博碩士論文 107283601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:13.58.61.197
姓名 古杉力(Rizmahardian Ashari Kurniawan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 外部電場對聚合物薄膜的結晶與形態的影響
(THE EFFECT OF EXTERNAL ELECTRIC FIELD ON CRYSTALLIZATION AND MORPHOLOGY OF POLYMER MEMBRANE)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2033-6-1以後開放)
摘要(中) 這項研究,我們積極探索研究電場對聚合物行為的影響,以提高膜的性能。藉由利用聚合物高分子和電場之間的相互作用,可以改變膜的形
態以提高其性能。該研究首先研究施加電場對聚偏氟乙烯( PVDF )結晶動力學的影響。在獲得基礎資訊後,下一步是研究如何將電場應用於傳統的聚合物膜製備方法。該研究重點聚焦在兩種類型的聚合物,叫做同質聚偏氟乙烯和更複雜的全氟共聚物全氟磺酸。

研究結果表明,電場通過加速晶體生長和減小晶粒大小,對 PVDF結晶起著重要作用。電場還有利於形成極性 γ 形晶體,這些晶體可以在低
於 160°C的溫度下結晶。Avrami 方程用於研究動力學行為並確定結晶活化能。從 Avrami 和熱力學參數來看,電場似乎通過降低活化能來加速結晶過程。

利用簡單和不耗能的技術(如 NIPS )可以通過電場改變聚合物形態。在 NIPS 方法中,池化過程是作為一種預處理方法,接著將澆鑄溶液
浸入水中以固化具有特定形態的膜。電場不僅影響膜內孔隙的大小和分佈,還改變了結晶結構和方向。形態的變化影響膜保持離子液體的能力以及它們在膜上的傳輸。

該研究還檢視了施加電場對隨機共聚物(如全氟磺酸)的聚合物形態、液相和質子傳輸性質的影響。電場對形態和性質的影響尤其在兩個系
列的全氟磺酸膜中較為明顯,其中一個是直接從製造溶液中製備的,另一個是在 NMP 溶液中重新溶解的。電場增加了結晶度並擴大了離子團簇,從而產生更快的離子傳輸性質。
摘要(英) The investigation aimed to elucidate the profound influence of electric fields on polymer behavior, with the objective of enhancing membrane properties. By harnessing the strong interaction between polymer molecules and
electric fields, strategic modifications can be made to the morphology of membranes, leading to substantial enhancements in their properties. The study was initiated by scrutinizing the impact of electric perturbation on the
crystallization kinetics of polyvinylidene fluoride (PVDF). Armed with this foundational understanding, subsequent phases of the research delve into techniques for incorporating electric fields into traditional polymer membrane
preparation methods. Specifically, the investigation was focused on two distinct types of polymers: the simple homopolymer PVDF and the polymer functionalized with ionic groups, exemplified by Nafion.

The outcomes of the research underscored the considerable role played by electric fields in PVDF crystallization. This role was manifested through accelerated crystal growth and the reduction in spherulite size. Additionally, the electric field facilitated the creation of the polar γ-form crystals, which could be crystallized at temperatures below 160°C. The pplication of the Avrami equation to examine kinetic behavior and ascertain crystallization energy activation highlighted that the electric field expedited the crystallization process by reducing the energy activation threshold.

The modification of polymer morphology through the implementation of electric fields can be effectively achieved through simple and low-energy techniques, such as nonsolvent-induced phase separation (NIPS). In the NIPS method, the application of electric fields served as a pre-treatment step, followed by immersion of casting solutions in water to solidify membranes with tailored morphologies. It is noteworthy that the electric field exerted an influence not only on the size and distribution of voids within the membranes but also on crystalline structures. These changes in morphology hold significant implications for the membrane′s ability to retain ionic liquids and facilitate their transport across the membranes.

Furthermore, the study delved into the ramifications of an applied electric field on the morphologies, states of water, and proton transport properties of random copolymers, typified by Nafion. The effects of the electric field on morphologies and properties are particularly pronounced in two series of Nafion membranes: those directly prepared from manufacturing solutions and those redissolved in N-methyl-2-pyrrolidone (NMP) solutions. The electric field amplified crystallinity and enlarges ionic clusters, ultimately culminating in heightened ion transport properties.
關鍵字(中) ★ 电场 (electric field),
★ 聚合物膜
★ 结晶
★ 形态
關鍵字(英) ★ electric field
★ polymer membrane
★ crystallization
★ morphology
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgments v
Table of Contents vii
List of Figures x
List of schemes xiii
List of Tables xiv
Chapter 1 Introduction 1
1-1 Background 1
1-2 Purpose 4
Chapter 2 Literature Review 6
2-1 Polymer crystallization 6
2-1-1 Structure of polymer crystallites 6
2-1-2 Thermodynamic of polymer crystallization 9
2-1-3 Nucleation and crystal growth: Laurietzen-Hoffman theory 11
2-1-4 Overall isothermal crystallization kinetics 16
2-2 Thermoporometry 18
2-3 Polyvinilydene floride (PVDF) 21
2-3-1 Structure and properties 21
2-3-2 Membran preparations and applications 25
2-3-3 PVDF isothermal melt crystallization kinetics 29
2-4 Nafion as polyelectrolyte membranes for electrochemical devices 32
2-4-1 Polyelectrolyte membrane roles for electrochemical devices 32
2-4-2 Nafion structures and properties 36
2-4-3 Water states in Nafion 39
2-4-4 Proton transport mechanism in Nafion 40
2-4-5 Factors affecting Nafion structures and performances 41
Chapter 3 Materials and Methods 47
3-1 Materials 47
3-2 Instrumentation 48
3-3 Methods 48
3-3-1 PVDF crystallization kinetics under electric field 48
3-3-2 Electric field-assisted NIPS method for PVDF preparations 50
3-3-3 The Nafion studies 53
Chapter 4 Polyvinylidene Fluoride (PVDF) Crystallization Kinetics under Electric Field 58
4-1 Introduction 58
4-2 PVDF crystal morphology 61
4-3 Kinetic of Crystallization 65

Chapter 5 The Effect of Electric Field-Assisted NIPS method on PVDF Membrane Morphologies and Properties 78
5-1 Introduction 78
5-2 NIPS-based PVDF membranes morphology 81
5-3 Liquid uptake and ionic conductivity 91
Chapter 6 The Effect of External Electric Field on Nafion Morphologies and Water States 97
6-1 Introduction 97
6-2 Nafion Transport Properties 98
6-3 Water States and Ion Cluster Size in Nafion 101
6-2 XRD Patterns and Crystallinity of Nafion Membranes 108
6-4 Structure and Transport Properties Relationship 111
Chapter 7 Conclusion 113
Chapter 8 References 115
參考文獻 [1]. H.H.K.-B.V. Schmeling, "Eighty years of macromolecular science: From birth to nano-, bio- and self-assembling polymers-with slight emphasis on European contributions", Colloid and Polymer Science, 289 (13), 2011, 1407–1427.
