參考文獻 |
[1] T. Ahmad, D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far.”, Energy Reports, 2020, 6, 1973-1991.
[2] M. Green, E. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis, “Solar cell efficiency tables (version 62).”, Prog. Photovolt. Res. Appl, 2023, 28, 629-638.
[3] D. Devadiga, M. Selvakumar, P. Shetty, “Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review.”, Journal of Power Sources, 2021, 493, 229698.
[4] D. Zhang, M. Stojanovic, Y. Ren, Y. Cao, F. T. Eickemeyer, E. Socie, N. Vlachopoulos, J. E. Moser, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, “A molecular photosensitizer achieves a V oc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper (II/I)-based electrolyte.”, Nature Communications, 2021, 12, 1777.
[5] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
[6] F. Labat, T. L. Bahers, I. Ciofini, C. Adamo, “First-principles modeling of dye-sensitized solar cells: challenges and perspectives.”, Accounts of Chemical Research, 2012, 45, 1268-1277.
[7] M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, F. Elsehrawy, J. Halme, S. Ahmad, S. G. Hashmi, “Advanced research trends in dye-sensitized solar cells.”, Journal of Materials Chemistry A, 2021, 17, 10527-10545.
[8] L. Paul, C. Pascal, S. Zakeeruddin, P. Nazeeruddin, M. Khaja, M. Grätzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode.”, Chemical Communications, 2006, 38, 4004-4006.
[9] M. Dhonde, K. Sahu, M. Das, A. Yadav, P. Ghosh, “Recent advancements in dye-sensitized solar cells; from photoelectrode to counter electrode.”, Journal of The Electrochemical Society, 2022, 169, 066507.
[10] S. S. Rakhunde, K. M. Gadave, D. R. Shinde, P. K. Bhujbal, “Effect of dye absorption time on the performance of a novel 2-HNDBA sensitized ZnO photo anode based dye-sensitized solar cell.”, Engineered Science, 2020, 12, 117-124.
[11] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%.”, Thin Solid Films, 2008, 516, 4613-4619.
[12] M. J. Jeng, Y. L. Wung, L. B. Chang, L. Chow, “Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells.”, International Journal of Photoenergy, 2013, 1-9.
[13] M. Akhtaruzzaman, M. Shahiduzzaman, V. Selvanathan, K. Sopian, M. I. Hossain, N. Amin, A. K. M. Hasan, “Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review.”, Applied Materials Today, 2021, 25, 101204.
[14] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.”, ACS Nano, 2010, 4, 6032-6038.
[15] S. Ananthakumar, J. R. Kumar, S. M. Babu, “Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells.”, SN Applied Sciences, 2019, 1, 1-46.
[16] L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, M. Gratzel, “A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells.”, Physical Chemistry Chemical Physics, 2012, 14, 16182-16186.
[17] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells.”, Chemical Reviews, 2010, 110, 6595-6663.
[18] T. D. Nguyen, Y. P. Lan, C. G. Wu, “High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells.”, Inorg. Chem, 2018, 57, 1527-1534.
[19] J. Wiley, S. Hoboken, “The organometallic chemistry of the transition metals.”, Inorg. Chem. 2014, 56, 252-260.
[20] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.”, ACS Nano, 2010, 4, 6032-6038.
[21] N. V. Krishna, J. Venkata, S. Krishna, M. Mrinalini, S. Prasanthkumar, L. Giribabu, “Role of co‐sensitizers in dye‐sensitized solar cells.”, ChemSusChem, 2017, 10, 4668-4689.
[22] C. P. Lee, R. Y. Linab, L. Y. Linc, C. T. Lia, T. C. Chua, S. Sun, J. T. Lin, K. C. Ho, “Recent progress in organic sensitizers for dye-sensitized solar cells.”, RSC Advances, 2015, 5, 23810-23825.
[23] Y. S. Yen, H. H. Chou, Y. C. Chen, C. Y. Hsu, J, T. Lin, “Recent developments in molecule-based organic materials for dye-sensitized solar cells.”, Journal of Materials Chemistry, 2012, 22, 8734-8747.
[24] Y. Ren, D. Zhang, J. Suo, Y. Cao, N. Vlachopoulos, M. Grätzel, “Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells.”, Nature, 2023, 613, 60-65.
[25] L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, M. Gratzel, “A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells.”, Physical Chemistry Chemical Physics, 2012, 14, 16182-16186.
[26] S. Chang, Hongda Wang, Lawrence Tien, Lin Lee, Xunjin Zhu, Wai-Yeung Wong, “Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells.”, Materials Chemistry C, 2014, 2, 3531.
[27] X. Jiang, T. Marinado, E. Gabrielsson, D. P. Hagberg, L. Sun, A. Hagfeldt, “Structural modification of organic dyes for efficient coadsorbent-free dye-sensitized solar cells.”, Physical Chemistry C, 2010, 114, 2799-2805.
[28] A. S. Najm, N. A. Ludin, N. H. Hamid, M. A. Ibrahim, M. Teridi, K. Sopian, H. Moria, A. M. Holi, A. zahrani, H. S. Naeem, “Effect of chenodeoxycholic acid on the performance of dye-sensitized solar cells utilizing pinang palm (Areca catechu) dye.”, Sains Malaysiana, 2020, 49.12, 2971-2982.
[29] J. Chang, C. P. Lee, D. Kumar, P. Chen, L. Y. Lin, K.R. Thomas, K. C. Ho, “Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye.” Journal of Power Sources, 2013, 240, 779-785.
