博碩士論文 107686602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.21.12.41
姓名 李中原(LY TRUNG NGUYEN)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 潮間帶礁體懸浮漂沙濃度之現場研究
(A Field Study on Variation of Suspended Sediment Concentration Over an Intertidal Reef)
相關論文
★ 藻礁區的波浪頻譜消散特性★ 應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較
★ 碎波帶紊流及剪應力之大尺度實驗觀測研究★ 不均勻珊瑚礁分佈對珊瑚礁冠層附近流場結構之影響
★ 藻礁區之波浪消散特性★ 利用影像處理技術辨識藻礁範圍
★ 桃園海岸近岸流之數值模擬★ 桃園海岸近岸流四季變化之研究
★ 無人機光達系統應用於沙岸與藻礁地區之波浪能量消散之研究★ 桃園海岸海漂垃圾現場調查分析之研究
★ 桃園新屋海岸波流受海工結構物設置之數值模擬研究★ 運用監督式分類技術辨識桃園藻礁露出範圍之研究初探
★ 以非結構性網格模式探討三接港對桃園海岸波流場之影響★ 利用ADCP估算地區藻礁潮間帶紊流特性
★ 應用無人機及物件偵測於大園海灘的瓶裝海洋垃圾★ 利用無人機影像之植物生長指數辨識潮間帶紅藻
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 本研究旨在探究桃園大潭天然氣站附近海上工業碼頭建設對藻礁生態系統可能產生的潛在影響,特別關注建設引起的懸浮物濃度(SSC)變化。目前對於SSC的時間變化以及這些變化是否具有統計學上的顯著性仍存在不確定性。此外,相較於其他沿岸礁環境,這個藻礁區域的水動力、SSC水平和底部粗糙度條件提供了一個獨特而引人注目的研究機會。 因此,進行研究以了解藻礁系統中的SSC變化是至關重要的。長期測量表明,SSC存在季節變化,冬季(140 mg/l)觀察到較高的值,夏季(70 mg/l)觀察到較低的值,這是由於冬季的顯著波浪條件所致。此外,這些SSC值(30-300 mg/l)相較於其他珊瑚礁生態系統(1-10 mg/l)顯著較高。 此外,觀察到SSC變化與波浪誘發的底部剪應力之間存在相關性。一項利用各種儀器進行的現場實驗,研究了藻礁環境中SSC、湍流特性和SS的粒徑分佈之間的關係。該研究揭示了湍流的物理特性與SSC之間的密切關聯。此外,對懸浮沉積物的垂直通量的研究顯示,向上的擴散通量超過了重力沉降。 實驗室實驗發現,光學後散射儀(OBS)校準值的斜率受到SS的粒徑影響,較大的顆粒尺寸與較高的斜率相關。因此,在藻礁環境中進行長期SSC測量時,需要重新校準OBS。另一項現場實驗揭示了SS中的有機物對OBS測量的影響,觀察到有機物與OBS測量的SSC密度之間呈現冪回歸關係。 總的來說,除了了解藻礁區域中SSC的變化之外,本研究還強調考慮水動力條件和SS組成對藻礁SSC變化的重要性
摘要(英) This study investigates the potential impact of an offshore industrial harbor construction near the Datan natural gas station in Taoyuan on the algal reef ecosystem, specifically focusing on the variation of suspended sediment concentration (SSC) caused by the construction. Uncertainty remains regarding the temporal variations in SSC and whether these variations are statistically significant. Furthermore, the hydrodynamic, SSC level and bottom roughness conditions in this algal reef offer a unique and compelling research opportunity compared to other coastal reef environments. Therefore, it is essential to conduct research to comprehend the variations in SSC over an algal reef system. Long-term measurements indicate seasonal variation in SSC, with higher values observed during the winter (140 mg/l) and lower values during the summer (70 mg/l) due to significant wave condition in the winter. Besides, these SSC values are significantly higher (30-300 mg/l) compared to other coral reef ecosystems (1-10 mg/l). Additionally, a correlation is observed between the variation of SSC and wave-induced bed shear stress. A field experiment utilizing various instruments examines the relationship between SSC, turbulent properties, and size distributions of SS in the algal reef environment. The study reveals a close association between the physical characteristics of turbulence and SSC. Furthermore, the investigation of vertical flux on suspended sediment demonstrates that upward diffusive flux surpasses gravitational settling. The laboratory experiment found that the slope of optical backscatter sensor (OBS) calibration values is influenced by the particle size of SS, with higher slopes associated with larger particle sizes. Consequently, re-calibration of the OBS is necessary for long-term measurements SSC in algal reef environments. Another field experiment reveals that organic matter in SS affects OBS measurements, with a power regression observed between organic matter and SSC density measured by OBS. Overall, besides of understanding the variation of the SSC in the algal reef area, this study also emphasizes the importance of considering hydrodynamic conditions and SS compositions in the changing of SSC over the algal reefs
關鍵字(中) ★ 潮間帶藻礁
★ 長期測量
★ SSC
★ 沉積物粒徑
★ 有機物質
★ 湍流
關鍵字(英) ★ Intertidal algal reefs
★ long-term measurement
★ SSC
★ sediment particle size
★ organic matter
★ turbulence
論文目次 Abstract i
Acknowledgement iii
Table of Contents iv
List of Tables ix
List of Figures xi
Notations xviii
Chapter 1. Introduction 1
1.1 Background and motivation 1
1.2 Objectives 3
1.3 Outline of the dissertation 3
Chapter 2. Literature Review 5
2.1 Overview of SS load 5
2.1.1 Overview of coastal SS 5
2.1.2 Definition of SS load 6
2.1.3 Factors effecting the SS load 6
2.1.4 Summarize recent progress on quantifying the SSC in reef region 8