[2]. R. Geyer, J.R. Jambeck, and K.L. Law, "Production, use, and fate of all plastics ever made", Science Advances, 3 (7), 2017, e1700782.
[3]. K. Yue, G. Liu, X. Feng, L. Li, B. Lotz, and S.Z.D. Cheng, "A few rediscovered and challenging topics in polymer crystals and crystallization", Polymer Crystallization, 1 (4), 2018, e10053–e10070.
[4]. C.Y. Li, "The rise of semicrystalline polymers and why are they still interesting", Polymer, 211 2020, 123150.
[5]. C. De Rosa and F. Auriemma, "Crystal Structures of Polymers", in Handbook of Polymer Crystallization, 2013, 31–70.
[6]. P.M. Arif, N. Kalarikkal, and S. Thomas, "Introduction on crystallization in multiphase polymer systems", in S. Thomas, M. Arif P, E.B. Gowd, and N. Kalarikkal (Eds.), Crystallization in Multiphase Polymer Systems, Elsevier, 2018, 1–16.
[7]. U.K. Murmu, J. Adhikari, A. Naskar, D. Dey, A. Roy, A. Ghosh, and M. Ghosh, "Mechanical Properties of Crystalline and Semicrystalline Polymer Systems", in M.S.J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers, Elsevier, Oxford, 2022, 917–927.
[8]. S. Tan, A. Su, W. Li, and E. Zhou, "New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate)", Journal of Polymer Science Part B: Polymer Physics, 38 (1), 2000, 53–60.
[9]. D. Li, L. Zhou, X. Wang, L. He, and X. Yang, "Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property", Materials, 12 (11), 2019, 1746.
[10]. C. Echeverría, I. Limón, A. Muñoz-Bonilla, M. Fernández-García, and D. López, "Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers", Polymers, 13 (17), 2021, 2860.
[11]. D. Mileva, D. Tranchida, and M. Gahleitner, "Designing polymer crystallinity: An industrial perspective", Polymer Crystallization, 1 (2), 2018, e10009–e10025.
[12]. C. Liedel, C.W. Pester, M. Ruppel, V.S. Urban, and A. Böker, "Beyond orientation: The impact of electric fields on block copolymers", Macromolecular Chemistry and Physics, 213 (3), 2012, 259–269.
[13]. H. Hu, M. Gopinadhan, and C.O. Osuji, "Directed self-Assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter", Soft Matter, 10 (22), 2014, 3867–3889.
[14]. J.M.J. LaFreniere, E.J. Roberge, and J.M. Halpern, "Review—Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors", Journal of The Electrochemical Society, 167 (3), 2020, 037556–037564.
[15]. J. Bae, "Control of Microdomain Orientation in Block Copolymer Thin Films by Electric Field for Proton Exchange Membrane", Advances in Chemical Engineering and Science, 04 (02), 2014, 95–102.
[16]. A. Kadimi, K. Benhamou, Z. Ounaies, A. Magnin, A. Dufresne, H. Kaddami, and M. Raihane, "Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: Impact on electrical properties", ACS Applied Materials and Interfaces, 6 (12), 2014, 9418–9425.
[17]. A. Böker, H. Elbs, H. Hänsel, A. Knoll, S. Ludwigs, H. Zettl, A.V. Zvelindovsky, G.J.A. Sevink, V. Urban, V. Abetz, A.H.E. Müller, and G. Krausch, "Electric Field Induced Alignment of Concentrated Block Copolymer Solutions", Macromolecules, 36 (21), 2003, 8078–8087.
[18]. C. Cho, J.W. Jeon, J. Lutkenhaus, and N.S. Zacharia, "Electric field induced morphological transitions in polyelectrolyte multilayers", ACS Applied Materials and Interfaces, 5 (11), 2013, 4930–4936.
[19]. P.P.-J. Chu, Y. Huang, Y. Fang, Y.-C. Tseng, and P. Chen, "High Conductivity and Low Permeability Alkaline Fuel Cell Membrane with Ordered Interpenetrating Network Morphology By Electric Field Poling", in ECS Meeting Abstracts, The Electrochemical Society, 2018, 1575–1575.
[20]. J.Y. Lee, J.H. Lee, S. Ryu, S.H. Yun, and S.H. Moon, "Electrically aligned ion channels in cation exchange membranes and their polarized conductivity", Journal of Membrane Science, 478 2015, 19–24.
[21]. S. Ryu, J.H. Kim, J.Y. Lee, and S.H. Moon, "Investigation of the effects of electric fields on the nanostructure of Nafion and its proton conductivity", Journal of Materials Chemistry A, 6 (42), 2018, 20836–20843.
[22]. R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, "Crystal Structures of Three Crystalline Forms of Poly(vinylidene fluoride)", Polymer Journal, 3 (5), 1972, 600–610.
