瘟疫紀錄,且以夏季、北方省分最為顯著。卡方檢定結果顯示,瘟疫的出現與異常氣溫和降水災害之間存在時間差,氣溫異常災害發生後的兩年和降水異常災害的同一年發生最多瘟疫,說明極端天氣災害可能為太陽活動與瘟疫之中介因子。本研究結果證實,史書記錄可用來詳細量化探討太陽活動對氣候、環境和人類生活影響。
摘要(英) Historical records truthfully document human life and the environment associated with climate change. Official historical records of China have been quantified to examine auroras, severe weather disasters, and epidemics in four seasons that are possibly linked to sunspots or solar activities during 107-1825 CE (Common Era). In total, there are approximately 3,000 records. Based on the inverted solar activity intensity from sunspot records, ice cores, and tree rings, the years 107-1825 CE are divided into 9 periods of low solar activity (LSA) and 8 periods of high solar activity (HSA). Proportions of historical records in each period are calculated to study their responses to solar activities. Statistical studies of confidence interval are further utilized to find the significance of true differences between periods of high and low solar activity.
Statistical results show that the red aurora-like descriptions which significantly appear during high solar activity periods could be related to nowadays middle/low latitude auroras. The white aurora-like descriptions which tend to occur in summer and during high solar activity periods could be contaminated by noctilucent clouds or other atmospheric optical events. Blue aurora-like descriptions which frequently occur during low solar activity periods might be irrelevant to auroras. On the other hand, disasters of extremely cold weather, irregular precipitation, and floods on inland river basins occur particularly during LSA periods. In contrast, disasters of extremely hot weather and floods on coastal river basins tend to occur more frequently in HSA periods. All the severe weather disasters occur significantly in Northern China during LSA periods, which suggests that the climate boundary of the Qinling–Huaihe Line at about 33°N plays an important role. It has been found that there is a time difference between the occurrence of epidemics and severe weather disasters. Most epidemics occurred two years after the occurrence of anomalous temperature disasters and the same year of irregular precipitation disasters, indicating that extreme weather disasters may be the mediator between solar activities and epidemics. The results show that historical records can be used to quantitatively explore the impact of solar activities on climate, environment, and human life in detail.
關鍵字(中) ★ 太陽活動
★ 極光
★ 極端天氣災害
★ 瘟疫
關鍵字(英) ★ Solar activities
★ Aurora
★ Severe weather disaster
★ Epidemic
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 10
第二章 歷史紀錄資料集 12
2-1 太陽黑子與太陽活動 13
2-2 類極光現象 23
2-3 異常天氣災害 27
2-4 大疫 37
第三章 研究與統計方法 39
3-1資料轉換處理 40
3-2 發生比例與趨勢檢定 43
3-3 比例差異之信賴區間 46
第四章 太陽活動與極光 48
4-1 太陽活動指標 48
4-2 類極光 52
第五章 太陽活動與極端天氣災害 60
5-1 氣溫異常災害 61
5-2 降水異常災害 68
5-3 洪水 74
5-4 討論與小結 80
第六章 太陽活動與瘟疫 82
第七章 結論 91
參考文獻 93
參考文獻 ee, P.H., Haung, C.S., and Fang, T.W. (2022) Severe weather disasters in China linked to solar activity during 1-1825 Common Era. Geosci. Lett. 9, 13. https://doi.org/10.1186/s40562-021-00210-x
Loomis, E. (1860) The great auroral exhibition of Aug. 28th to Sept. 4th, 1859. American Journal of Science, 2(90), 339-361.
Mann, M.E., Bradley, R.S., and Hughes, M.K. (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779-787.
Mendillo, M., and Wroten, J. (2019) Modeling stable auroral red (SAR) arcs at geomagnetic conjugate points: Implications for hemispheric asymmetries in heat fluxes. Journal of Geophysical Research: Space Physics, 124, 6330– 6342. https://doi.org/10.1029/2019JA026904.
Menke, W., Menke, J. (2016) Environmental Data Analysis with MatLab. Elsevier Science and Technology Books, Cambridge, MA.