2.1.4.1 Measurement techniques of SSC 8
2.1.4.2 Recent progress on quantifying the SSC in reef region 8
2.2 Overview of turbulence in reef environments 11
2.2.1 Turbulent sources 11
2.2.2 Estimation of the turbulent sources 12
2.3 The estimation of the bed stresses under wave-current flow 14
2.3.1 The definition of bed shear-stress under wave-current flow 14
2.3.2 Estimation of the bed shear stress 15
2.4 A summary of research on the variations of SS 18
Chapter 3. The environmental background of the study area 24
3.1 Site descriptions 24
3.2 The environmental conditions of the Taoyuan coastal area 26
3.2.1 Wind conditions 26
3.2.2 Hydrodynamic conditions 28
3.2.2.1 Ocean current condition 28
3.2.2.2 Wave condition 30
3.4 Bottom conditions 32
3.4.1 Bottom roughness conditions 32
3.4.2 Bottom sediment properties 33
3.4.2.1 Bottom sediment particle sizes 33
3.4.2.2 Bottom sediment density and porosity 34
3.4.2.3 Bottom sediment compositions 35
3.5 Chapter conclusions 35
Chapter 4. Variations of SSC 37
4.1 Description of the measuring of waves and SSC in the algal reef 37
4.1.1 Field experiments 37
4.1.2 Description of the measuring wave and SSC systems 40
4.2 Wave conditions 41
4.2.1 Wave and bed shear stress data analysis 41
4.2.2 Observation of wave conditions 45
4.2.3 Estimating near-bottom horizontal orbital velocity and wave bed stress 46
4.3 Variation of SSC 50
4.3.1 Calibration the OBS 50
4.3.2 Testing of the calibration value of OBS 51
4.3.3 Variations in SSC 55
4.4 The relationship between the wave characteristics and SSC 59
4.5 The implication of measuring waves and SSC above the algal reef 61
4.6 Chapter conclusions 62
Chapter 5. The relationship between turbulent properties and SSC 64
5.1 Hydrodynamic conditions 64
5.1.1 Study location 64
5.1.2 Hydrodynamic condition analysis 69
5.1.3 Current and wave conditions 72
5.1.4 Flow structure and turbulent stress 75
5.2 Observations of the SS characteristics 78
5.2.1 Distributions of the SS particle sizes 78
5.2.1.1 The variation of SS particle size 78
5.2.1.2 The estimation of required shear velocity from SS particle sizes 82
5.2.2 The variation of SSC 85
5.2.2.1 Calibration the OBS and ADV 85
5.2.2.2 Variation in SSC 86
5.3 The relationship of the turbulent properties and SSC 88
5.4 Testing the vertical flux of the SS 89
5.5 Chapter conclusions 91
Chapter 6. Effect of SS compositions on the accuracy of OBS measurement 93
6.1 Testing the effect of SS particle size on the accuracy of OBS measurement 93
6.1.1 Laboratory experiments 94
6.1.2 Calibration value of the OBS 96
6.1.2.1 The range particle size of the SS of 1 – 210 μm 96
6.1.2.2 The range particle size of the SS of 1 – 63 μm 98
6.1.2.3 The range particle size of the SS of 63 – 210 μm 100
6.1.2.4 The particle size of original SS sample (without filtration) 102
6.1.3 Summary on the regression of the calibration slope based on OBS measurement and SS particle sizes 104
6.2 The effect of organic matter on SS measured by OBS 106
6.2.1 The loss on ignition of the SS 106
6.2.1.1 Field experiment 106
6.2.1.2 Sediment sample preparations 107
6.2.1.3 Weight loss-on-ignition method 108
6.2.2 The effective density of SS 109
6.2.2.1 The comparison of SSC measured by OBS and water sampling 109
6.2.2.2 The SS particle sizes 109
6.2.2.3 The effective density of SS 110
6.2.3 Testing the flocculation of SS in the study area from microscope images 111
6.2.4 The effect of organic material on SS 114
6.3 The implication of understanding the effect of SS composition on the measurement of optical techniques in the algal reef environment 115
6.4 Chapter conclusions 117
Chapter 7. Summary, limitations and recommendations for future study 118
7.1 Summary 118
7.2 Limitations 119
7.3 Suggestions for the future works 119
References 121
APPENDIX 136
1. Data quality control for ADCP and ADV 136
2. Intermittency 137
2.1 Properties of suspension events 137
2.2 Contribution of suspension events 139
參考文獻 Adamo, F., Attivissimo, F., Guarnieri Calò Carducci, C., & Lanzolla, A. (2015). A Smart Sensor Network for Sea Water Quality Monitoring. Sensors Journal, IEEE, 15, 2514-2522, doi:10.1109/JSEN.2014.2360816.
