博碩士論文 107686601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.191.171.43
姓名 阮氏秋華(Nguyen Thi Thu Ha)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 探討湄公河流域乾旱、流量以及輸砂量的特徵
(Studying the Characteristics of Droughts, Streamflow, and Sediment Loads in the Mekong River Basin)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 湄公河流域 (MRB) 是東南亞最大、最重要的跨國流域之一,近年來,當地民眾受到自然災害與人為脆弱性相結合的影響,對該地區的漁業、農業和河流生態系統造成嚴重的衝擊,本論文使用歷史數據分析、水文模式和機器學習技術三種方法,探討MRB乾旱、流量和輸砂量的特徵。根據ENSO指數與降水的相關性分析,若在12-2月發生強烈的ENSO事件可能導致3-5月的氣象乾旱,進而造成4-6月的水文和農業乾旱,這種ENSO效應對MRB南部的乾旱變化有顯著地影響,而在MRB北部地區則不明顯。根據流量和泥沙輸送量變化的結果,以1970-1991的乾季作為基期,在2012-2019乾季鄰近瀾滄水壩的清盛河流量增加73.65%,而在雨季則減少29.46%。此外,在高壩影響期(2012-2019),清盛和桔井流域的泥沙輸送量分別減少69.15%和68.45%,這表示中國水壩在MRB上游和當地其他水壩攔截泥沙所造成的影響。對於流量預測,本研究所提出的深度學習模式能夠很好地捕捉高壩開發期間(2010-2019)的MRB河流流量,短期和長期流量預測的NSE值在0.63至0.88之間,並且Long short-term Memory (LSTM) 模式在高壩影響期的流量預測 (NSE ≥ 0.8) 優於其他預測流量的模式。本研究的結果可應用於開發乾旱監測方法,並且建議未來開發MRB流域時需要仔細評估高流量和泥沙的變化,並及時適應未來的變化。
摘要(英) Mekong River Basin (MRB) is one of the largest and most significant transboundary river basins in southeast Asia. In recent years, natural hazards compounded manmade vulnerability have affected to local people, resulting in further impacts on fisheries, agricultural productions, and river ecosystems in this region. This thesis presents characteristics of droughts, streamflow, and sediment loads in the MRB using three main methods, including historical data analysis, hydrological model, and machine learning techniques. In terms of El Niño Southern Oscillation (ENSO)-droughts connection, the correlation analysis between ENSO index and precipitation suggested that the strongest ENSO events in Dec-Jan-Feb may result in developments of meteorological drought in Mar-Apr-May, and further led to hydrological and agricultural drought in Apr-May-Jun. Such ENSO effects had significant influences on drought variabilities in southern MRB and were insignificant in the north. Results from changes in flow and sediment show that the river flow at Chiang Saen, which is the closest station to the Lancang cascade dams, has risen by 73.65\% in the dry season during 2012-2019 in comparison with the period 1970-1991 while that has reduced by 29.46\% in the wet season. Besides, the sediment loads have reduced by 69.15\% and 68.45\% at Chiang Saen and Kratie, respectively in the high-dam period (2012-2019), indicating a drastic reduction of sediment owing to the sediment trapping by Chinese dams in the upper MRB and local dams. For streamflow prediction, the proposed deep learning models were able to capture the fluctuation of river flow in the MRB during the period of high-dam development (2010-2019), with the Nash-Sutcliffe (NSE) values ranged from 0.79 to 0.88, and the Long short-term Memory (LSTM) still outperformed other models for streamflow prediction in an era of mega dams (NSE $geq$ 0.8). The results can be applied to the development of drought monitoring methods, water management, and supporting for development planning and strategic decision making, especially in the context of rapid development in the Mekong river basin.