Morabia, A. (2009) Epidemic and population patterns in the Chinese Empire (243 b.c.e. to 1911 c.e.): Quantitative analysis of a unique but neglected epidemic catalogue. Epidemiology and Infection, 137(10), 1361-1368. https://10.1017/S0950268809990136.
Nasirpour, M., Sharifi, A., Ahmadi, M., et al. (2021) Revealing the relationship between solar activity and COVID-19 and forecasting of possible future viruses using multi-step autoregression (MSAR). Environ Sci Pollut Res 28, 38074–38084 (2021). https://doi.org/10.1007/s11356-021-13249-2
Neumayer, G. (Georg), 1826-1909 & Flagstaff Observatory (Melbourne, Vic.). (1864). Results of the meteorological observations taken in the Colony of Victoria, during the years 1859-1862 ; and of the nautical observations collected and discussed at the Flagstaff Observatory, Melbourne during the years 1858-1862 / George Neumayer. Melbourne : John Ferres, Govt. Printer
Pang, K.D., and Yau, K.K. (2002) Ancient observations link changes in Sun′s brightness and Earth′s climate. Eos Trans. AGU, 83( 43), 481– 490, https://doi.org/10.1029/2002EO000336.
Pei, Q., Zhang, D.D., Li, G., Winterhalder, B., Lee, H.F. (2015) Epidemics in Ming and Qing China: Impacts of changes of climate and economic well-being, Social Science & Medicine, Volumes 136–137, 2015, Pages 73-80, ISSN 0277-9536, https://doi.org/10.1016/j.socscimed.2015.05.010.
Rassoul, H.K., Rohrbaugh, R.P., Tinsley, B.A., and Slater, D.W. (1993) Spectrometric and photometric observations of low-latitude aurorae. J. Geophys. Res., 98( A5), 7695– 7709, https://doi.org/10.1029/92JA02269.
Reid, G.C. (1987) Influence of solar variability on global sea surface temperatures. Nature 329:142-143.
Rietveld, M.T., Collis, P.N., and St.-Maurice, J.P. (1991) Naturally enhanced ion acoustic waves in the auroral ionosphere observed with the EISCAT 933-MHz radar. J. Geophys. Res., 96( A11), 19291– 19305, https://doi.org/10.1029/91JA01188.
Rind, D. (2002) The Sun′s role in climate variations. Science 296:673-677.
Schove, D.J. (1979) Sunspot turning-points and aurorae since A.D. 1510. Sol Phys 63, 423–432. https://doi.org/10.1007/BF00174546.
Silverman, S. M. (1992) Secular variation of the aurora for the past 500 years, Rev. Geophys., 30(4), 333–351, doi:10.1029/92RG01571.
Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159
Steinhilber, F., Beer, J., and Fröhlich, C. (2009) Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, doi:10.1029/2009GL040142.
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., et al. (2012) 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci 109(16):5967–5971. https://doi.org/10. 1073/pnas.1118965109
Stephanie, G. (2023) "Confidence Interval: How to Find it: The Easy Way!" From StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/probability-and-statistics/confidence-interval/
Stuiver, M., and Braziunas, T. (1989) Atmospheric 14C and century-scale solar oscillations. Nature 338, 405–408. https://doi.org/10.1038/338405a0.
Svensmark, H., and Friis-Christensen, E. (1997) Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Solar-Terr Phys. 59, 1225-1232.
Taylor, R.E. (1997). Radiocarbon Dating. In: Taylor, R.E., Aitken, M.J. (eds) Chronometric Dating in Archaeology. Advances in Archaeological and Museum Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9694-0_3
Tinsley, B.A. (1996) Correlations of atmospheric dynamics with solar wind-induced changes of air-earth current density into cloud tops. J Geophys Res 101:29701-29714.
Usoskin, I.G., Solanki, S.K., Schüssler, M., Mursula, K., Alanko, K. (2003) Millennium scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys Rev Lett 91:211101
Usoskin, I.G., Solanki, S.K., and Kovaltsov, G.A. (2007) Grand Minima and Maxima of Solar Activity: New Observational Constraints. Astronomy and Astrophysics, 471, 301-309. https://doi.org/10.1051/0004-6361:20077704
van der Sluijs, M.A., and Hayakawa, H. (2022) A candidate auroral report in the bamboo annals, indicating a possible extreme space weather event in the early 10th century BCE. Adv Space Res. https://doi.org/10.1016/j.asr.2022.0
Verschuren, D., Laird, K. R., and B. F. (2000) Cumming. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403, 410-414.