[23]. M. Bachmann, W.L. Gordon, S. Weinhold, and J.B. Lando, "The crystal structure of phase IV of poly(vinylidene fluoride)", Journal of Applied Physics, 51 (10), 1980, 5095–5099.
[24]. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, "Properties and applications of the β phase poly(vinylidene fluoride)", Polymers, 10 (3), 2018, 228–255.
[25]. L. Wu, Z. Zhang, J. Ran, D. Zhou, C. Li, and T. Xu, "Advances in proton-exchange membranes for fuel cells: An overview on proton conductive channels (PCCs)", Physical Chemistry Chemical Physics, 15 (14), 2013, 4870–4887.
[26]. J. Rieger, "Polymer Crystallization Viewed in the General Context of Particle Formation and Crystallization", in G. Reiter, and J.-U. Sommer (Eds.), Polymer Crystallization: Observations, Concepts and Interpretations, Springer, Berlin, Heidelberg, 2003, 7–16.
[27]. L.H. Sperling, "The Crystalline State", in Introduction to Physical Polymer Science, John Wiley & Sons, Ltd, 2005, 239–323.
[28]. M.C. Zhang, B.H. Guo, and J. Xu, "A review on polymer crystallization theories", Crystals, 7 (1), 2017, 13–50.
[29]. A. Keller and M.J. Machin, "Oriented crystallization in polymers", Journal of Macromolecular Science, Part B: Physics, 2006,.
[30]. H. Levine and L. Slade, "Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products", in H. Faridi, and J.M. Faubion (Eds.), Dough Rheology and Baked Product Texture, Springer US, Boston, MA, 1990, 157–330.
[31]. S. Fakirov, "Crystalline Polymers", in Fundamentals of Polymer Science for Engineers, John Wiley & Sons, Ltd, 2017, 103–140.
[32]. A. Toda, "Spherulitic Growth in Crystalline Polymers", in S. Palsule (Ed.), Encyclopedia of Polymers and Composites, Springer, Berlin, Heidelberg, 2021, 1–12.
[33]. A.J. Lovinger, "Twisted Crystals and the Origin of Banding in Spherulites of Semicrystalline Polymers", Macromolecules, 53 (3), 2020, 741–745.
[34]. H. Kajioka, S. Yoshimoto, R.C. Gosh, K. Taguchi, S. Tanaka, and A. Toda, "Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly(butene-1)", Polymer, 51 (8), 2010, 1837–1844.
[35]. A.J. Muller, R.M. Michell, and A.T. Lorenzo, "Isothermal Crystallization Kinetics", in Polymer Morphology: Principles, Characterization, and Processing, Wiley, New jersey, 2016, 181–203.
[36]. S.Z.D. Cheng and B. Lotz, "Enthalpic and entropic origins of nucleation barriers during polymer crystallization: the Hoffman–Lauritzen theory and beyond", Polymer, 46 (20), 2005, 8662–8681.
[37]. U.W. Gedde, "Polymer Physics", Springer Netherlands, Dordrecht, 1999.
[38]. E. Piorkowska and A. Galeski, "Overall Crystallization Kinetics", in G.C.R. Ewa Piorkowska (Ed.), Handbook of Polymer Crystallization, John Wiley & Sons, Hoboken, New Jersey, 2013, 215–235.
[39]. M.R. Landry, "Thermoporometry by differential scanning calorimetry: experimental considerations and applications", Thermochimica Acta, 433 (1), 2005, 27–50.
[40]. S.P. Rigby, "Thermoporometry and Scattering", in S.P. Rigby (Ed.), Structural Characterisation of Natural and Industrial Porous Materials: A Manual, Springer International Publishing, Cham, 2020, 69–88.
[41]. M. Iza, S. Woerly, C. Danumah, S. Kaliaguine, and M. Bousmina, "Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements: thermoporometry", Polymer, 41 (15), 2000, 5885–5893.
[42]. T.M. Eggenhuisen, G. Prieto, H. Talsma, K.P. de Jong, and P.E. de Jongh, "Entrance Size Analysis of Silica Materials with Cagelike Pore Structure by Thermoporometry", The Journal of Physical Chemistry C, 116 (44), 2012, 23383–23393.
[43]. M. Branchi, M. Gigli, B. Mecheri, D. De Porcellinis, S. Licoccia, and A. D’Epifanio, "Poly(phenylene sulfide sulfone) based membranes with improved stability for vanadium redox flow batteries", Journal of Materials Chemistry A, 5 (35), 2017, 18845–18853.
[44]. G. Zelenková, T. Zelenka, and V. Slovák, "Thermoporometry of porous carbon: The effect of the carbon surface chemistry on the thickness of non-freezable pore water layer (delta layer)", Microporous and Mesoporous Materials, 326 2021, 111358.
[45]. K. Ishikiriyama, M. Todoki, and K. Motomura, "Pore size distribution (PSD) measurements of silica gels by means of differential scanning calorimetry: I Optimization for determination of psd", Journal of Colloid And Interface Science, 171 (1), 1995, 92–102.
[46]. E. Fukada, "History and recent progress in piezoelectric polymers", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47 (6), 2000, 1277–1290.
[47]. R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, and T. Trčka, "Brief Review of PVDF Properties and Applications Potential", Polymers, 14 (22), 2022, 4793.
[48]. H.-H. Gong, Y. Zhang, Y.-P. Cheng, M.-X. Lei, and Z.-C. Zhang, "The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer", Chinese Journal of Polymer Science, 39 (9), 2021, 1110–1126.
[49]. J. Inderherbergh, "Polyvinylidene Fluoride (PVDF) Appearance, General Properties and Processing", Ferroelectrics, 115 (4), 1991, 295–302.
[50]. M. Sushant and P. Yerukola, "PVDF Resin Market Size, Share - Industry Forecasts 2031", 2022.