Antunes do Carmo, J., Santos, F., & Temperville, A. (1998). Bottom friction and time-dependent shear stress for wave-current interaction (Vol. 41).
Avnimelech, Y., Troeger, B., & Reed, L. (1982). Mutual Flocculation of Algae and Clay: Evidence and Implications. Science (New York, N.Y.), 216, 63-65, doi:10.1126/science.216.4541.63.
Ayegba, P. O., & Edomwonyi-Otu, L. C. (2020). Turbulence statistics and flow structure in fluid flow using particle image velocimetry technique: A review. Engineering Reports, 2(3), e12138, doi:https://doi.org/10.1002/eng2.12138.
Bagnold, R. A. (1956). The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(964), 235-297, doi:10.1098/rsta.1956.0020.
Bian, Hu, Z., Xue, Z., & Lv, J. (2012). An observational study of the carrying capacity of suspended sediment during a storm event. Environmental Monitoring and Assessment, 184(10), 6037-6044, doi:10.1007/s10661-011-2401-3.
Bilotta, G., Brazier, R., & Haygarth, P. (2007). The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Advances in Agronomy, 94, 237-280, doi:10.1016/S0065-2113(06)94006-1.
Black, K. P., & Rosenberg, M. A. (1994). Suspended sand measurements in a turbulent environment: field comparison of optical and pump sampling techniques. Coastal Engineering, 24(1), 137-150, doi:https://doi.org/10.1016/0378-3839(94)90030-2.
Brander, R. W., Kench, P. S., & Hart, D. (2004). Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Marine Geology, 207(1), 169-184, doi:https://doi.org/10.1016/j.margeo.2004.03.014.
Bricker, J. D., & Monismith, S. G. (2007a). Spectral Wave–Turbulence Decomposition. Journal of Atmospheric and Oceanic Technology, 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
Bricker, J. D., & Monismith, S. G. (2007b). Spectral Wave - Turbulence Decomposition. Journal of Atmospheric and Oceanic Technology, 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
Brown, S., Greaves, D., Magar, V., & Conley, D. (2016). Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coastal Engineering, 114, doi:10.1016/j.coastaleng.2016.04.002.
Burchard, H., Craig, P. D., Gemmrich, J. R., van Haren, H., Mathieu, P.-P., Meier, H. E. M., et al. (2008). Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Progress in Oceanography, 76(4), 399-442, doi:https://doi.org/10.1016/j.pocean.2007.09.005.
Buschmann, F., Erm, A., Alari, V., Listak, M., Rebane, J., & Toming, G. Monitoring sediment transport in the coastal zone of Tallinn Bay. In 2012 IEEE/OES Baltic International Symposium (BALTIC), 8-10 May 2012 2012 (pp. 1-13). doi:10.1109/BALTIC.2012.6249190.
Chardón-Maldonado, P., Pintado-Patiño, J. C., & Puleo, J. A. (2016). Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes. Coastal Engineering, 115, 8-25, doi:https://doi.org/10.1016/j.coastaleng.2015.10.008.
Chen, Y.-J., Hsu, S. M., Liao, S.-Y., Chen, T.-C., & Tseng, W.-C. (2019). Natural Gas or Algal Reef: Survey-Based Valuations of Pro-Gas and Pro-Reef Groups Specifically for Policy Advising. Energies, 12(24), doi:10.3390/en12244682.
Cordier, E., Poizot, E., & MÉAr, Y. (2012). Swell impact on reef sedimentary processes: A case study of the La Reunion fringing reef. Sedimentology, 59(7), 2004-2023, doi:https://doi.org/10.1111/j.1365-3091.2012.01332.x.
Cox, D., & Kobayashi, N. (2000). Identification of intense, intermittent coherent motions under shoaling and breaking waves. Journal of Geophysical Research, 105, 14223-14236, doi:10.1029/2000JC900048.
Cuttler, M. V. W., Lowe, R. J., Falter, J. L., & Buscombe, D. (2017). Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques. Sedimentology, 64(4), 987-1004, doi:10.1111/sed.12338.