[30] R. Cisneros, M. Beley, F. Lapicque, “study of the impact of co-adsorbents on DSSC electron transfer processes: anti-π-stacking vs. shield effect.”, Physical Chemistry Chemical Physics, 2016, 18, 9645-9651.
[31] G. Anantharaj, N. Lakshminarasimhan, “Interfacial Modification of Photoanode|Electrolyte Interface Using Oleic Acid Enhancing the Efficiency of Dye-Sensitized Solar Cells.”, ACS Omega, 2018, 3, 18285-18294.
[32] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, M. Hanaya, “An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell.”, Chemical Communications, 2014, 50, 6379.
[33] G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, H. Bönnemann, “Catalytic platinum layers for dye solar cells: a comparative study.”, Thin Solid Films, 2006, 511, 342-348.
[34] Z. Tang, J. Wu, M. Zheng, J. Huo, Z. Lan, “A microporous platinum counter electrode used in dye-sensitized solar cells.”, Nano Energy, 2013, 2, 622-627.
[35] Q. Liu, Q. S. Li, G. Q. Lu, “Theoretical study on the adsorption mechanism of iodine molecule on platinum surface in dye-sensitized solar cells.”, Theoretical Chemistry Accounts, 2014, 133, 1-8.
[36] C. E. Richards, A. Y. Anderson, S. Martiniani, C. Law, B. C. Regan, “The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells.”, J. Phys. Chem. Lett., 2012, 3, 1980-1984.
[37] Y. Bai, J. Zhang, Y. Wang, M. Zhang, P. Wang, “Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.”, Langmuir, 2011, 27, 4749-4755.
[38] Y. Shi, Y. Wang, M. Zhang, X. Dong, “Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium.”, Phys. Chem, 2011, 13, 14590-14597.
[39] J. Y. Kim, J. Y. Kim, D. K. Lee, B. Kim, H. Kim, M. J. Ko, “Importance of 4-tert-butylpyridine in electrolyte for dye-sensitized solar cells employing SnO2 electrode.”, The Journal of Physical Chemistry C, 2012,116, 22759-22766.
[40] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson, E. Johansson, “Experimental and Theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells.”, ACS Appl. Mater. Interfaces, 2018, 10, 11572-11579.
[41] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, “Photoelectrochemical effects of guanidinium thiocyanate on dye-Sensitized solar cell performance and stability.”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[42] 黃柏程. “含聯噻吩之環釕金屬染料”, 國立中央大學 109年碩士論文.
[43] K. Narayanaswamy, T. Swetha, G. Kapil, S. S. Pandey, S. Hayase, S. P. Singh, “Simple metal-free dyes derived from triphenylamine for DSSC: A comparative study of two different anchoring group.”, Electrochimica Acta, 2015,169, 256-263.
[44] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. R. Jung, B. Park, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell.”, Current Applied Physics, 2012, 12, 737-741.
[45] D. Zheng, M. Ye, X. Wen, N. Zhang, C. Lin, “Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell.”, Science Bulletin, 2015, 60, 850-863.
[46] P. Macheroux, “UV-visible spectroscopy as a tool to study flavorproteins.” Flavorprotein Protocols, 1999, 1-7.
[47] J. B. Maglic, R. Lavendomme, “MoloVol: an easy-to-use program to calculate various volumes and surface areas of chemical structures and identify cavities.”, ChemRxiv, 2021, 2021.
[48] M.Y.A. Rahman, A.A. Umar, R. Taslim, M.M. Salleh, “Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique.”, Electrochimica acta, 2013, 88, 639-643
[49] 徐子閎, “尋找應用於染料敏化太陽能電池之藍色染料”, 國立中央大學 106年碩士論文.
[50] 何睿哲, “吸收達近紅外光釕錯合物染料的合成並應用於染料敏化太陽能電池”, 國立中央大學 111年碩士論文.
[51] T. D. Nguyen, “Thiocyanate-Free Cycloruthenated Sensitizer for dye-Sensitized Solar Cells.”, 國立中央大學 107年博士論文.
[52] T. Maeda, S. Mineta, H. Fujiwara, H. Nakao, S. Yagi, H. Nakazumi, “Conformational effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells.” Journal of Materials Chemistry A, 2013, 1, 1303-1309.
[53] Z. Yan, S. Guang, X. Su, H. Xu, “Near-infrared absorbing squaraine dyes for solar cells: relationship between architecture and performance.”The Journal of Physical Chemistry C, 2012, 116, 8894-8900.
[54] S. K. Kim, P. Ho, J. W. Lee, S. Y. Jeon, S. Thogiti, R. Cheruku, H. J. Jo, J. H. Kim, “Effect of electrolyte redox potentials on the photovoltaic performance in dye-sensitized solar cells based on porphyrin dye.”, Molecular Crystals and Liquid Crystals, 2017, 653, 84-90.
[55] E. Figgemeier, A. Hagfeldt, “Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses.”, International Journal of Photoenergy, 2004, 6, 127-140.
[56] T. Helmut, “Dye sensitization solar cells: a critical assessment of the learning curve.”, Coordination Chemistry Reviews, 2014, 248, 13-14.
[57] Y. Tian, C. Hu, Q. Wu, X. Wu, X. Li, M. Hashim, “Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays.”, Applied Surface Science, 2011, 258, 321-326.
[58] G. D. Sharma, D. Daphnomili, K. S. V. Gupta, T. Gayathri, S. P. Singh, P. A. Angaridis, T. N. Kitsopoulos, D. Tasise, A. G. Coutsolelos, “Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium (II)-terpyridine dyes and graphene modified TiO2 photoanode.”, Rsc Advances, 2013, 3, 22412-22420. |