[51]. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, and D.M. de Leeuw, "Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films", Nature Materials, 12 (5), 2013, 433–438.
[52]. K. Tashiro and H. Yamamoto, "Structural evolution mechanism of crystalline polymers in the isothermal melt-crystallization process: A proposition based on simultaneous WAXD/SAXS/FTIR measurements", Polymers, 11 (8), 2019, 1316–1341.
[53]. Y.R. Zheng, J. Zhang, X.L. Sun, H.H. Li, Z.J. Ren, and S.K. Yan, "Enhanced Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing", Chinese Journal of Polymer Science (English Edition), 36 (5), 2018, 598–603.
[54]. E. Lizundia, A. Reizabal, C.M. Costa, A. Maceiras, and S. Lanceros-Méndez, "Electroactive γ-phase, enhanced thermal and mechanical properties and high ionic conductivity response of poly (vinylidene fluoride)/cellulose nanocrystal hybrid nanocomposites", Materials, 13 (3), 2020, 743.
[55]. Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, "Crystalline polymorphism in poly(vinylidenefluoride) membranes", Progress in Polymer Science, 51 2015, 94–126.
[56]. X. Cai, T. Lei, D. Sun, and L. Lin, "A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR", RSC Advances, 7 (25), 2017, 15382–15389.
[57]. C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Gonçalves, V.F. Cardoso, and S. Lanceros-Méndez, "Electroactive poly(vinylidene fluoride)-based structures for advanced applications", Nature Protocols, 13 (4), 2018, 681–704.
[58]. A. Bottino, G. Capannelli, S. Munari, and A. Turturro, "Solubility parameters of poly(vinylidene fluoride)", Journal of Polymer Science Part B: Polymer Physics, 26 (4), 1988, 785–794.
[59]. J.E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C.E.J. Dancer, C.R. McElroy, E. Kendrick, and V. Goodship, "On the solubility and stability of polyvinylidene fluoride", Polymers, 13 (9), 2021, 1354.
[60]. T. Nishiyama, T. Sumihara, E. Sato, and H. Horibe, "Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process", Polymer Journal, 49 (3), 2017, 319–325.
[61]. H. Horibe, Y. Sasaki, H. Oshiro, Y. Hosokawa, A. Kono, S. Takahashi, and T. Nishiyama, "Quantification of the solvent evaporation rate during the production of three PVDF crystalline structure types by solvent casting", Polymer Journal, 46 (2), 2014, 104–110.
[62]. A. Salimi and A.A. Yousefi, "Conformational changes and phase transformation mechanisms in PVDF solution-cast films", Journal of Polymer Science Part B: Polymer Physics, 42 (18), 2004, 3487–3495.
[63]. Y. Tang, Y. Lin, W. Ma, and X. Wang, "A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application", Journal of Membrane Science, 639 2021, 119759.
[64]. A.K. Holda and I.F.J. Vankelecom, "Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes", Journal of Applied Polymer Science, 132 (27), 2015,.
[65]. W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, and X. Li, "Porous membranes in secondary battery technologies", Chemical Society Reviews, 46 (8), 2017, 2199–2236.
[66]. C. Kuan-Ying, L. Chia-Ling, W. Da-Ming, and J.-Y. Lai, "Formation of Porous Structures and Crystalline Phases in Poly(vinylidene fluoride) Membranes Prepared with Nonsolvent-Induced Phase Separation—Roles of Solvent Polarity", Polymers, 15 (5), 2023, 1314.
[67]. D. Zuo, B. Zhu, J. Cao, and Y. Xu, "Influence Of Alcohol-Based Nonsolvents On The Formation And Morphology Of Pvdf Membranes In Phase Inversion Process", Chinese Journal of Polymer Science, 2011,.
[68]. L.-P. Cheng, "Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/PVDF and Water/DMF/PVDF Systems", Macromolecules, 32 (20), 1999, 6668–6674.
[69]. N. Soin, D. Boyer, K. Prashanthi, S. Sharma, A.A. Narasimulu, J. Luo, T.H. Shah, E. Siores, and T. Thundat, "Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion", Chemical Communications, 51 (39), 2015, 8257–8260.
[70]. I. Ali, O.A. Bamaga, L. Gzara, M. Bassyouni, M.H. Abdel-Aziz, M.F. Soliman, E. Drioli, and M. Albeirutty, "Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition", Membranes, 8 (1), 2018, 13.
[71]. C.L. Liang, Z.H. Mai, Q. Xie, R.Y. Bao, W. Yang, B.H. Xie, and M.B. Yang, "Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induecd by tetrabutylammonium bisulfate", Journal of Polymer Research, 21 (12), 2014, 616–624.
[72]. S. Biswas, B. Dutta, and S. Bhattacharya, "Correlation between nucleation, phase transition and dynamic melt-crystallization kinetics in PAni/PVDF blends", RSC Advances, 5 (91), 2015, 74486–74498.
[73]. A. Mashak and A. Ghaee, "Isothermal Melt Crystallization Kinetic Behavior of Poly (vinylidene fluoride)", Journal of Chemical and Petroleum Engineering, 49 (1), 2015, 21–29.
[74]. M.P. Silva, V. Sencadas, G. Botelho, A.V. Machado, A.G. Rolo, J.G. Rocha, and S. Lanceros-Mendez, "α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour", Materials Chemistry and Physics, 122 (1), 2010, 87–92.
[75]. S. Roussel and K.L. McElroy, "Molecular weight dependent of the crystallization kinetics of poly(vinylidene fluoride)", Polymer Engineering and Science, 32 (17), 1992, 1300–1308.
[76]. L. Li, C.Y. Li, and C. Ni, "Polymer Crystallization-Driven, Periodic Patterning on Carbon Nanotubes", Journal of the American Chemical Society, 128 (5), 2006, 1692–1699.
