參考文獻 |
[1] S. Lin, Y. Lu, S. Feng, Z. Hao, and Y. Yan, "A high current density direct‐current generator based on a moving van der Waals Schottky diode." Adv. Mater., 31 (2019) 1804398.
[2] C. Langer, V. Bomke, M. Hausladen, R. Ławrowski, C. Prommesberger, M. Bachmann, and R. Schreiner,. "Silicon chip field emission electron source fabricated by laser micromachining." J. Vac. Sci. Technol, 38 (2020) (1).
[3] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor." ACS Appl. Mater. Interfaces, 2(2) (2010) 331-334.
[4] G. Dong, Y. Zhou, H. Zhang, F. Liu, G. Li, and M. Zhu, "Passivation of high aspect ratio silicon nanowires by using catalytic chemical vapor deposition for radial heterojunction solar cell application." RSC Adv., 7(71) (2017) 45101-45106.
[5] E. C. Garnett, and P. Yang, "Silicon nanowire radial p− n junction solar cells. " J. Am. Chem. Soc., 130(29) (2008) 9224-9225.
[6] M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H. E. Nilsson, W. Xiong, and H. H. Radamson, "Silicon nanowires for gas sensing: A review." Nanomaterials, 10(11) (2020) 2215.
[7] B. R. Huang, Y. K. Yang, and H. L. Cheng, "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor." Nanotechnology, 24(47) (2013) 475502.
[8] C. W. Hsu, W. C. Feng, F. C. Su, and G. J. Wang, "An electrochemical glucose biosensor with a silicon nanowire array electrode." J. Electrochem. Soc., 162(10) (2015) B264.
[9] M. Yaghoubi, F. Rahimi, B. Negahdari, A. H. Rezayan, and A. Shafiekhani, "A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode." Sci. Rep., 10(1) (2020) 16017.
[10] Y. An, A. Behnam, E. Pop, and A. Ural, "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions." Appl. Phys. Lett., 102(1) (2013).
[11] S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, and C. Li, "Influence of the texturing structure on the properties of black silicon solar cell." Sol. Energy Mater Sol. Cells, 108 (2013) 200-204.
[12] M. Moreno, D. Daineka, and P. R. i Cabarrocas, "Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures." Sol. Energy Mater Sol. Cells, 94(5) (2010) 733-737.
[13] Y. C. Lee, C. C. Chang, and Y. Y. Chou, "Fabrication of broadband anti-reflective sub-micron structures using polystyrene sphere lithography on a Si substrate." Photonics Nanostructures - Fundam. Appl., 12(1) (2014) 16-22.
[14] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, "Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping." J. Mater. Chem. A., 1(34) (2013) 9942-9946.
[15] C. Li, Y. Ma, X. Zhang, X. Chen, F. Xi, S. Li, and Y. Chang, "Enhanced efficiency of graphene-silicon Schottky junction solar cell through pyramid arrays texturation." Silicon, (2022). 1-11
[16] I. Zubel, and M. Kramkowska, "Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions." ens. Actuator A Phys., 115(2-3) (2004) 549-556.
[17] R. Barrio, N. González, J. Cárabe, and J. J. Gandía, "Optimisation of NaOH texturisation process of silicon wafers for heterojunction solar-cells applications." Sol. energy, 86(3) (2012) 845-854.
[18] L. Guan, G. Shen, Y. Liang, F. Tan, X. Xu, X. Tan, and X. Li, "Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells." Opt. Laser Technol., 120 (2019) 105700.
[19] S. Thiyagu, H. J. Syu, C. C. Hsueh, C. T. Liu, T. C. Lin, and C. F. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells." RSC Adv., 5(17) (2015) 13224-13233.
[20] C. Lin, and M. L. Povinelli, "Detailed balance limit of silicon nanowire and nanohole array solar cells." In Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, Vol. 8111 (2011, September) 116-121.
[21] S. E. Han, and G. Chen, "Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics." Nano Lett., 10(3) (2010) 1012-1015.
[22] X. Zhangyang, L. Liu, Z. Lv, F. Lu, and J. Tian, "Comparative analysis of light trapping GaN nanohole and nanorod arrays for UV detectors." J. Nanoparticle Res., 22 (2020) 1-10.