關鍵字(中) ★ 湄公河流域
★ 乾旱
★ ENSO指數
★ 流量變化
★ 泥沙傳輸
★ 大壩
關鍵字(英) ★ Mekong River Basin
★ drought
★ ENSO
★ flow alterations
★ suspended sediment concentrations
★ hydropower dams
論文目次 Table of Contents
Abstract ii
Acknowledgements iv
List of Abbreviations xvii
1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Study area, data, and methods 6
2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Soil and Water Assessment Tool (SWAT) hydrological model . . . 12
2.3.2 Drought indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 ENSO-drought indices relationship . . . . . . . . . . . . . . . . . 18
2.3.4 Suspended sediment loads estimates . . . . . . . . . . . . . . . . . 19
2.3.5 Indicator of Hydrologic Alteration (IHA) . . . . . . . . . . . . . . 19
2.3.6 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.7 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 21
Normalization and evaluation criteria . . . . . . . . . . . . . . . . 21
Multi-layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 22
Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . 23
Long short-term Memory . . . . . . . . . . . . . . . . . . . . . . . 24
Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Multiple drought indices and their teleconnections with ENSO in various
spatiotemporal scales 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Hydrological model result . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Assessing a historical extreme drought in the MRB . . . . . . . . 36
3.3.3 Drought characteristics . . . . . . . . . . . . . . . . . . . . . . . . 37
Drought events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Drought frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Drought severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Differences in drought characteristics between the UMB and LMRB 41
3.3.4 Spatiotemporal variations in teleconnection with ENSO . . . . . 43
Teleconnection between ENSO and precipitation, soil water content, and discharge . . . . . . . . . . . . . . . . . . . . . 43
Teleconnection between ENSO and multiple drought indices . . 46
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Spatial variation of soil water content . . . . . . . . . . . . . . . . 49
3.4.2 Comparison with other studies and ENSO-droughts relationships 50
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4 Hydrological alterations and sediment changes caused by dams 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Hydrological model performance . . . . . . . . . . . . . . . . . . 59
4.3.2 SSC-Q rating curve estimation . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Hydrological alterations . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 The changes to flow regimes in the extreme drought events . . . 73
4.3.5 Spatial distribution of sediment loads without impacts of dams
in the Mekong River Basin . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.6 The reduction of sediment caused by dams in the period of highdam impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.7 The MRB’s climate and its correlation with hydrological indicators 80
4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 The MRB’s climate and potential implication of dam impacts . . 81
4.4.2 Comparison with previous studies . . . . . . . . . . . . . . . . . . 84
Flow alteration in the MRB . . . . . . . . . . . . . . . . . . . . . . 84
The annual sediment loads from the simulation results . . . . . . 85
4.4.3 The reduction of observed sediment in the MRB caused by dams 86
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5 Streamflow prediction with different lead times using machine learning techniques 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Ablation study and visualization . . . . . . . . . . . . . . . . . . . 96
Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Streamflow prediction in the extreme events . . . . . . . . . . . . 97
Streamflow prediction in an era of mega-dams . . . . . . . . . . . 100
Prospects of using deep learning models in hydrological assessment in the MRB . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6 Conclusion, limitation and future work 105
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Limitation and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 107
References 110
Appendix 120
A Sensitive Analysis 121
B Characteristics of large Mekong mainstream dams 123
C Networks architecture and implementation details 132
C.1 Networks Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
參考文獻 References
[1] MRC. “Overview of the Hydrology of the Mekong Basin”. In: Mekong River
Commission, Vientiane 82 (2005).
[2] Olli Varis, Matti Kummu, and Aura Salmivaara. “Ten major rivers in monsoon
Asia-Pacific: An assessment of vulnerability”. In: Applied Geography 32.2 (2012),
pp. 441–454.
[3] CGIAR WLE. Mekong Dam Database. WLE Greater Mekong, CGIAR Research Program on Water, Land and Ecosystems (WLE), Vientiane, Lao PDR. 2020.
[4] Thomas A Cochrane, Mauricio E Arias, and Thanapon Piman. “Historical impact of water infrastructure on water levels of the Mekong River and the Tonle
Sap system”. In: Hydrology and Earth System Sciences 18.11 (2014), pp. 4529–4541.
[5] Doan Van Binh, Sameh Kantoush, and Tetsuya Sumi. “Changes to long-term
discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams”. In: Geomorphology 353 (2020), p. 107011.
[6] Sushil Pandey, Hem Singh Bhandari, and Bill Hardy. Economic costs of drought
and rice farmers’ coping mechanisms: a cross-country comparative analysis. Int. Rice
Res. Inst., 2007.
[7] Seung Kyu Lee and Truong An Dang. “Spatio-temporal variations in meteorology drought over the Mekong River Delta of Vietnam in the recent decades”.
In: Paddy and Water Environment 17.1 (2019), pp. 35–44.
[8] Thi Viet Le et al. “The historical flood in 2000 in Mekong River Delta, Vietnam:
A quantitative analysis and simulation”. In: Geographical Review of Japan 80.12
(2007), pp. 663–680.