Dalrymple, R. A., MacMahan, J. H., Reniers, A. J. H. M., & Nelko, V. (2011). Rip Currents. Annual Review of Fluid Mechanics, 43(1), 551-581, doi:10.1146/annurev-fluid-122109-160733.
Davies, A. G., Ribberink, J. S., Temperville, A., & Zyserman, J. A. (1997). Comparisons between sediment transport models and observations made in wave and current flows above plane beds. Coastal Engineering, 31(1), 163-198, doi:https://doi.org/10.1016/S0378-3839(97)00005-7.
Davis, K. A., Pawlak, G., & Monismith, S. G. (2021). Turbulence and Coral Reefs. Annual Review of Marine Science, 13(1), 343-373, doi:10.1146/annurev-marine-042120-071823.
Douillet, P., Ouillon, S., & Cordier, E. (2001). A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs, 20(4), 361-372, doi:10.1007/s00338-001-0193-6.
Downing, J. (2006). Twenty-five years with OBS sensors: The good, the bad, and the ugly. Continental Shelf Research, 26(17), 2299-2318, doi:https://doi.org/10.1016/j.csr.2006.07.018.
Duarte, C. M., Borja, A., Carstensen, J., Elliott, M., Krause-Jensen, D., & Marbà, N. (2015). Paradigms in the Recovery of Estuarine and Coastal Ecosystems. Estuaries and Coasts, 38(4), 1202-1212, doi:10.1007/s12237-013-9750-9.
Duy Vinh, V., Ouillon, S., & Van Uu, D. (2018). Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water, 10(1), doi:10.3390/w10010068.
Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin, 64(9), 1737-1765, doi:https://doi.org/10.1016/j.marpolbul.2012.05.008.
Fan, Y., Ma, X., Dong, X., Feng, Z., & Dong, Y. (2020). Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms. Water Science and Technology, 82(7), 1261-1271, doi:10.2166/wst.2020.385.
Felix, D., Albayrak, I., & Boes, R. M. (2018). In-situ investigation on real-time suspended sediment measurement techniques: Turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. International Journal of Sediment Research, 33(1), 3-17, doi:https://doi.org/10.1016/j.ijsrc.2017.11.003.
Fredsøe, J. (1984). Turbulent Boundary Layer in Wave‐current Motion. 110(8), 1103-1120, doi:doi:10.1061/(ASCE)0733-9429(1984)110:8(1103).
Fugate, D. C., & Friedrichs, C. T. (2002). Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Continental Shelf Research, 22(11), 1867-1886, doi:https://doi.org/10.1016/S0278-4343(02)00043-2.
Gilmour, J. (1999). Experimental investigation into the effects of suspended sediment on fertilisation, larval survival and settlement in a scleractinian coral. Marine Biology, 135(3), 451-462.
Goatley, C. (2013). The Ecological Role of Sediments on Coral Reefs.
Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series.
Goring Derek, G., & Nikora Vladimir, I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 128(1), 117-126, doi:10.1061/(ASCE)0733-9429(2002)128:1(117).
Gourlay, M. R. (1994). Wave transformation on a coral reef. Coastal Engineering, 23(1), 17-42, doi:https://doi.org/10.1016/0378-3839(94)90013-2.
Grant, W., & Madsen, O. (1979). Combined Wave And Current Interaction With A Rough Bottom. Journal Of Geophysical Research-Oceans And Atmospheres, 84, 1797-1808, doi:10.1029/JC084iC04p01797.
Gray, J. R., Glysson, G. D., Turcios, L. M., & Schwarz, G. E. (2000). Comparability of suspended-sediment concentration and total suspended solids data. Water-Resources Investigations Report (- ed.).
Guerra, M., & Thomson, J. (2017). Turbulence Measurements from Five-Beam Acoustic Doppler Current Profilers. Journal of Atmospheric and Oceanic Technology, 34(6), 1267-1284, doi:10.1175/JTECH-D-16-0148.1.
Harris, D. L., Vila-Concejo, A., & Webster, J. M. (2014). Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef. Geomorphology, 222, 132-142, doi:https://doi.org/10.1016/j.geomorph.2014.03.015.
Hashim, A., Catherine, S., & Takaijudin, H. (2013). Effectiveness of Mangrove Forests in Surface Wave Attenuation: A Review. Research Journal of Applied Sciences, Engineering and Technology, 5, 4483-4488, doi:10.19026/rjaset.5.4361.
Hoegh-Guldberg, O., Poloczanska, E., Skirving, W., & Dove, S. (2017). Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science, 4, doi:10.3389/fmars.2017.00158.
Hoitink, A. J. F., & Hoekstra, P. (2005). Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering, 52(2), 103-118, doi:https://doi.org/10.1016/j.coastaleng.2004.09.005.