[77]. M. Choolaei, V. Goodarzi, H.A. Khonakdar, S.H. Jafari, J. Seyfi, M.R. Saeb, L. Häußler, and R. Boldt, "Influence of Graphene Oxide on Crystallization Behavior and Chain Folding Surface Free Energy of Poly(vinylidenefluoride-co-hexafluoropropylene)", Macromolecular Chemistry and Physics, 218 (19), 2017, 1700103.
[78]. S.P.S. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt, and A.F. Hollenkamp, "Emerging electrochemical energy conversion and storage technologies", Frontiers in Chemistry, 2 2014,.
[79]. S.G. Chalk and J.F. Miller, "Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems", Journal of Power Sources, 159 (1), 2006, 73–80.
[80]. M.F.A. Kamaroddin, N. Sabli, T.A. Tuan Abdullah, S.I. Siajam, L.C. Abdullah, A. Abdul Jalil, and A. Ahmad, "Membrane-Based Electrolysis for Hydrogen Production: A Review", Membranes, 11 (11), 2021, 810.
[81]. K.-D. Kreuer, "Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices", Chemistry of Materials, 26 (1), 2014, 361–380.
[82]. C.G. Arges and L. Zhang, "Anion Exchange Membranes’ Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency", ACS Applied Energy Materials, 1 (7), 2018, 2991–3012.
[83]. J. Santana, M. Espinoza-Andaluz, T. Li, and M. Andersson, "A Detailed Analysis of Internal Resistance of a PEFC Comparing High and Low Humidification of the Reactant Gases", Frontiers in Energy Research, 8 2020,.
[84]. M. Schoemaker, U. Misz, P. Beckhaus, and A. Heinzel, "Evaluation of Hydrogen Crossover through Fuel Cell Membranes", Fuel Cells, 14 (3), 2014, 412–415.
[85]. I. Chakraborty, S. Das, B.K. Dubey, and M.M. Ghangrekar, "Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells", Materials Chemistry and Physics, 239 2020, 122025.
[86]. A. Kusoglu and A.Z. Weber, "New Insights into Perfluorinated Sulfonic-Acid Ionomers", Chemical Reviews, 117 (3), 2017, 987–1104.
[87]. FernandezS.P. Bordín, H.E. Andrada, A.C. Carreras, G.E. Castellano, R.G. Oliveira, and V.M. Galván Josa, "Nafion membrane channel structure studied by small-angle X-ray scattering and Monte Carlo simulations", Polymer, 155 2018, 58–63.
[88]. G. Gebel, "Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution", Polymer, 41 (15), 2000, 5829–5838.
[89]. F.I. Allen, L.R. Comolli, A. Kusoglu, M.A. Modestino, A.M. Minor, and A.Z. Weber, "Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography", ACS Macro Letters, 4 (1), 2015, 1–5.
[90]. M. Laporta, M. Pegoraro, and L. Zanderighi, "Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity", Physical Chemistry Chemical Physics, 1 (19), 1999, 4619–4628.
[91]. H. Nishiyama, S. Takamuku, A. Iiyama, and J. Inukai, "Dynamic Distribution of Chemical States of Water inside a Nafion Membrane in a Running Fuel Cell Monitored by Operando Time-Resolved CARS Spectroscopy", Journal of Physical Chemistry C, 124 (36), 2020, 19508–19513.
[92]. M. Paidar, J. Mališ, K. Bouzek, and J. Žitka, "Behavior of Nafion membrane at elevated temperature and pressure", Desalination and Water Treatment, 14 (1–3), 2010, 106–111.
[93]. M.-C. Ferrari, J. Catalano, M. Giacinti Baschetti, M.G. De Angelis, and G.C. Sarti, "FTIR-ATR Study of Water Distribution in a Short-Side-Chain PFSI Membrane", Macromolecules, 45 (4), 2012, 1901–1912.
[94]. K.D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chemical Reviews, 104 (10), 2004, 4637–4678.
[95]. Z. Lu, G. Polizos, D.D. Macdonald, and E. Manias, "State of Water in Perfluorosulfonic Ionomer (Nafion 117) Proton Exchange Membranes", Journal of The Electrochemical Society, 155 (2), 2007, B163.
[96]. H. Yoshida and Y. Miura, "Behavior of water in perfluorinated ionomer membranes containing various monovalent cations", Journal of Membrane Science, 68 (1), 1992, 1–10.
[97]. S.F. Parker and S. Shah, "Characterisation of hydration water in Nafion membrane", RSC Advances, 11 (16), 2021, 9381–9385.
[98]. Z. Zuo, Y. Fu, and A. Manthiram, "Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells", Polymers, 4 (4), 2012, 1627–1644.
[99]. L.-Y. Zhu, Y.-C. Li, J. Liu, J. He, L.-Y. Wang, and J.-D. Lei, "Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications", Petroleum Science, 19 (3), 2022, 1371–1381.
[100]. M.B. Karimi, F. Mohammadi, and K. Hooshyari, "Recent approaches to improve Nafion performance for fuel cell applications: A review", International Journal of Hydrogen Energy, 44 (54), 2019, 28919–28938.
[101]. K. Hongsirikarn, J.G. Goodwin, S. Greenway, and S. Creager, "Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane", Journal of Power Sources, 195 (21), 2010, 7213–7220.
[102]. V. Romero, M.V. Martínez de Yuso, A. Arango, E. Rodríguez-Castellón, and J. Benavente, "Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study", International Journal of Electrochemistry, 2012 2012, e349435.
[103]. O. Danyliv and A. Martinelli, "Nafion/Protic Ionic Liquid Blends: Nanoscale Organization and Transport Properties", The Journal of Physical Chemistry C, 123 (23), 2019, 14813–14824.
[104]. R.F. Silva, M. De Francesco, and A. Pozio, "Solution-cast Nafion® ionomer membranes: preparation and characterization", Electrochimica Acta, 49 (19), 2004, 3211–3219.