[23] L. Rahmasari, M. F. Abdullah, A. R. M. Zain, and A. M. Hashim, "Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching." Sains Malays., 48(6) (2019) 1157-1161.
[24] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, ad L. Hu, "Fabrication and photoelectrochemical properties of ordered Si nanohole arrays." Appl. Surf. Sci., 292 (2014) 86-92.
[25] X. Yang, W. Zhang, J. Choi, H. Q. Ta, Y. Bai, L. Chen, and L. Liu, "Influence of bowl-like nanostructures on the efficiency and module power of black silicon solar cells." Sol. Energy, 189 (2019) 67-73.
[26] Y. Wang, , L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, and D. Xiaolong, "Maskless inverted pyramid texturization of silicon." Sci. Rep., 5(1) (2015) 10843.
[27] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells." Sol. Energy Mater. Sol. Cells, 57(2) (1999) 179-188.
[28] S. C. Baker‐Finch, and K. R. McIntosh, "Reflection of normally incident light from silicon solar cells with pyramidal texture." Prog. Photovolt.: Res. Appl., 19(4) (2011) 406-416.
[29] L. Yang, Y. Liu, Y. Wang, W. Chen, Q. Chen, J. Wu, and X. Du, "18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique." Sol. Energy Mater. Sol. Cells, 166 (2017) 121-126.
[30] M. S. Choi, H. G. Na, A. Mirzaei, J. H. Bang, W. Oum, S. Han, and H. W. Kim, "Room-temperature NO2 sensor based on electrochemically etched porous silicon." J. Alloys Compd., 811 (2019) 151975.
[31] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection." ACS Appl. Mater. Interfaces, 9(34) (2017) 28766-28773.
[32] J. Y. Oh, H. J. Jang, W. J. Cho, and M. S. Islam, "Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane." Sens. Actuators B Chem., 171 (2012) 238-243.
[33] R. Smith, S. M. Geary, and A. K. Salem, "Silicon nanowires and their impact on cancer detection and monitoring." ACS Appl. Nano Mater., 3(9) (2020) 8522-8536.
[34] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, and J. L. Sun, "Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array." ACS Appl. Mater. Interfaces, 6(23) (2014) 20887-20894.
[35] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, and T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors." ACS Appl. Nano Mater., 4(2) (2021) 1567-1575.
[36] G. Ma, R. Du, Y. N. Cai, C. Shen, X. Gao, Y. Zhang, and Y. Zhang, "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides." Sol. Energy Mater. Sol. Cells, 193 (2019) 163-168.
[37] C. Xie, B. Nie, L. Zeng, F. X. Liang, M. Z. Wang, L. Luo, and S. H. Yu, "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors." Acs Nano, 8(4) (2014) 4015-4022.
[38] T. Arjmand, M. Legallais, T. T. T. Nguyen, P. Serre, M. Vallejo-Perez, F. Morisot, and C. Ternon, "Functional devices from bottom-up Silicon nanowires: A review." Nanomaterials, 12(7) (2022) 1043.
[39] S. Misra, L. Yu, W. Chen, M. Foldyna, and P. R. i Cabarrocas, "A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells." J. Phys. D: Appl. Phys., 47(39) (2014) 393001..
[40] L. W. Chou, N. Shin, S. V. Sivaram, and M. A. Filler, "Tunable mid-infrared localized surface plasmon resonances in silicon nanowires." J. Am. Chem. Soc., 134(39) (2012) 16155-16158.
[41] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and T. Y. Tan, "Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy." Appl. Phys. Lett., 84(24) (2004) 4968-4970.
[42] T. David, L. Roussel, T. Neisius, M. Cabie, M. Gailhanou, and C. Alfonso, "Gold coverage and faceting of MBE grown silicon nanowires." J. Cryst. Growth, 383 (2013) 151-157.
[43] R. A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, and A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm." ACS omega, 4(19) (2019) 17967-17971.
[44] J. V. Wittemann, W. Münchgesang, S. Senz, and V. Schmidt, Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition." J. Appl. Phys. 107 (2010) 096105.
[45] R. P. Seisyan, "Nanolithography in microelectronics: A review." Tech. Phys., 56 (2011) 1061-1073.
[46] L. R. Harriott, "Limits of lithography." Proc. IEEE, 89(3) (2001) 366-374.