[9] Long P Hoang et al. “The Mekong’s future flows under multiple drivers: How
climate change, hydropower developments and irrigation expansions drive hydrological changes”. In: Science of the Total Environment 649 (2019), pp. 601–609.
[10] KD Fu, Darning Ming He, and Xi Xi Lu. “Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts”. In: Quaternary International 186.1 (2008), pp. 91–99.
[11] Samuel De Xun Chua et al. “Drastic decline of flood pulse in the Cambodian
floodplains (Mekong River and Tonle Sap system)”. In: Hydrology and Earth System Sciences 26.3 (2022), pp. 609–625.
[12] Sokly Siev et al. “Sediment dynamics in a large shallow lake characterized by
seasonal flood pulse in Southeast Asia”. In: Science of the Total Environment 631
(2018), pp. 597–607.
[13] Xi Xi Lu and RY Siew. “Water discharge and sediment flux changes over the
past decades in the Lower Mekong River: possible impacts of the Chinese
dams”. In: Hydrology and Earth System Sciences 10.2 (2006), pp. 181–195.
[14] Xi Xi Lu and Samuel De Xun Chua. “River Discharge and Water Level Changes
in the Mekong River: Droughts in an Era of Mega-Dams”. In: Hydrological Processes 35.7 (2021), e14265.
[15] Xiaobo Yun et al. “Impacts of climate change and reservoir operation on streamflow and flood characteristics in the Lancang-Mekong River Basin”. In: Journal
of Hydrology 590 (2020), p. 125472.
[16] TT Nguyen et al. “Multiple drought indices and their teleconnections with
ENSO in various spatiotemporal scales over the Mekong River Basin.” In: The
Science of the Total Environment (2022), pp. 158589–158589.
[17] MRC MRC. “Overview of the Hydrology of the Mekong Basin”. In: Mekong
River Commission: Vientiane, Laos (2005).
[18] Hans G. Peter D. Jeroen A. Chu T. H. Water, climate, food, and environment in the
Mekong basin in southeast Asia. Tech. rep. Mekong River Commission, 2003.
[19] Madusanka Thilakarathne and Venkataramana Sridhar. “Characterization of
future drought conditions in the Lower Mekong River Basin”. In: Weather and
Climate Extremes 17 (2017), pp. 47–58.
[20] Hannu Lauri, TA Räsänen, and Matti Kummu. “Using reanalysis and remotely
sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study”. In: Journal of Hydrometeorology 15.4
(2014), pp. 1532–1545.
[21] JM Delgado, Bruno Merz, and Heiko Apel. “A climate-flood link for the lower
Mekong River”. In: Hydrology and Earth System Sciences 16.5 (2012), pp. 1533–
1541.
[22] Akiyo Yatagai et al. “APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges”. In: Bulletin
of the American Meteorological Society 93.9 (2012), pp. 1401–1415.
[23] MT Vu, Sri V Raghavan, and Shie-Yui Liong. “SWAT use of gridded observations for simulating runoff–a Vietnam river basin study”. In: Hydrology and Earth
System Sciences 16.8 (2012), pp. 2801–2811.
[24] Hannu Lauri et al. “Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge”. In: Hydrology and Earth System Sciences 16.12 (2012), pp. 4603–4619.
[25] Thanh Duc Dang, AFM Chowdhury, and Stefano Galelli. “On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments”. In: Hydrology and Earth System Sciences 24.1 (2020), pp. 397–416.
[26] Long Phi Hoang et al. “Mekong River flow and hydrological extremes under
climate change”. In: Hydrology and Earth System Sciences 20.7 (2016), pp. 3027–
3041.
[27] TM Vu and Ashok Mishra. “Spatial and temporal variability of standardized
precipitation index over Indochina peninsula”. In: Cuadernos de Investigacion Geografica 42.1 (2016), pp. 221–232.
[28] D He, W Zhao, and L Chen. “The ecological changes in Manwan reservoir area
and its causes, Asian International Rivers Centre, Yunnan University, Kunming,
Yunnan, China”. In: Accessed through internet on July (2004).
[29] Jeffrey G Arnold et al. “SWAT: Model use, calibration, and validation”. In: Transactions of the ASABE 55.4 (2012), pp. 1491–1508.
[30] Karim C Abbaspour et al. “SWAT-CUP calibration and uncertainty programs
for SWAT”. In: MODSIM 2007 international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand. Swiss Federal Institute of Aquatic Science and Technology Dübendorf, Switzerland. 2007,
pp. 1596–1602.