[105]. W.W. Ng, H.S. Thiam, Y.L. Pang, K.C. Chong, and S.O. Lai, "A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells", Membranes, 12 (5), 2022, 506.
[106]. J. Zheng, Q. He, C. Liu, T. Yuan, S. Zhang, and H. Yang, "Nafion-microporous organic polymer networks composite membranes", Journal of Membrane Science, 476 2015, 571–579.
[107]. H. Chen, J.D. Snyder, and Y.A. Elabd, "Electrospinning and Solution Properties of Nafion and Poly(acrylic acid)", Macromolecules, 41 (1), 2008, 128–135.
[108]. C. Dong, X. Zhang, Y. Yu, L. Huang, J. Li, Y. Wu, and Z. Liu, "An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors", Chemical Communications, 56 (80), 2020, 11993–11996.
[109]. J.E. Hensley, J.D. Way, S.F. Dec, and K.D. Abney, "The effects of thermal annealing on commercial Nafion® membranes", Journal of Membrane Science, 298 (1), 2007, 190–201.
[110]. B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, and X. Qiu, "Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance", ACS Applied Materials & Interfaces, 8 (19), 2016, 12228–12238.
[111]. A. Tabatabaei, M.R. Barzegari, L.H. Mark, and C.B. Park, "Visualization of polypropylene’s strain-induced crystallization under the influence of supercritical CO2 in extrusion", Polymer, 122 2017, 312–322.
[112]. L. Li, L. Su, and Y. Zhang, "Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells", International Journal of Hydrogen Energy, 37 (5), 2012, 4439–4447.
[113]. S.H. Almeida and Y. Kawano, "Effects of X-ray radiation on Nafion membrane", Polymer Degradation and Stability, 62 (2), 1998, 291–297.
[114]. S. Zhong, C. Liu, and H. Na, "Preparation and properties of UV irradiation-induced crosslinked sulfonated poly(ether ether ketone) proton exchange membranes", Journal of Membrane Science, 326 (2), 2009, 400–407.
[115]. A.S. Rao, K.R. Rashmi, D.V. Manjunatha, A. Jayarama, S. Prabhu, and R. Pinto, "Pore size tuning of Nafion membranes by UV irradiation for enhanced proton conductivity for fuel cell applications", International Journal of Hydrogen Energy, 44 (42), 2019, 23762–23774.
[116]. P.P.-J. Chu, Y.-S. Fang, and Y.-C. Tseng, "Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology", AIP Conference Proceedings, 1736 2016, 020071.
[117]. C. Yang, S. Srinivasan, A.B. Bocarsly, S. Tulyani, and J.B. Benziger, "A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes", Journal of Membrane Science, 237 (1), 2004, 145–161.
[118]. J. Yu, M. Pan, and R. Yuan, "Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell", Journal of Wuhan University of Technology-Mater. Sci. Ed., 22 (3), 2007, 478–481.
[119]. C. Yin, J. Li, Y. Zhou, H. Zhang, P. Fang, and C. He, "Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes", ACS Applied Materials & Interfaces, 10 (16), 2018, 14026–14035.
[120]. A.K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, and H. Kim, "Sulfonated Graphene–Nafion Composite Membranes for Polymer Electrolyte Fuel Cells Operating under Reduced Relative Humidity", The Journal of Physical Chemistry C, 120 (29), 2016, 15855–15866.
[121]. H. Wang, Y. Zhao, Z. Shao, W. Xu, Q. Wu, X. Ding, and H. Hou, "Proton Conduction of Nafion Hybrid Membranes Promoted by NH3-Modified Zn-MOF with Host–Guest Collaborative Hydrogen Bonds for H2/O2 Fuel Cell Applications", ACS Applied Materials & Interfaces, 13 (6), 2021, 7485–7497.
[122]. K. Dutta, S. Das, and P.P. Kundu, "Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells", Journal of Membrane Science, 473 2015, 94–101.
[123]. L.G. da Trindade, L. Zanchet, K.M.N. Borba, J.C. Souza, E.R. Leite, and E.M.A. Martini, "Effect of the doping time of the 1-butyl-3-methylimidazolium ionic liquid cation on the Nafion membrane proprieties", International Journal of Energy Research, 42 (11), 2018, 3535–3543.
[124]. Y. Li, Y. Shi, N. Mehio, M. Tan, Z. Wang, X. Hu, G.Z. Chen, S. Dai, and X. Jin, "More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid", Applied Energy, 175 2016, 451–458.
[125]. C. Marega and A. Marigo, "Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride)", European Polymer Journal, 39 (8), 2003, 1713–1720.
[126]. J. Dai, X. Teng, Y. Song, and J. Ren, "Effect of casting solvent and annealing temperature on recast Nafion membranes for vanadium redox flow battery", Journal of Membrane Science, 522 2017, 56–67.
[127]. R.S. Payal and J.U. Sommer, "Crystallization of polymers under the influence of an external force field", Polymers, 13 (13), 2021, 2078–2093.
[128]. H.U. Jeon, H.M. Jin, J.Y. Kim, S.K. Cha, J.H. Mun, K.E. Lee, J.J. Oh, T. Yun, J.S. Kim, and S.O. Kim, "Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns", Molecular Systems Design and Engineering, 2 (5), 2017, 560–566.
[129]. S. Xu, D. Liu, Q. Zhang, and Q. Fu, "Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix", Composites Science and Technology, 156 2018, 117–126.
[130]. L.L. Xu, Y. Xu, L. Liu, K.P. Wang, D.A. Patterson, and J. Wang, "Electrically responsive ultrafiltration polyaniline membrane to solve fouling under applied potential", Journal of Membrane Science, 572 2019, 442–452.
[131]. C.H. Hung, Y.L. Lin, and T.H. Young, "The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells", Biomaterials, 27 (25), 2006, 4461–4469.
[132]. G.D. Kang and Y.M. Cao, "Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review", Journal of Membrane Science, 463 2014, 145–165.