Horstman, E. M., Dohmen-Janssen, C. M., Narra, P. M. F., van den Berg, N. J. F., Siemerink, M., & Hulscher, S. J. M. H. (2014). Wave attenuation in mangroves: A quantitative approach to field observations. Coastal Engineering, 94, 47-62, doi:https://doi.org/10.1016/j.coastaleng.2014.08.005.
Hsu, W.-Y., Huang, Z.-C., Na, B., Chang, K.-A., Chuang, W.-L., & Yang, R.-Y. (2019). Laboratory Observation of Turbulence and Wave Shear Stresses Under Large Scale Breaking Waves Over a Mild Slope. Journal of Geophysical Research: Oceans, 124(11), 7486-7512, doi:10.1029/2019JC015033.
Huang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., et al. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research: Oceans, 117(C3), doi:https://doi.org/10.1029/2011JC007202.
Huang, Z.-C., Yeh, C.-Y., Tseng, K.-H., & Hsu, W.-Y. (2018). A UAV–RTK Lidar System for Wave and Tide Measurements in Coastal Zones. Journal of Atmospheric and Oceanic Technology, 35(8), 1557-1570, doi:10.1175/JTECH-D-17-0199.1.
Hubbard, D. K. (1986). Sedimentation as a control of reef development: St. Croix, U.S.V.I. Coral Reefs, 5(3), 117-125, doi:10.1007/BF00298179.
Hurley, A., Hill, P., Milligan, T., & Law, B. (2016). Optical methods for estimating apparent density of sediment in suspension. Methods in Oceanography, 17, doi:10.1016/j.mio.2016.09.001.
Ivar, G. J. (1966). WAVE BOUNDARY LAYERS AMD FRICTION FACTORS. Coastal Engineering Proceedings, 1(10), doi:10.9753/icce.v10.9.
Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1), 23-30, doi:10.1007/s00114-001-0283-x.
Jia, L., Ren, J., Nie, D., Chen, B., & Lv, X. (2014). Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season. Acta Oceanologica Sinica, 33(7), 107-115, doi:10.1007/s13131-014-0510-x.
Jing, L., & Ridd, P. V. (1996). Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. J Coastal Engineering, 29(1-2), 169-186.
Jokiel, P., Rodgers, K. u., Storlazzi, C., Field, M., Lager, C., & Lager, D. (2014). Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka′i, Hawai′i. PeerJ, 2, e699, doi:10.7717/peerj.699.
Jones, R., Bessell-Browne, P., Fisher, R., Klonowski, W., & Slivkoff, M. (2016). Assessing the impacts of sediments from dredging on corals. Marine Pollution Bulletin, 102(1), 9-29, doi:https://doi.org/10.1016/j.marpolbul.2015.10.049.
Jones, R., Giofre, N., Luter, H. M., Neoh, T. L., Fisher, R., & Duckworth, A. (2020). Responses of corals to chronic turbidity. Scientific reports, 10(1), 4762, doi:10.1038/s41598-020-61712-w.
Kim, S. C., Friedrichs, C. T., Maa, J. P. Y., & Wright, L. D. (2000). Estimating Bottom Stress in Tidal Boundary Layer from Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 126(6), 399-406, doi:10.1061/(ASCE)0733-9429(2000)126:6(399).
Kjelland, M. E., Woodley, C. M., Swannack, T. M., & Smith, D. L. (2015). A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environment Systems and Decisions, 35(3), 334-350, doi:10.1007/s10669-015-9557-2.
Kuo, C.-y., Keshavmurthy, S., Chung, A., Huang, Y.-Y., Yang, S.-Y., Chen, Y.-C., et al. (2020). Demographic census confirms a stable population of the critically-endangered caryophyllid coral Polycyathus chaishanensis (Scleractinia; Caryophyllidae) in the Datan Algal Reef, Taiwan. Scientific reports, 10, doi:10.1038/s41598-020-67653-8.
Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H., & van der Vegt, M. (2016). Tidal sand bar dimensions and shapes in estuaries. Earth-Science Reviews, 161, 204-223, doi:https://doi.org/10.1016/j.earscirev.2016.08.004.
Li, Z., & Davies Alan, G. (1996). Towards Predicting Sediment Transport in Combined Wave-Current Flow. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(4), 157-164, doi:10.1061/(ASCE)0733-950X(1996)122:4(157).
Lin, H., Hsu, H., Liao, W., Lee, C., Liu, P., & Lin, S. J. J. W. (2013). Biodiversity of the algal reefs in Taoyuan. 2, 1-24.
Liou, C.-Y., Yang, S.-Y., & Chen, C. A. (2017). Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority. Coral Reefs, 36(4), 1253-1253, doi:10.1007/s00338-017-1619-0.
Liu, C., Fu, S., Li, Z., Zhang, Z., & Zeng, J. (2023). Effects of sediment characteristics on the sediment transport capacity of overland flow. International Soil and Water Conservation Research, 11(1), 75-85, doi:https://doi.org/10.1016/j.iswcr.2022.06.003.