[31] Karim C Abbaspour, CA Johnson, and M Th Van Genuchten. “Estimating uncertain flow and transport parameters using a sequential uncertainty fitting
procedure”. In: Vadose zone journal 3.4 (2004), pp. 1340–1352.
[32] Hongjing Wu and Bing Chen. “Evaluating uncertainty estimates in distributed
hydrological modeling for the Wenjing River watershed in China by GLUE,
SUFI-2, and ParaSol methods”. In: Ecological engineering 76 (2015), pp. 110–121.
[33] Jing Yang et al. “Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China”. In: Journal of hydrology 358.1-2 (2008),
pp. 1–23.
[34] Anthony S KIEM et al. “Relationship between ENSO and snow covered area in
the Mekong and Yellow river basins”. In: IAHS-AISH publication (2005), pp. 255–
264.
[35] DG Kingston, Jonathan R Thompson, and Geoff Kite. “Uncertainty in climate
change projections of discharge for the Mekong River Basin”. In: Hydrology and
Earth System Sciences 15.5 (2011), pp. 1459–1471.
[36] Mou Leong Tan et al. “A review of SWAT studies in Southeast Asia: applications, challenges and future directions”. In: Water 11.5 (2019), p. 914.
[37] Hyunwoo Kang, Venkataramana Sridhar, and Syed A Ali. “Climate change impacts on conventional and flash droughts in the Mekong River Basin”. In: Science of The Total Environment (2022), p. 155845.
[38] Valentina Krysanova and Mike White. “Advances in water resources assessment with SWAT—an overview”. In: Hydrological Sciences Journal 60.5 (2015),
pp. 771–783.
[39] Hyunwoo Kang and Venkataramana Sridhar. “A near-term drought assessment
using hydrological and climate forecasting in the Mekong River Basin”. In: International Journal of Climatology 41 (2021), E2497–E2516.
[40] Hyunwoo Kang et al. “Future rice farming threatened by drought in the Lower
Mekong Basin”. In: Scientific reports 11.1 (2021), pp. 1–15.
[41] Nikul Kumari et al. “Identification of suitable hydrological models for streamflow assessment in the Kangsabati River Basin, India, by using different model
selection scores”. In: Natural Resources Research 30.6 (2021), pp. 4187–4205.
[42] Shraddhanand Shukla and Andrew W Wood. “Use of a standardized runoff
index for characterizing hydrologic drought”. In: Geophysical research letters 35.2
(2008).
[43] Guoyong Leng, Qiuhong Tang, and Scott Rayburg. “Climate change impacts on
meteorological, agricultural and hydrological droughts in China”. In: Global and
Planetary Change 126 (2015), pp. 23–34.
[44] MT Vu, VS Raghavan, and S-Y Liong. “Ensemble climate projection for hydrometeorological drought over a river basin in Central Highland, Vietnam”. In:
KSCE Journal of Civil Engineering 19.2 (2015), pp. 427–433.
[45] MT Vu et al. “Hydro-meteorological drought assessment under climate change
impact over the Vu Gia–Thu Bon river basin, Vietnam”. In: Hydrological Sciences
Journal 62.10 (2017), pp. 1654–1668.
[46] Thomas B McKee, Nolan J Doesken, John Kleist, et al. “The relationship of
drought frequency and duration to time scales”. In: Proceedings of the 8th Conference on Applied Climatology. Vol. 17. 22. California. 1993, pp. 179–183.
[47] Nathaniel B Guttman. “Accepting the standardized precipitation index: a calculation algorithm 1”. In: JAWRA Journal of the American Water Resources Association 35.2 (1999), pp. 311–322.
[48] Tue M Vu et al. “Uncertainties of gridded precipitation observations in characterizing spatio-temporal drought and wetness over Vietnam”. In: International
Journal of Climatology 38.4 (2018), pp. 2067–2081.
[49] Eugene M Rasmusson and Thomas H Carpenter. “Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño”. In: Monthly Weather Review 110.5 (1982), pp. 354–384.
[50] Timo A Räsänen and Matti Kummu. “Spatiotemporal influences of ENSO on
precipitation and flood pulse in the Mekong River Basin”. In: Journal of Hydrology 476 (2013), pp. 154–168.
[51] Timo A Räsänen et al. “On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia”. In: Climate of
the Past 12.9 (2016), pp. 1889–1905.