[47] P. Hashemi, L. Gomez, and J. L. Hoyt, "Gate-all-around n-MOSFETs with uniaxial tensile strain-induced performance enhancement scalable to sub-10-nm nanowire diameter." IEEE Electron Device Lett., 30(4) (2009) 401-403.
[48] K. Trivedi, H. Yuk, H. C. Floresca, M. J. Kim, and W. Hu, "Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors." Nano Lett., 11(4) (2011) 1412-1417.
[49] J. H. Ahn, S. J. Choi, J. W. Han, T. J. Park, S. Y. Lee, and Y. K. Choi, "Double-gate nanowire field effect transistor for a biosensor." Nano Lett., 10(8) (2010) 2934-2938.
[50] J. Hållstedt, P. E. Hellström, and H. H. Radamson, "Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs." Thin Solid Films, 517(1) (2008) 117-120.
[51] M. Naffeti, P. A. Postigo, R. Chtourou, and M. A. Zaïbi, "Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires." Nanomaterials, 10(3) (2020) 404.
[52] R. P. Srivastava, and D. Y. Khang, "Structuring of Si into multiple scales by metal‐assisted chemical etching." Adv. Mater., 33(47) (2021) 2005932.
[53] G. Chen, W. Wang, C. Wang, T. Ding, and Q. Yang, "Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors." Adv. Sci., 2(10) (2015) 1500109.
[54] P. Serre, M. Mongillo, P. Periwal, T. Baron, and C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties." Nanotechnology, 26(1) (2014) 015201.
[55] B. Aksoy, S. Coskun, S. Kucukyildiz, and H. E. Unalan, "Transparent, highly flexible,all nanowire network germanium photodetectors." Nanotechnology, 23(32) (2012) 325202.
[56] M. Triplett, H. Nishimura, M. Ombaba, V. J. Logeeswarren, M. Yee, K. G. Polat, and M. S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication." Nano Res., 7 (2014) 998-1006.
[57] S. C. Shiu, C. Y. Hsiao, C. H. Chao, S. C. Hung, and C. F. Lin, "Transfer of aligned single crystal silicon nanowires to transparent substrates." In Nanoscale Photonic and Cell Technologies for Photovoltaics, 7047 (2008, September) 58-65.
[58] J. M. Weisse, C. H. Lee, D. R. Kim, L. Cai, P. M. Rao, and X. Zheng, "Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer." Nano Lett., 13(9) (2013) 4362-4368.
[59] J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, "Vertical transfer of uniform silicon nanowire arrays via crack formation." Nano Lett., 11(3) (2011) 1300-1305.
[60] X. Xue, S. Yang, and Z. Wang, "Heat-depolymerizable polypropylene carbonate as a temporary bonding adhesive for fabrication of flexible silicon sensor chips." IEEE Trans. Compon. Packaging Manuf. Technol., 7(11) (2017) 1751-1758.
[61] K. Y. Byun, I. Ferain, S. Song, S. Holl, and C. Colinge, "Single-crystalline silicon layer transfer to a flexible substrate using wafer bonding." J. Electron. Mater., 39 (2010) 2233-2236.
[62] N. Watanabe, T. Miyazaki, M. Aoyagi, and K. Yoshikawa, "Silicon wafer thinning and backside via exposure by wet etching." In 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC) (2012, December) 355-359.
[63] C. Li, Z. He, Q. Wang, J. Liu, S. Li, X. Chen, and Y. Chang, "Performance improvement of PEDOT: PSS/N-Si heterojunction solar cells by alkaline etching." Silicon (2021) 1-9.
[64] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials." Nano Lett., 13(9) (2013) 4393-4398.
[65] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer." Appl. Surfa. Sci., 273 (2013) 107-110.
[66] C. Yang, K. Moon, J. W. Song, J. Kim, J. H. Lee, J. H. Lim, and B. Yoo, "Spalling of thin Si layer via electroless and electrodeposit-assisted stripping (E2AS) with all-wet process for fabrication of low-cost flexible single-crystalline Si solar cell." J. Electrochem. Soc., 165(5) (2018) D243.
[67] N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, and J. Song, "Performance of OLED under mechanical strain: a review." J. Mater. Sci. Mater. Electron., 31 (2020) 20688-20729.