Longuet-Higgins, M. S. (1952). On the statisticaldistribution of the height of sea waves. 11, 245-266.
Lowe, R. J., Falter, J. L., Bandet, M. D., Pawlak, G., Atkinson, M. J., Monismith, S. G., et al. (2005). Spectral wave dissipation over a barrier reef. Journal of Geophysical Research: Oceans, 110(C4), doi:https://doi.org/10.1029/2004JC002711.
Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114(C6), doi:https://doi.org/10.1029/2008JC005081.
Lu, J., Wang, X. H., Babanin, A. V., Aijaz, S., Sun, Y., Teng, Y., et al. (2017). Modeling of suspended sediment concentrations under combined wave-current flow over rippled bed. Estuarine, Coastal and Shelf Science, 199, 59-73, doi:https://doi.org/10.1016/j.ecss.2017.09.020.
Lueck, R. G., & Lu, Y. (1997). The logarithmic layer in a tidal channel. Continental Shelf Research, 17(14), 1785-1801, doi:https://doi.org/10.1016/S0278-4343(97)00049-6.
Ly, T. N., & Huang, Z.-C. (2022). Real-time and long-term monitoring of waves and suspended sediment concentrations over an intertidal algal reef. Environmental Monitoring and Assessment, 194(11), 839, doi:10.1007/s10661-022-10491-0.
Lynch, J. F., Irish, J. D., Sherwood, C. R., & Agrawal, Y. C. (1994). Determining suspended sediment particle size information from acoustical and optical backscatter measurements. 14, 1139, doi:10.1016/0278-4343(94)90032-9.
Mathew, R., & Winterwerp, J. C. (2017). Surficial sediment erodibility from time-series measurements of suspended sediment concentrations: development and validation. Ocean Dynamics, 67(6), 691-712, doi:10.1007/s10236-017-1055-2.
Mathisen, P. P., & Madsen, O. S. (1999). Waves and currents over a fixed rippled bed: 3. Bottom and apparent roughness for spectral waves and currents. Journal of Geophysical Research: Oceans, 104(C8), 18447-18461, doi:10.1029/1999JC900114.
McLean, S. R., & Nikora, V. I. (2006). Characteristics of turbulent unidirectional flow over rough beds: Double-averaging perspective with particular focus on sand dunes and gravel beds. Water Resources Research, 42(10), doi:https://doi.org/10.1029/2005WR004708.
Meadows, D., & Birkeland, C. (1997). Life and Death of Coral Reefs. Ecology, 78, doi:10.2307/2265925.
Mikkelsen, O., Hill, P., Milligan, T., & Chant, R. (2005). In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera. Continental Shelf Research, 25, 1959-1978, doi:10.1016/j.csr.2005.07.001.
Mikkelsen, O., & Pejrup, M. (2001). The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Marine Letters, 20(4), 187-195, doi:10.1007/s003670100064.
Miller, R. L., & Cruise, J. F. (1995). Effects of suspended sediments on coral growth: evidence from remote sensing and hydrologic modeling. 53(3), 177-187.
Morgan, K. M., & Kench, P. S. (2014). A detrital sediment budget of a Maldivian reef platform. Geomorphology, 222, 122-131, doi:https://doi.org/10.1016/j.geomorph.2014.02.013.
Nda, M., Adnan, M. S., Yosuff, M., & Abdullahi Ahmad, K. (2019). A review of field methods for suspended and bedload sediment measurement. World Journal of Engineering, 16, doi:10.1108/WJE-07-2018-0226.
Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport: Singapore ; River Edge.
Ochi, M. K. (1998). Ocean waves-ocean technology series. Cambridge University Press, doi:https://doi.org/10.1017/CBO9780511529559.
Ogston, A. S., Storlazzi, C. D., Field, M. E., & Presto, M. K. (2004). Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs, 23(4), 559-569, doi:10.1007/s00338-004-0415-9.
Ole Secher, M. (1994). SPECTRAL WAVE-CURRENT BOTTOM BOUNDARY LAYER FLOWS. Coastal Engineering Proceedings, 1(24), doi:10.9753/icce.v24.%p.
Ouillon, S. (2018). Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods. Water, 10(4), doi:10.3390/w10040390.
Pang, W., Dai, Z., Ma, B., Wang, J., Huang, H., & Li, S. (2020). Linkage between turbulent kinetic energy, waves and suspended sediment concentrations in the nearshore zone. Marine Geology, 425, 106190, doi:https://doi.org/10.1016/j.margeo.2020.106190.
Pearson, S. G., Verney, R., van Prooijen, B. C., Tran, D., Hendriks, E. C. M., Jacquet, M., et al. (2021). Characterizing the Composition of Sand and Mud Suspensions in Coastal and Estuarine Environments Using Combined Optical and Acoustic Measurements. Journal of Geophysical Research: Oceans, 126(7), e2021JC017354, doi:https://doi.org/10.1029/2021JC017354.