[52] Zuo Xue, J Paul Liu, and Qian Ge. “Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: connection to damming, monsoon,
and ENSO”. In: Earth Surface Processes and Landforms 36.3 (2011), pp. 296–308.
[53] The Nature Conservancy. Indicators of Hydrologic Alternation Version 7.1, User’s
Manual, 2009.
[54] Thanh Duc Dang et al. “Hydrological alterations from water infrastructure development in the Mekong floodplains”. In: Hydrological processes 30.21 (2016),
pp. 3824–3838.
[55] Hoshin Vijai Gupta, Soroosh Sorooshian, and Patrice Ogou Yapo. “Status of automatic calibration for hydrologic models: Comparison with multilevel expert
calibration”. In: Journal of hydrologic engineering 4.2 (1999), pp. 135–143.
[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolutional neural networks”. In: Advances in neural information processing systems 25 (2012).
[57] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference on machine learning. PMLR. 2015, pp. 448–456.
[58] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–
536.
[59] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning Long-Term Dependencies with Gradient Descent is Difficult”. In: IEEE Trans. Neural Networks
5.2 (1994), pp. 157–166.
[60] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation 9.8 (1997), pp. 1735–1780.
[61] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing systems 30 (2017).
[62] Donald A Wilhite. Chapter 1 Drought as a natural hazard: concepts and definitions.
Drought Mitigation Center Faculty Publications, 69. 2000.
[63] Goutam Konapala et al. “Climate change will affect global water availability
through compounding changes in seasonal precipitation and evaporation”. In:
Nature communications 11.1 (2020), pp. 1–10.
[64] Ho Huu Loc et al. “Intensifying saline water intrusion and drought in the
Mekong Delta: From physical evidence to policy outlooks”. In: Science of the
Total Environment 757 (2021), p. 143919.
[65] Tuyet L Cosslett and Patrick D Cosslett. “The Lower Mekong Basin: Rice Production, Climate Change, ENSO, and Mekong Dams”. In: Sustainable Development of Rice and Water Resources in Mainland Southeast Asia and Mekong River
Basin. Springer, 2018, pp. 85–114.
[66] Oulavanh Keovilignavong, Tuong Huy Nguyen, and Philip Hirsch. “Reviewing the causes of Mekong drought before and during 2019–20”. In: International
Journal of Water Resources Development (2021), pp. 1–21.
[67] Nguyen Thanh Son et al. “Monitoring agricultural drought in the Lower
Mekong Basin using MODIS NDVI and land surface temperature data”. In:
International Journal of Applied Earth Observation and Geoinformation 18 (2012),
pp. 417–427.
[68] Binghua Zhang et al. “Drought impact on vegetation productivity in the Lower
Mekong Basin”. In: International Journal of Remote Sensing 35.8 (2014), pp. 2835–
2856.
[69] Huy Nguyen and Rajib Shaw. “Adaptation to droughts in Cambodia”. In:
Droughts in Asian monsoon region. Emerald Group Publishing Limited, 2011.
[70] Kon Tum, Gia Lai, and Dak Lak. The drought crisis in the Central Highlands of
Vietnam. 2016.
[71] Zhiqiang Dong et al. “Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin”. In: Journal of Hydrology 610
(2022), p. 127815.
[72] Mei Li, Zhenhua Di, and Qingyun Duan. “Effect of sensitivity analysis on parameter optimization: case study based on streamflow simulations using the
SWAT model in China”. In: Journal of Hydrology 603 (2021), p. 126896.
[73] Sanjit Kumar Mondal et al. “Doubling of the population exposed to drought
over South Asia: CMIP6 multi-model-based analysis”. In: Science of The Total
Environment 771 (2021), p. 145186.
[74] Donald A Wilhite and Michael H Glantz. “Understanding: the drought phenomenon: the role of definitions”. In: Water international 10.3 (1985), pp. 111–
120.
[75] Hao Guo et al. “Meteorological drought analysis in the Lower Mekong Basin
using satellite-based long-term CHIRPS product”. In: Sustainability 9.6 (2017),
p. 901.
[76] Hui Liu. Flood Prevention and Drought Relief in Mekong River Basin. Springer,
2020.
[77] Abhijeet Abhishek et al. “Evaluating the impacts of drought on rice productivity over Cambodia in the Lower Mekong Basin”. In: Journal of Hydrology 599
(2021), p. 126291.