Wang, P., Lin, K.H., Liao, Y.C. et al. (2018) Construction of the REACHES climate database based on historical documents of China. Sci Data 5, 180288 (2018). https://doi.org/10.1038/sdata.2018.288
Wang, P., and Zhang, D. (1992) Recent Studies of the Reconstruction of East Asian Monsoon Climate in the Past Using Historical Literature of China. Journal of the Meteorological Society of Japan. 70. 423-446. 10.2151/jmsj1965.70.1B_423.
Wang, S.W., Wen, X.Y., Luo, Y., Dong, W.J., Zhao, Z.C., and Yang, B. (2007) Reconstruction of temperature series of China for the last1000 years. Chin Sci Bull 52:3272–3280
Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., and Wei, Y. (2021) Ancient auroral records compiled from Korean historical books. Journal of Geophysical Research: Space Physics, 126, e2020JA028763. https://doi.org/10.1029/2020JA028763
Willis, D., Easterbrook, M., and Stephenson, F. (1980) Seasonal variation of oriental sunspot sightings. Nature 287, 617–619 (1980). https://doi.org/10.1038/287617a0
Xu, L., Stige, L., Kausrud, K., Ben Ari, T., Wang, S., Fang, X., Schmid, B.V., Liu, Q., Stenseth, N.C., and Zhang, Z. (2014) Wet climate and transportation routes accelerate spread of human plague. Proc. R. Soc. B.2812013315920133159. http://doi.org/10.1098/rspb.2013.3159
Xu, Z. (1989) The Basic Forms of Ancient Chinese Sunspot Records. Chinese Science, 9, 19–28. http://www.jstor.org/stable/43290440
Xu, Z. (1990) Solar Observations in Ancient China and Solar Variability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 330(1615), 513–515. http://www.jstor.org/stable/53600
Yau, K.K.C., Francis, R.S., and David, M.W. (1995) A catalogue of auroral observations from China, Korea and Japan (193 B.C. - A.D. 170). Rutherford Appleton Laboratory Technical Reports: n. pag.
Zhang, D., Jim, C., Lin, C. et al. (2005) Climate change, social unrest and dynastic transition in ancient China. Chin.Sci.Bull. 50, 137–144 (2005). https://doi.org/10.1007/BF02897517
Zhang, Z., Tian, H., Cazelles, B., Kausrud, K.L., Bräuning, A., Guo, F., Stenseth, N.C. (2010) Periodic climate cooling enhanced natural disasters and wars in China during AD 10–1900. Proc R Soc B, 2010, 277: 3745 -3753

書籍:
Agresti, A. (1996). An introduction to Categorical Data Analysis, New York, John Wiley..
Bray R. J. and Loughhead R. E. (1964). Sunspots [by] r.j. bray and r.e. loughhead. Chapman and Hall.
Gadsden, M., and Schröder, W. (1989). Noctilucent Clouds, Springer-Verlag Berlin Heidelberg 1989, ISBN: 978-3-642-48628-9
Klotz S. and Johnson N. L. (eds) (1983). Encyclopedia of statistical sciences, John Wiley, Hoboken.
Tadanori Ondoh and Katsuhide Marubashi (2001). Science of Space Enviroment, Ohmsha, Ltd.
劉昭民. (1992). 中國歷史上氣候之變遷 / 劉昭民著 (修訂版). 臺灣商務.
張德二. (2013). 中国三千年气象记录总集 / 张德二主编. (第2版.). 江蘇教育.
袁祖亮. (2008). 中國灾害通史 / 袁祖亮主编. (第1版.). 鄭州大學出版社.
許靖華., & 甘錫安. (2012). 氣候創造歷史 = Climate made history / 許靖華著 ; 甘錫安譯. (初版.). 聯經.
宋正海. (1992). 中國古代重大自然災害和異常年表總集 / 宋正海主编 (第1版.) 廣東教育
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2023-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明