[133]. X. Chen, X. Han, and Q.D. Shen, "PVDF-Based Ferroelectric Polymers in Modern Flexible Electronics", Advanced Electronic Materials, 3 (5), 2017, 1600460–1600478.
[134]. W. Xia and Z. Zhang, "PVDF-based dielectric polymers and their applications in electronic materials", IET Nanodielectrics, 1 (1), 2018, 17–31.
[135]. A.J. Lovinger, "Crystallization and Morphology of Melt-Solidified Poly(Vinylidene Fluoride)", Journal of Polymer Science. Part A-2, Polymer Physics, 18 (4), 1980, 793–809.
[136]. Y. Koseki, K. Aimi, and S. Ando, "Crystalline structure and molecular mobility of PVDF chains in PVDF/PMMA blend films analyzed by solid-state 19F MAS NMR spectroscopy", Polymer Journal, 44 (8), 2012, 757–763.
[137]. A.J. Lovinger, "Crystalline transformations in spherulites of poly(vinylidene fluoride)", Polymer, 21 (11), 1980, 1317–1322.
[138]. A. Hartono, Darwin, Ramli, S. Satira, M. Djamal, and Herman, "Electric field poling 2G V/m to improve piezoelectricity of PVDF thin film", AIP Conference Proceedings, 1719 (1), 2016, 300211–300214.
[139]. R. Gregorio and E.M. Ueno, "Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF)", Journal of Materials Science, 34 (18), 1999, 4489–4500.
[140]. M. Tao, F. Liu, B. rong Ma, and L. xin Xue, "Effect of solvent power on PVDF membrane polymorphism during phase inversion", Desalination, 316 2013, 137–145.
[141]. J. Zhou and H. Wang, "The physical meanings of 5 basic parameters for an X-ray diffraction peak and their application", Chinese Journal of Geochemistry, 22 (1), 2003, 38–44.
[142]. H.J. Wang, H.P. Feng, X.C. Wang, Q.C. Du, and C. Yan, "Crystallization kinetics and morphology of poly(vinylidene fluoride)/poly(ethylene adipate) blends", Chinese Journal of Polymer Science (English Edition), 33 (2), 2015, 349–361.
[143]. Y. Guan, S. Wang, A. Zheng, and H. Xiao, "Crystallization behaviors of polypropylene and functional polypropylene", Journal of Applied Polymer Science, 88 (4), 2003, 872–877.
[144]. J. Cai, M. Liu, L. Wang, K. Yao, S. Li, and H. Xiong, "Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites", Carbohydrate Polymers, 86 (2), 2011, 941–947.
[145]. V. Hinrichs, G. Kalinka, and G. Hinrichsen, "An avrami-based model for the description of the secondary crystallization of polymers", Journal of Macromolecular Science, Part B: Physics, 35 (3–4), 1996, 295–302.
[146]. J.D. Hoffman and R.L. Miller, "Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment", Polymer, 38 (13), 1997, 3151–3212.
[147]. H. Marand, J. Xu, and S. Srinivas, "Determination of the Equilibrium Melting Temperature of Polymer Crystals:  Linear and Nonlinear Hoffman−Weeks Extrapolations", Macromolecules, 31 (23), 1998, 8219–8229.
[148]. A. Toda, K. Taguchi, G. Kono, and K. Nozaki, "Crystallization and melting behaviors of poly(vinylidene fluoride) examined by fast-scan calorimetry: Hoffman-Weeks, Gibbs-Thomson and thermal Gibbs-Thomson plots", Polymer, 169 2019, 11–20.
[149]. V.M. Yurov, S.A. Guchenko, and M.S. Gyngazova, "Effect of an electric field on nucleation and growth of crystals", IOP Conference Series: Materials Science and Engineering, 110 (1), 2016, 0120191–0120196.
[150]. P. Panine, E. Di Cola, M. Sztucki, and T. Narayanan, "Early stages of polymer melt crystallization", Polymer, 49 (3), 2008, 676–680.
[151]. P.I. Kos, V.A. Ivanov, and A.V. Chertovich, "Crystallization of semiflexible polymers in melts and solutions", Soft Matter, 17 (9), 2021, 2392–2403.
[152]. J. Zhang and H. Huang, "Rheological behavior of polymer melt in the electric field", Journal of Physics: Conference Series, 96 (1), 2008, 0120181–0120186.
[153]. F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li, "Progress in the production and modification of PVDF membranes", Journal of Membrane Science, 375 (1–2), 2011, 1–27.
[154]. X.M. Tan and D. Rodrigue, "A review on porous polymeric membrane preparation Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene", Polymers, 11 (8), 2019, 1160.
[155]. L.F. Alexander and N. Radacsi, "Application of electric fields for controlling crystallization", CrystEngComm, 21 (34), 2019, 5014–5031.
[156]. M.T. Darestani, T.C. Chilcott, and H.G.L. Coster, "Separation performance of PVDF membranes poled in intense electric fields", Separation and Purification Technology, 118 2013, 604–611.
[157]. K. Romanyuk, C.M. Costa, S.Y. Luchkin, A.L. Kholkin, and S. Lanceros-Méndez, "Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy", Langmuir, 32 (21), 2016, 5267–5276.
[158]. H. Guo, X. Li, Z. Wang, B. Li, J. Wang, and S. Wang, "Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field", Chinese Journal of Chemical Engineering, 26 (5), 2018, 1213–1218.
[159]. N. Soin, T.H. Shah, S.C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R.L. Hadimani, D.V. Bayramol, and E. Siores, "Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications", Energy and Environmental Science, 7 (5), 2014, 1670–1679.
[160]. Y. Hui, W. Liu, W. Luo, C. Yang, and X. Niu, "Effect of electric field on oriented poly(vinylidene fluoride) (PVDF) thin films prepared by vacuum evaporation", in 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, SPIE, 2007, 67232D.