[78] Yishan Li et al. “Meteorological and hydrological droughts in Mekong River
Basin and surrounding areas under climate change”. In: Journal of Hydrology:
Regional Studies 36 (2021), p. 100873.
[79] MK Davey, A Brookshaw, and S Ineson. “The probability of the impact of ENSO
on precipitation and near-surface temperature”. In: Climate Risk Management 1
(2014), pp. 5–24.
[80] Hok Sum Fok et al. “Application of ENSO and drought indices for water level
reconstruction and prediction: A case study in the lower Mekong River estuary”. In: Water 10.1 (2018), p. 58.
[81] Christina M Patricola et al. “Maximizing ENSO as a source of western US hydroclimate predictability”. In: Climate Dynamics 54.1 (2020), pp. 351–372.
[82] Nkrintra Singhrattna et al. “Seasonal forecasting of Thailand summer monsoon
rainfall”. In: International Journal of Climatology: A Journal of the Royal Meteorological Society 25.5 (2005), pp. 649–664.
[83] Jeffrey G Arnold et al. “Large area hydrologic modeling and assessment part I:
model development 1”. In: JAWRA Journal of the American Water Resources Association 34.1 (1998), pp. 73–89.
[84] Valeriy Y Ivanov et al. “Hysteresis of soil moisture spatial heterogeneity and the
“homogenizing” effect of vegetation”. In: Water Resources Research 46.9 (2010).
[85] Ankur Srivastava et al. “The role of landscape morphology on soil moisture variability in semi-arid ecosystems”. In: Hydrological Processes 35.1 (2021),
e13990.
[86] Bakkiyalakshmi Palanisamy et al. “Studying Onset and Evolution of Agricultural Drought in Mekong River Basin through Hydrologic Modeling”. In: Water
13.24 (2021), p. 3622.
[87] Truong Thao Sam et al. “Impact of climate change on meteorological, hydrological and agricultural droughts in the Lower Mekong River Basin: A case study
of the Srepok Basin, Vietnam”. In: Water and Environment Journal 33.4 (2019),
pp. 547–559.
[88] ZX Xu, K Takeuchi, and H Ishidaira. “Correlation between El Niño–Southern
Oscillation (ENSO) and precipitation in South-east Asia and the Pacific region”.
In: Hydrological Processes 18.1 (2004), pp. 107–123.
[89] Masoud Irannezhad and Junguo Liu. “Evaluation of six gauge-based gridded
climate products for analyzing long-term historical precipitation patterns across
the Lancang-Mekong River Basin”. In: Geography and Sustainability 3.1 (2022),
pp. 85–103.
[90] Sanjay D Bansod et al. “Thermal field over Tibetan Plateau and Indian summer
monsoon rainfall”. In: International Journal of Climatology: A Journal of the Royal
Meteorological Society 23.13 (2003), pp. 1589–1605.
[91] R H Kripalani and Ashwini Kulkarni. “Rainfall variability over South–east
Asia—connections with Indian monsoon and ENSO extremes: new perspectives”. In: International Journal of Climatology: A Journal of the Royal Meteorological
Society 17.11 (1997), pp. 1155–1168.
[92] XiXi Lu, Matti Kummu, and Chantha Oeurng. “Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia”. In: Earth Surface Processes and
Landforms 39.14 (2014), pp. 1855–1865.
[93] John D Milliman and James PM Syvitski. “Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers”. In:
The journal of Geology 100.5 (1992), pp. 525–544.
[94] Alvaro Tena and Ramon J Batalla. “The sediment budget of a large river regulated by dams (The lower River Ebro, NE Spain)”. In: Journal of Soils and Sediments 13.5 (2013), pp. 966–980.
[95] Yuankun Wang et al. “Investigating the impacts of cascade hydropower development on the natural flow regime in the Yangtze River, China”. In: Science of
the total environment 624 (2018), pp. 1187–1194.
[96] Avijit Gupta and Soo Chin Liew. “The Mekong from satellite imagery: A quick
look at a large river”. In: Geomorphology 85.3-4 (2007), pp. 259–274.
[97] Matti Kummu and Olli Varis. “Sediment-related impacts due to upstream
reservoir trapping, the Lower Mekong River”. In: Geomorphology 85.3-4 (2007),
pp. 275–293.
[98] Timo A Räsänen et al. “Observed river discharge changes due to hydropower
operations in the Upper Mekong Basin”. In: Journal of hydrology 545 (2017),
pp. 28–41.