[68] N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, "Emerging flexible sensors based on nanomaterials: Recent status and applications." J. Mater. Chem. A ., 8(48) (2020) 25499-25527.
[69] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, and E. S. Lohan, "A survey on wearable technology: History, state-of-the-art and current challenges." Comput. Netw., 193 (2021) 108074.
[70] G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, and Y. Jiang, "Dual‐Phase CsPbBr3–CsPb2Br5 Perovskite Thin Films via Vapor Deposition for High‐Performance Rigid and Flexible Photodetectors." Small, 14(7) (2018) 1702523.
[71] J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Flexible and low power CO gas sensor with Au-functionalized 2D WS2 nanoflakes." Sens. Actuators B: Chem., 313 (2020) 128040.
[72] T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang, T. Zhao, and J. Zhang, "A flexible pressure sensor based on an MXene–textile network structure." J. Mater. Chem. C, 7(4) (2019) 1022-1027.
[73] P. S. Priambodo, N. R. Poespawati, and D. Hartanto, "Solar cell." Chapters. (2011).
[74] T. Kan, Y. Ajiki, K. Matsumoto, and I. Shimoyama, "Si process compatible near-infrared photodetector using Au/Si nano-pillar array." In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016, January) 624-627.
[75] Q. Wu, G. Cen, Y. Liu, Z. Ji, and W. Mai, "A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging." Phys. lett., A, 412 (2021) 127586.
[76] M. Fidan, Ö. Ünverdi, and C. Çelebi, "Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes." Sens. Actuator A Phys., 331 (2021) 112829.
[77] Y. Guan, G. Cao, and X. Li, "Single-nanowire silicon photodetectors with core-shell radial Schottky junction for self-powering application." Appl. Phys. Lett., 118(15) (2021).
[78] Y. Ma, Y. Chang, B. Dong, J. Wei, W. Liu, and C. Lee, "Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing." ACS Nano, 15(6) (2021) 10084-10094.
[79] W. Chen, Z. Deng, D. Guo, Y. Chen, Y. I. Mazur, Y. Maidaniuk, and B. Chen, "Demonstration of InAs/InGaAs/GaAs quantum dots-in-a-well mid-wave infrared photodetectors grown on silicon substrate." J. Light. Technol., 36(13) (2018) 2572-2581.
[80] Y. Xu, Y. Ma, Y. Yu, S. Chen, Y. Chang, X. Chen, and G. Xu, "Self-powered, ultra-high detectivity and high-speed near-infrared photodetectors from stacked–layered MoSe2/Si heterojunction." Nanotechnology, 32(7) (2020) 075201.
[81] M. Bednorz, G. J. Matt, E. D. Głowacki, T. Fromherz, C. J. Brabec, M. C. Scharber, and N. S. Sariciftci, "Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime." Organic electronics, 14(5) (2013) 1344-1350.
[82] X. Jin, Y. Sun, Q. Wu, Z. Jia, S. Huang, J. Yao, and J. Xu, "High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon." ACS Appl. Mater. Interf., 11(45) (2019) 42385-42391.
[83] J. F. Masson, "Portable and field-deployed surface plasmon resonance and plasmonic sensors." Analyst, 145(11) (2020) 3776-3800.
[84] S. A. Bansal, V. Kumar, J. Karimi, A. P. Singh, and S. Kumar, "Role of gold nanoparticles in advanced biomedical applications." Nanoscale Adv., 2(9) (2020) 3764-3787.
[85] A. Rónavári, N. Igaz, D. I. Adamecz, B. Szerencsés, C. Molnar, Z. Kónya, and M. Kiricsi, "Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications." Molecules, 26(4) (2021) 844.
[86] A. H. Chiou, J. L. Wei, and S. H. Chen, "Ag-Functionalized Si Nanowire Arrays Aligned Vertically for SERS Detection of Captured Heavy Metal Ions by BSA." Coatings, 11(6) (2021) 685.
[87] X. Dong, C. Xu, C. Yang, F. Chen, A. G. Manohari, Z. Zhu, and J. Chen, "Photoelectrochemical response to glutathione in Au-decorated ZnO nanorod array." J. Mater. Chem. C, 7(19) (2019) 5624-5629.
[88] D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, and E. T. Kim, "Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting." Nano-Micro Lett., 12 (2020) 1-14.