[161]. C. Liu, W. Wang, Y. Li, F. Cui, C. Xie, L. Zhu, and B. Shan, "PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification", Journal of Membrane Science, 576 2019, 48–58.
[162]. Y. Matsuda, Y. Ota, and S. Tasaka, "Changes in the melting temperature and crystal structure of poly(vinylidene fluoride) by knotting", Journal of Applied Polymer Science, 128 (5), 2013, 3107–3112.
[163]. H. Horibe, Y. Hosokawa, H. Oshiro, Y. Sasaki, S. Takahashi, A. Kono, T. Nishiyama, and T. Danno, "Effect of heat-treatment temperature after polymer melt and blending ratio on the crystalline structure of PVDF in a PVDF/PMMA blend", Polymer Journal, 45 (12), 2013, 1195–1201.
[164]. R. Gregorio, "Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions", Journal of Applied Polymer Science, 100 (4), 2006, 3272–3279.
[165]. W.J. Kim, M.H. Han, Y.H. Shin, H. Kim, and E.K. Lee, "First-Principles Study of the α-β Phase Transition of Ferroelectric Poly(vinylidene difluoride): Observation of Multiple Transition Pathways", Journal of Physical Chemistry B, 120 (12), 2016, 3240–3249.
[166]. G.T. Davis, J.E. McKinney, M.G. Broadhurst, and S.C. Roth, "Electric-field-induced phase changes in poly(vinylidene fluoride)", Journal of Applied Physics, 49 (10), 1978, 4998–5002.
[167]. Y. Ye, Y. Jiang, Z. Wu, and H. Zeng, "Phase transitions of poly(vinylidene fluoride) under electric fields", Integrated Ferroelectrics, 80 (1), 2006, 245–251.
[168]. M.G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, "Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties", European Polymer Journal, 43 (4), 2007, 1557–1572.
[169]. D.-J. Lin, K. Beltsios, C.-L. Chang, and L.-P. Cheng, "Fine structure and formation mechanism of particulate phase-inversion poly(vinylidene fluoride) membranes", Journal of Polymer Science Part B: Polymer Physics, 41 (13), 2003, 1578–1588.
[170]. H.-H. Chang, L.-K. Chang, C.-D. Yang, D.-J. Lin, and L.-P. Cheng, "Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths", Polymer, 115 2017, 164–175.
[171]. R. Sahrash, A. Siddiqa, H. Razzaq, T. Iqbal, and S. Qaisar, "PVDF based ionogels: applications towards electrochemical devices and membrane separation processes", Heliyon, 4 (11), 2018, e00847–e00847.
[172]. X. Liu, Y. Shang, J. Zhang, and C. Zhang, "Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting", ACS Applied Materials and Interfaces, 13 (12), 2021, 14334–14341.
[173]. I. Vázquez-Fernández, M. Raghibi, A. Bouzina, L. Timperman, J. Bigarré, and M. Anouti, "Protic ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application", Journal of Energy Chemistry, 53 2020, 197–207.
[174]. S. Caimi, H. Wu, and M. Morbidelli, "PVdF-HFP and Ionic-Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries", ACS Applied Energy Materials, 1 (10), 2018, 5224–5232.
[175]. A.A. Shamsuri, R. Daik, and S.N.A.M. Jamil, "A succinct review on the pvdf/imidazolium-based ionic liquid blends and composites: Preparations, properties, and applications", Processes, 9 (5), 2021, 761.
[176]. C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, and Y. Li, "Ionic liquid modified poly(vinylidene fluoride): Crystalline structures, miscibility, and physical properties", Polymer Chemistry, 4 (24), 2013, 5726–5734.
[177]. H.L. Lin, T.L. Yu, and F.H. Han, "A method for improving ionic conductivity of nafion membranes and its application to PEMFC", Journal of Polymer Research, 13 (5), 2006, 379–385.
[178]. M.A.R.S. Al-Baghdadi and H.A.K.S. Al-Janabi, "Influence of the Design Parameters in a Proton Exchange Membrane (PEM) Fuel Cell on the Mechanical Behavior of the Polymer Membrane", Energy & Fuels, 21 (4), 2007, 2258–2267.
[179]. A. Kampker, H. Heimes, M. Kehrer, S. Hagedorn, P. Reims, and O. Kaul, "Fuel cell system production cost modeling and analysis", Energy Reports, 9 2023, 248–255.
[180]. P. Karafiloglou and P. Papanikolaou, "The role of ionic structures in the response of a non-polar molecule to an electric field", Chemical Physics, 342 (1), 2007, 288–296.
[181]. C.F. Chamberlayne and R.N. Zare, "Simple model for the electric field and spatial distribution of ions in a microdroplet", The Journal of Chemical Physics, 152 (18), 2020, 184702.
[182]. P.D. Raiter, Y. Vidavsky, and M.N. Silberstein, "Can Polyelectrolyte Mechanical Properties be Directly Modulated by an Electric Field? A Molecular Dynamics Study", Advanced Functional Materials, 31 (4), 2021, 2006969.
[183]. R.M. Mensharapov, N.A. Ivanova, D.D. Spasov, S.A. Grigoriev, and V.N. Fateev, "SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes", Polymers, 14 (20), 2022, 4395.
[184]. H.-G. Haubold, Th. Vad, H. Jungbluth, and P. Hiller, "Nano structure of NAFION: a SAXS study", Electrochimica Acta, 46 (10), 2001, 1559–1563.
[185]. A.S. Istomina, T.V. Yaroslavtseva, O.G. Reznitskikh, R.R. Kayumov, L.V. Shmygleva, E.A. Sanginov, Y.A. Dobrovolsky, and O.V. Bushkova, "Li-nafion membrane plasticised with ethylene carbonate/sulfolane: Influence of mixing temperature on the physicochemical properties", Polymers, 13 (7), 2021, 1150.
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2024-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明