[99] Doan Van Binh et al. “Long-term alterations of flow regimes of the Mekong
River and adaptation strategies for the Vietnamese Mekong Delta”. In: Journal
of Hydrology: Regional Studies 32 (2020), p. 100742.
[100] Xi Xi Lu et al. “Observed changes in the water flow at Chiang Saen in the lower
Mekong: Impacts of Chinese dams?” In: Quaternary International 336 (2014),
pp. 145–157.
[101] Timo A Räsänen et al. “Downstream hydrological impacts of hydropower development in the Upper Mekong Basin”. In: Water Resources Management 26.12
(2012), pp. 3495–3513.
[102] Dongnan Li et al. “Observed changes in flow regimes in the Mekong River
basin”. In: Journal of Hydrology 551 (2017), pp. 217–232.
[103] Maurice G Kendall. “A new measure of rank correlation”. In: Biometrika 30.1/2
(1938), pp. 81–93.
[104] HB MANN. Non-parametric tests against trend. Econometria. 1945.
[105] Bo Xu et al. “The transborder flux of phosphorus in the Lancang-Mekong River
Basin: Magnitude, patterns and impacts from the cascade hydropower dams in
China”. In: Journal of Hydrology 590 (2020), p. 125201.
[106] Ashley Stewart Halls. Integrated analysis of data from MRC fisheries monitoring
programmes in the Lower Mekong Basin. Mekong River Commission, 2013.
[107] John L Sabo et al. “Designing river flows to improve food security futures in the
Lower Mekong Basin”. In: Science 358.6368 (2017), eaao1053.
[108] Gianbattista Bussi et al. “Impact of dams and climate change on suspended sediment flux to the Mekong delta”. In: Science of the Total Environment 755 (2021),
p. 142468.
[109] Ian Campbell and Chris Barlow. “Hydropower development and the loss of
fisheries in the Mekong River Basin”. In: Frontiers in Environmental Science 8
(2020), p. 566509.
[110] Dang An Tran et al. “Evaluating the predictive power of different machine
learning algorithms for groundwater salinity prediction of multi-layer coastal
aquifers in the Mekong Delta, Vietnam”. In: Ecological Indicators 127 (2021),
p. 107790.
[111] Lovgren S. Mekong River at its lowest in 100 years, threatening food supply. 2019.
[112] Doan Van Binh et al. “Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta”. In: Hydrological Processes 35.2 (2021), e14030.
[113] Doan Van Binh et al. “Hydrodynamics, sediment transport, and morphodynamics in the Vietnamese Mekong Delta: Field study and numerical modelling”. In: Geomorphology 413 (2022), p. 108368.
[114] Song Pham Van et al. “Deep learning convolutional neural network in rainfall–
runoff modelling”. In: Journal of Hydroinformatics 22.3 (2020), pp. 541–561.
[115] Cameron M Zealand, Donald H Burn, and Slobodan P Simonovic. “Short term
streamflow forecasting using artificial neural networks”. In: Journal of hydrology
214.1-4 (1999), pp. 32–48.
[116] Hamid Moradkhani and Soroosh Sorooshian. “General review of rainfall-runoff
modeling: model calibration, data assimilation, and uncertainty analysis”. In:
Hydrological modelling and the water cycle. Springer, 2009, pp. 1–24.
[117] PG Whitehead et al. “Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the
Mekong Delta”. In: Science of the total environment 673 (2019), pp. 218–229.
[118] D Solomatine, Linda M See, and RJ Abrahart. “Data-driven modelling: concepts, approaches and experiences”. In: Practical hydroinformatics (2009), pp. 17–
30.
[119] Rakesh Tanty and Tanweer S Desmukh. “Application of artificial neural network in hydrology—A review”. In: Int. J. Eng. Technol. Res 4 (2015), pp. 184–
188.
[120] David J Bartholomew. Time Series Analysis Forecasting and Control. 1971.
[121] Si Ha, Darong Liu, and Lin Mu. “Prediction of Yangtze River streamflow based
on deep learning neural network with El Niño–Southern Oscillation”. In: Scientific reports 11.1 (2021), pp. 1–23.
[122] Jose D Salas. Applied modeling of hydrologic time series. Water Resources Publication, 1980.
[123] Assad Y Shamseldin. “Application of a neural network technique to rainfallrunoff modelling”. In: Journal of hydrology 199.3-4 (1997), pp. 272–294.