Pomeroy, A. W. M., Lowe, R. J., Ghisalberti, M., Storlazzi, C., Symonds, G., & Roelvink, D. (2017). Sediment transport in the presence of large reef bottom roughness. Journal of Geophysical Research: Oceans, 122(2), 1347-1368, doi:10.1002/2016jc011755.
Pomeroy, A. W. M., Lowe, R. J., Ghisalberti, M., Winter, G., Storlazzi, C., & Cuttler, M. (2018). Spatial Variability of Sediment Transport Processes Over Intratidal and Subtidal Timescales Within a Fringing Coral Reef System. Journal of Geophysical Research: Earth Surface, 123(5), 1013-1034, doi:10.1002/2017jf004468.
Pomeroy, A. W. M., Storlazzi, C. D., Rosenberger, K. J., Lowe, R. J., Hansen, J. E., & Buckley, M. L. (2021). The Contribution of Currents, Sea-Swell Waves, and Infragravity Waves to Suspended-Sediment Transport Across a Coral Reef-Lagoon System. Journal of Geophysical Research: Oceans, 126(3), e2020JC017010, doi:https://doi.org/10.1029/2020JC017010.
Pope, N. D., Widdows, J., & Brinsley, M. D. (2006). Estimation of bed shear stress using the turbulent kinetic energy approach—A comparison of annular flume and field data. Continental Shelf Research, 26(8), 959-970, doi:https://doi.org/10.1016/j.csr.2006.02.010.
Presto, M. K., Ogston, A. S., Storlazzi, C. D., & Field, M. E. (2006). Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii. Estuarine, Coastal and Shelf Science, 67(1), 67-81, doi:https://doi.org/10.1016/j.ecss.2005.10.015.
Rai, A. K., & Kumar, A. (2015). Continuous measurement of suspended sediment concentration: Technological advancement and future outlook. Measurement, 76, 209-227, doi:https://doi.org/10.1016/j.measurement.2015.08.013.
Reidenbach, M. A., Monismith, S. G., Koseff, J. R., Yahel, G., & Genin, A. (2006). Boundary layer turbulence and flow structure over a fringing coral reef. Limnology and Oceanography, 51(5), 1956-1968, doi:https://doi.org/10.4319/lo.2006.51.5.1956.
Reimers, C. E., & Fogaren, K. E. (2021). Bottom Boundary Layer Oxygen Fluxes During Winter on the Oregon Shelf. Journal of Geophysical Research: Oceans, 126(3), e2020JC016828, doi:https://doi.org/10.1029/2020JC016828.
Renzi, M., Provenza, F., Pignattelli, S., Cilenti, L., Specchiulli, A., & Pepi, M. (2019). Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. International Journal of Environmental Research and Public Health, 16(18), doi:10.3390/ijerph16183466.
Ribberink, J. S., & Al-Salem, A. (1995). Sheet flow and suspension of sand in oscillatory boundary layers. J Coastal Engineering, 25(3-4), 205-225.
Riegl, B., Heine, C., & Branch, G. M. (1996). Function of funnel-shaped coral growth in a high-sedimentation environment. 145, 87-93.
Rijn, L. C. v. (1984). Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Engineering, 110(11), 1613-1641, doi:doi:10.1061/(ASCE)0733-9429(1984)110:11(1613).
Risk, M., & Edinger, E. (2011). Impacts of Sediment on Coral Reefs. In (pp. 575-586).
Roeber, V., & Cheung, K. F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 70, 1-20, doi:https://doi.org/10.1016/j.coastaleng.2012.06.001.
Ruhl, C., & Schoellhamer, D. (2004). Spatial and Temporal Variability of Suspended-Sediment Concentrations in a Shallow Estuarine Environment. San Francisco Estuary and Watershed Science, 2, doi:10.15447/sfews.2004v2iss2art1.
Sahin, C., Safak, I., Hsu, T.-J., & Sheremet, A. (2013). Observations of suspended sediment stratification from acoustic backscatter in muddy environments. Marine Geology, 336, 24-32, doi:https://doi.org/10.1016/j.margeo.2012.12.001.
Schleyer, M., & Celliers, L. (2003). Coral dominance at the reef–sediment interface in marginal coral communities at Sodwana Bay, South Africa. J Marine Freshwater Research, 54(8), 967-972.
Schoellhamer, D. H. (2002). Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Continental Shelf Research, 22(11-13), 1857-1866, doi:Doi 10.1016/S0278-4343(02)00042-0.
Schoellhamer, D. H., & Wright, S. A. (2003). Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors. IAHS-AISH Publication, 28-36.
Shahmohammadi, R., Afzalimehr, H., & Sui, J. (2022). Estimation of Bed Shear Stress in Shallow Transitional Flows under Condition of Incipient Motion of Sand Particles Using Turbulence Characteristics. Water, 14(16), doi:10.3390/w14162515.