[89] D. Lin, Z. Wu, S. Li, W. Zhao, C. Ma, J. Wang, and X. Yang, "Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy." ACS Nano, 11(2) (2017) 1478-1487.
[90] L. Wei, J. Lin, S. Xie, W. Ma, Q. Zhang, Z. Shen, and Y. Wang, "Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays." Nanoscale, 11(26) (2019) 12530-12536.
[91] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, and Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection." Nanotechnology, 28(27) (2017) 275202.
[92] M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, "Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection." Sci. Rep., 4(1) (2014) 7103.
[93] K. Ramachandran, S. Columbus, S. Chidambaram, K. Daoudi, M. A. El Khakani, and M. Gaidi, "Fabrication of highly oriented 1D SiNW arrays/Au for femto molar level detection of H1N1 protein." Mater. Lett., 300 (2021) 130184.
[94] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, "Highly Efficient Silicon Nanowire Surface Passivation by Bismuth Nano-Coating for Multifunctional Bi@SiNWs Heterostructures." Nanomaterials, 10 (2020) 1434.
[95] L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, et al. "Optical and Surface Enhanced Raman Scattering properties of Ag modified silicon double nanocone array." Sci. Rep., 7 (2017) 12106.
[96] Y. Wang, Y. Liu, L. Yang, W. Chen, X. Du, and A. Kuznetsov, "Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles." Nanoscale, 9(2) (2017) 907-914.
[97] S. Hong, L. Ma, X. Chen, S. Li, W. Ma, and Y. Chang, "Surface Texturing Behavior of Nano-copper Particles under Various Copper Salts System during Copper-assisted Chemical Etching." Silicon, (2022) 1-9.
[98] S. D. Wang, S. Y. Chen, S. P. Hsu, P. Q. Shi, and C. G. Chen, "Effects of H2O2, Cu(NO3)2 and HF temperatures on surface texturization of diamond-wire-sawn multicrystalline silicon wafer." Sol. Energy Mater Sol. Cells, 212 (2020) 110583.
[99] S. Kubendhiran, G. Sison, H. P. Hsu, and C. W. Lan, "Copper assisted inverted pyramids texturization of monocrystalline silicon in a nitrogen bubbling bath for highly efficient light trapping." Silicon, 13 (2021) 3121-3129.
[100] D. Zhang, S. Jiang, K. Tao, R. Jia, H. Ge, X. Li, and Z. Jin, "Fabrication of inverted pyramid structure for high-efficiency silicon solar cells using metal assisted chemical etching method with CuSO4 etchant." Sol. Energy Mater Sol. Cells, 230 (2021) 111200.
[101] D. Widory, E. Petelet-Giraud, P. Négrel, and B. Ladouche, "Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis." Environ. Sci. Technol., 39(2) (2005) 539-548.
[102] S. Tait, W. P. Clarke, J. Keller, and D. J. Batstone, "Removal of sulfate from high-strength wastewater by crystallisation." Water Res., 43(3) (2009) 762-772.
[103] Y. Cao, Y. Zhou, F. Liu, Y. Zhou, Y. Zhang, Y. Liu, and Y. Guo, "Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region." ECS J. Solid State Sci. Technol., 4(8) (2015) 331.
[104] Y. Zhao, Y. Liu, W. Chen, J. Wu, Q. Chen, H. Tang, and X. Du, "Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells." Sol. Energy, 201 (2020) 461-468.
[105] M. Treideris, A. Rėza, M. Kamarauskas, A. Mironas, V. Strazdienė, A. Maneikis, and A. Šetkus, "Minimization of optical reflectance by copper assisted etching of crystalline silicon surface." Phys. Status Solidi (A), 215(6) (2018) 1700600.
[106] B. Altinsoy, E. Donercark, A. Aliefendioglu, and R. Turan, "Single Step Inverted Pyramid Texturing of n-type Silicon by Copper Assisted Chemical Etching." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), (2021, June) 1631-1637.
[107] J. Y. Li, C. H. Hung, and C. Y. Chen, "Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement." Sci. Rep., 7(1) (2017) 17177.
[108] W. Chen, Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, and X. Du, "Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si." Sci. Rep., 8(1) (2018) 3408.