[124] Zaher Mundher Yaseen et al. “Artificial intelligence based models for streamflow forecasting: 2000–2015”. In: Journal of Hydrology 530 (2015), pp. 829–844.
[125] Abhirup Dikshit, Biswajeet Pradhan, and Abdullah M Alamri. “Long lead time
drought forecasting using lagged climate variables and a stacked long shortterm memory model”. In: Science of The Total Environment 755 (2021), p. 142638.
[126] Nguyen Hien Than, Che Dinh Ly, and Pham Van Tat. “The performance of classification and forecasting Dong Nai River water quality for sustainable water
resources management using neural network techniques”. In: Journal of Hydrology 596 (2021), p. 126099.
[127] Daeeop Lee et al. “Future runoff analysis in the Mekong River Basin under a
climate change scenario using deep learning”. In: Water 12.6 (2020), p. 1556.
[128] VAD de Faria et al. “An assessment of multi-layer perceptron networks for
streamflow forecasting in large-scale interconnected hydrosystems”. In: International Journal of Environmental Science and Technology (2021), pp. 1–20.
[129] Hanlin Yin et al. “RR-Former: Rainfall-runoff modeling based on Transformer”.
In: Journal of Hydrology (2022), p. 127781.
[130] S Birikundavyi et al. “Performance of neural networks in daily streamflow forecasting”. In: Journal of Hydrologic Engineering 7.5 (2002), pp. 392–398.
[131] XH Le et al. Application of long short-term memory (LSTM) neural network for flood
forecasting. Water 11: 1387. 2019.
[132] Wei Xu et al. “Using long short-term memory networks for river flow prediction”. In: Hydrology Research 51.6 (2020), pp. 1358–1376.
[133] Özgür Ki¸si. “Streamflow forecasting using different artificial neural network
algorithms”. In: Journal of Hydrologic Engineering 12.5 (2007), pp. 532–539.
[134] Xuan-Hien Le, Hung Viet Ho, and Giha Lee. “River streamflow prediction using
a deep neural network: a case study on the Red River, Vietnam”. In: Korean
Journal of Agricultural Science 46.4 (2019), pp. 843–856.
[135] Xuan-Hien Le et al. “Comparison of deep learning techniques for river streamflow forecasting”. In: IEEE Access 9 (2021), pp. 71805–71820.
[136] Quoc Bao Pham et al. “Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization
algorithm”. In: Soft Computing 24.23 (2020), pp. 18039–18056.
[137] CL Wu and Kwok-Wing Chau. “Data-driven models for monthly streamflow
time series prediction”. In: Engineering Applications of Artificial Intelligence 23.8
(2010), pp. 1350–1367.
[138] Daniel N Moriasi et al. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations”. In: Transactions of the ASABE 50.3
(2007), pp. 885–900.
[139] Khosro Morovati et al. “A Machine learning framework to predict reverse flow
and water level: A case study of Tonle Sap Lake”. In: Journal of Hydrology 603
(2021), p. 127168.
[140] Hung Vo Thanh et al. “Reconstructing daily discharge in a megadelta using machine learning techniques”. In: Water Resources Research 58.5 (2022),
e2021WR031048.
[141] Tien Giang Nguyen et al. “Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: A case study in Vietnam’s
Mekong Delta”. In: Geoderma Regional 27 (2021), e00424.
[142] Chu Thai Hoanh et al. Impacts of climate change and development on Mekong flow
regimes. First assessment-2009. Tech. rep. International Water Management Institute, 2010.
[143] Gregory J Carbone, Junyu Lu, and Michele Brunetti. “Estimating uncertainty
associated with the standardized precipitation index”. In: International Journal
of Climatology 38 (2018), e607–e616.
[144] L Vergni et al. “Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy)”. In: Theoretical
and applied climatology 128.1 (2017), pp. 13–26.
[145] Ying Zhang and Zhanling Li. “Uncertainty analysis of standardized precipitation index due to the effects of probability distributions and parameter errors”.
In: Frontiers in Earth Science 8 (2020), p. 76.
[146] Everett Snieder, Karen Abogadil, and Usman T Khan. “Resampling and ensemble techniques for improving ANN-based high streamflow forecast accuracy”.
In: Hydrol. Earth Syst. Sci. Discuss (2020), pp. 1–35.
指導教授 李明旭(Ming-Hsu Li) 審核日期 2023-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明