Shao, Y., & Maa, J. (2017). Comparisons of Different Instruments for Measuring Suspended Cohesive Sediment Concentrations. Water, 9, 968, doi:10.3390/w9120968.
Shaw, W. J., & Trowbridge, J. H. (2001). The Direct Estimation of Near-Bottom Turbulent Fluxes in the Presence of Energetic Wave Motions. Journal of Atmospheric and Oceanic Technology, 18(9), 1540-1557, doi:10.1175/1520-0426(2001)018<1540:Tdeonb>2.0.Co;2.
Shekhar, S., Kumaresan, S., Chakraborty, S., Arumugam, S., & Balachandar, K. (2019). Total organic carbon profile in water and sediment in coral reef ecosystem of Agatti Island, Lakshadweep Sea. Indian Journal of Geo-Marine Sciences, 48, 936-942.
Shi, N. C., Larsen, L. H., & Downing, J. P. (1985). Predicting suspended sediment concentration on continental shelves. Marine Geology, 62(3), 255-275, doi:https://doi.org/10.1016/0025-3227(85)90119-7.
Smyth, C., & Hay, A. E. (2002). Wave Friction Factors in Nearshore Sands. Journal of Physical Oceanography, 32(12), 3490-3498, doi:10.1175/1520-0485(2002)032<3490:WFFINS>2.0.CO;2.
Soulsby, R. (1997). Dynamics of marine sands.
Stafford-Smith, M. Mortality of the hard coral Leptoria phrygia under persistent sediment influx. In Proceedings Seventh International Coral Reef Symposium, Guam, 1992 (Vol. 1, pp. 289-299)
Storlazzi, C., Norris, B., & Rosenberger, K. (2015). The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs, 34, 967-975, doi:10.1007/s00338-015-1268-0.
Styles, R., & Glenn, S. M. (2000). Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research: Oceans, 105(C10), 24119-24139, doi:https://doi.org/10.1029/2000JC900115.
Swart, D. H. (1974). Offshore sediment transport and equilibrium beach profiles.
Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., Symonds, G., & Brinkman, R. (2011). Nearshore circulation in a tropical fringing reef system. Journal of Geophysical Research: Oceans, 116(C2), doi:https://doi.org/10.1029/2010JC006439.
Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence: MIT press.
Vila-Concejo, A., Harris, D. L., Power, H. E., Shannon, A. M., & Webster, J. M. (2014). Sediment transport and mixing depth on a coral reef sand apron. Geomorphology, 222, 143-150, doi:https://doi.org/10.1016/j.geomorph.2013.09.034.
Vo Luong, P., & Massel, S. (2006). Experiments on wave motion and suspended sediment concentration at Nang Hai, Can Gio mangrove forest, Southern Vietnam. Oceanologia, 48.
Voulgaris, G., & Meyers, S. T. (2004). Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research, 24(15), 1659-1683, doi:https://doi.org/10.1016/j.csr.2004.05.006.
Wang, F., Shen, Y., Chen, Q., & Li, W. (2019). A heuristic singular spectrum analysis method for suspended sediment concentration time series contaminated with multiplicative noise. Acta Geodaetica et Geophysica, 54(4), 483-497, doi:10.1007/s40328-019-00269-1.
Wiberg, P. L., Taube, S. R., Ferguson, A. E., Kremer, M. R., & Reidenbach, M. A. (2019). Wave Attenuation by Oyster Reefs in Shallow Coastal Bays. Estuaries and Coasts, 42(2), 331-347, doi:10.1007/s12237-018-0463-y.
Young, I. R. (1999). Wind generated ocean waves: Elsevier.
Yu, H.-Y., Huang, S.-C., & Lin, H.-J. (2020). Factors structuring the macrobenthos community in tidal algal reefs. Marine Environmental Research, 161, 105119, doi:https://doi.org/10.1016/j.marenvres.2020.105119.
Zhang, Q., Gong, Z., Zhang, C., Lacy, J., Jaffe, B., & Xu, B. (2018). Bed Shear Stress Estimation Under Wave Conditions Using near-bottom Measurements: Comparison of Methods. Journal of Coastal Research, 85, 241-245, doi:10.2112/SI85-049.1.
Zhou, Y., Ma, N., Wang, Q., Wang, Z., Chen, C., Tao, J., et al. (2022). Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmos. Chem. Phys., 22(3), 2029-2047, doi:10.5194/acp-22-2029-2022.
Zhu, Q., van Prooijen, B. C., Wang, Z. B., Ma, Y. X., & Yang, S. L. (2016). Bed shear stress estimation on an open intertidal flat using in situ measurements. 182, 190-201, doi:10.1016/j.ecss.2016.08.028.
指導教授 黃志誠(Zhi-Cheng Huang) 審核日期 2023-5-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明