[109] P. J. Hesketh, C. Ju, S. Gowda, E. Zanoria, and S. Danyluk, "Surface free energy model of silicon anisotropic etching." J. Electrochem. Soc., 140(4) (1993) 1080.
[110] A. A. A. Omer, Y. Yang, G. Sheng, S. Li, J. Yu, W. Ma, and W. E. Kolaly, "Nano-texturing of silicon wafers via one-step copper-assisted chemical etching." Silicon, 12 (2020) 231-238.
[111] A. A. A. Omer, Z. He, S. Hong, Y. Chang, J. Yu, S. Li, and R. Chen, "Ultra-thin silicon wafers fabrication and inverted pyramid texturing based on cu-catalyzed chemical etching." Silicon, (2021) 13 351-359.
[112] G. Chatzigiannakis, A. Jaros, R. Leturcq, J. Jungclaus, T. Voss, S. Gardelis, and M. Kandyla, "Laser-microstructured ZnO/p-Si photodetector with enhanced and broadband responsivity across the ultraviolet–visible–near-infrared range." ACS Appl. Electron. Mater., 2(9) (2020) 2819-2828.
[113] H. J. Syu, Y. C. Huang, Z. C. Su, R. L. Sun, and C. F. Lin, "An Alternative to Compound Semiconductors Using a Si-Based IR Detector." IIEEE Trans. Electron Devices, 69(1) (2021) 205-211.
[114] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, "Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings." Nano Lett., 12(3) (2012) 1616-1619.
[115] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, and L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector." J. Mater. Chem. C, 4(46) (2016) 10804-10811.
[116] L. Wang, S. J. He, K. Y. Wang, H. H. Luo, J. G. Hu, Y. Q. Yu, and L. B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector." Nanotechnology, 29(50) (2018) 505203.
[117] Y. Wang, Y. Zhu, H. Gu, and X. Wang, "Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near–Infrared Photodetectors via the Plasmonic Effect." ACS Appl. Mater. Interfaces, 13 (2021) 57750.
[118] X. Zhang, J. Shao, Y. Su, L. Wang, Y. Wang, X. Wang, and D. Wu, "In-situ prepared WSe2/Si 2D-3D vertical heterojunction for high performance self-driven photodetector." Ceram. Int., 48 (2022) 29722.
[119] S. Chaoudhary, A. Dewasi, V. Rastogi, R.N. Pereira, A. Sinopoli, B. Aïssa, and A. Mitra, "Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV–Visible–NIR photodetection." Nanotechnology, 33 (2022) 255202.
[120] A.A. Ahmed, T.F. Qahtan, M. Hashim, A.T. Nomaan, N.H. Al-Hardan, and M. Rashid, "Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect." Ceram. Int., 48 (2022) 16142.
[121] X. Xue, C. Ling, H. Ji, J. Wang, C. Wang, H. Lu, and W. Liu, "Self-Powered and Broadband Bismuth Oxyselenide/p-Silicon Heterojunction Photodetectors with Low Dark Current and Fast Response." ACS Appl. Mater. Interfaces, 15(4) (2023) 5411-5419.
[122] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu, and Z.L. Wang, "Self‐powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro‐phototronic effect: an approach for photosensing below bandgap energy." Adva. Mater., 30 (2018) 1705893.
[123] M. Hossain, G.S. Kumar, S. Barimar Prabhava, E.D. Sheerin, D. McCloskey, S. Acharya, K. Rao, and J.J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications." ACS nano, 12 (2018) 4727.
[124] J.M. Choi, H.Y. Jang, A.R. Kim, J.D. Kwon, B. Cho, M.H. Park, and Y. Kim, "Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis." Nanoscale, 13 (2021) 672.
[125] W.-H. Yang, X.-Y. Jiang, Y.-T. Xiao, C. Fu, J.-K. Wan, X. Yin, X.-W. Tong, D. Wu, L.-M. Chen, and L.-B. Luo, "Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe2/thin Si Schottky junctions." Mater. Horizons, 8 (2021) 1976.
[126] Y. Xu, H. Shen, Y. Li, Z. Yue, W. Zhang, Q. Zhao, and Z. Wang, "Self-Powered and Fast Response MoO3/n-Si Photodetectors on Flexible Silicon Substrates with Light-Trapping Structures." ACS Appl. Electron. Mater., 4(9) (2022) 4641-4652. |