參考文獻 |
Adamo, F., Attivissimo, F., Guarnieri Calò Carducci, C., & Lanzolla, A. (2015). A Smart Sensor Network for Sea Water Quality Monitoring. Sensors Journal, IEEE, 15, 2514-2522, doi:10.1109/JSEN.2014.2360816.
Antunes do Carmo, J., Santos, F., & Temperville, A. (1998). Bottom friction and time-dependent shear stress for wave-current interaction (Vol. 41).
Avnimelech, Y., Troeger, B., & Reed, L. (1982). Mutual Flocculation of Algae and Clay: Evidence and Implications. Science (New York, N.Y.), 216, 63-65, doi:10.1126/science.216.4541.63.
Ayegba, P. O., & Edomwonyi-Otu, L. C. (2020). Turbulence statistics and flow structure in fluid flow using particle image velocimetry technique: A review. Engineering Reports, 2(3), e12138, doi:https://doi.org/10.1002/eng2.12138.
Bagnold, R. A. (1956). The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(964), 235-297, doi:10.1098/rsta.1956.0020.
Bian, Hu, Z., Xue, Z., & Lv, J. (2012). An observational study of the carrying capacity of suspended sediment during a storm event. Environmental Monitoring and Assessment, 184(10), 6037-6044, doi:10.1007/s10661-011-2401-3.
Bilotta, G., Brazier, R., & Haygarth, P. (2007). The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Advances in Agronomy, 94, 237-280, doi:10.1016/S0065-2113(06)94006-1.
Black, K. P., & Rosenberg, M. A. (1994). Suspended sand measurements in a turbulent environment: field comparison of optical and pump sampling techniques. Coastal Engineering, 24(1), 137-150, doi:https://doi.org/10.1016/0378-3839(94)90030-2.
Brander, R. W., Kench, P. S., & Hart, D. (2004). Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Marine Geology, 207(1), 169-184, doi:https://doi.org/10.1016/j.margeo.2004.03.014.
Bricker, J. D., & Monismith, S. G. (2007a). Spectral Wave–Turbulence Decomposition. Journal of Atmospheric and Oceanic Technology, 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
Bricker, J. D., & Monismith, S. G. (2007b). Spectral Wave - Turbulence Decomposition. Journal of Atmospheric and Oceanic Technology, 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
Brown, S., Greaves, D., Magar, V., & Conley, D. (2016). Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coastal Engineering, 114, doi:10.1016/j.coastaleng.2016.04.002.
Burchard, H., Craig, P. D., Gemmrich, J. R., van Haren, H., Mathieu, P.-P., Meier, H. E. M., et al. (2008). Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Progress in Oceanography, 76(4), 399-442, doi:https://doi.org/10.1016/j.pocean.2007.09.005.
Buschmann, F., Erm, A., Alari, V., Listak, M., Rebane, J., & Toming, G. Monitoring sediment transport in the coastal zone of Tallinn Bay. In 2012 IEEE/OES Baltic International Symposium (BALTIC), 8-10 May 2012 2012 (pp. 1-13). doi:10.1109/BALTIC.2012.6249190.
Chardón-Maldonado, P., Pintado-Patiño, J. C., & Puleo, J. A. (2016). Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes. Coastal Engineering, 115, 8-25, doi:https://doi.org/10.1016/j.coastaleng.2015.10.008.
Chen, Y.-J., Hsu, S. M., Liao, S.-Y., Chen, T.-C., & Tseng, W.-C. (2019). Natural Gas or Algal Reef: Survey-Based Valuations of Pro-Gas and Pro-Reef Groups Specifically for Policy Advising. Energies, 12(24), doi:10.3390/en12244682.
Cordier, E., Poizot, E., & MÉAr, Y. (2012). Swell impact on reef sedimentary processes: A case study of the La Reunion fringing reef. Sedimentology, 59(7), 2004-2023, doi:https://doi.org/10.1111/j.1365-3091.2012.01332.x.
Cox, D., & Kobayashi, N. (2000). Identification of intense, intermittent coherent motions under shoaling and breaking waves. Journal of Geophysical Research, 105, 14223-14236, doi:10.1029/2000JC900048.
Cuttler, M. V. W., Lowe, R. J., Falter, J. L., & Buscombe, D. (2017). Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques. Sedimentology, 64(4), 987-1004, doi:10.1111/sed.12338.
Dalrymple, R. A., MacMahan, J. H., Reniers, A. J. H. M., & Nelko, V. (2011). Rip Currents. Annual Review of Fluid Mechanics, 43(1), 551-581, doi:10.1146/annurev-fluid-122109-160733.
Davies, A. G., Ribberink, J. S., Temperville, A., & Zyserman, J. A. (1997). Comparisons between sediment transport models and observations made in wave and current flows above plane beds. Coastal Engineering, 31(1), 163-198, doi:https://doi.org/10.1016/S0378-3839(97)00005-7.
Davis, K. A., Pawlak, G., & Monismith, S. G. (2021). Turbulence and Coral Reefs. Annual Review of Marine Science, 13(1), 343-373, doi:10.1146/annurev-marine-042120-071823.
Douillet, P., Ouillon, S., & Cordier, E. (2001). A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs, 20(4), 361-372, doi:10.1007/s00338-001-0193-6.
Downing, J. (2006). Twenty-five years with OBS sensors: The good, the bad, and the ugly. Continental Shelf Research, 26(17), 2299-2318, doi:https://doi.org/10.1016/j.csr.2006.07.018.
Duarte, C. M., Borja, A., Carstensen, J., Elliott, M., Krause-Jensen, D., & Marbà, N. (2015). Paradigms in the Recovery of Estuarine and Coastal Ecosystems. Estuaries and Coasts, 38(4), 1202-1212, doi:10.1007/s12237-013-9750-9.
Duy Vinh, V., Ouillon, S., & Van Uu, D. (2018). Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water, 10(1), doi:10.3390/w10010068.
Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin, 64(9), 1737-1765, doi:https://doi.org/10.1016/j.marpolbul.2012.05.008.
Fan, Y., Ma, X., Dong, X., Feng, Z., & Dong, Y. (2020). Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms. Water Science and Technology, 82(7), 1261-1271, doi:10.2166/wst.2020.385.
Felix, D., Albayrak, I., & Boes, R. M. (2018). In-situ investigation on real-time suspended sediment measurement techniques: Turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. International Journal of Sediment Research, 33(1), 3-17, doi:https://doi.org/10.1016/j.ijsrc.2017.11.003.
Fredsøe, J. (1984). Turbulent Boundary Layer in Wave‐current Motion. 110(8), 1103-1120, doi:doi:10.1061/(ASCE)0733-9429(1984)110:8(1103).
Fugate, D. C., & Friedrichs, C. T. (2002). Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Continental Shelf Research, 22(11), 1867-1886, doi:https://doi.org/10.1016/S0278-4343(02)00043-2.
Gilmour, J. (1999). Experimental investigation into the effects of suspended sediment on fertilisation, larval survival and settlement in a scleractinian coral. Marine Biology, 135(3), 451-462.
Goatley, C. (2013). The Ecological Role of Sediments on Coral Reefs.
Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series.
Goring Derek, G., & Nikora Vladimir, I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 128(1), 117-126, doi:10.1061/(ASCE)0733-9429(2002)128:1(117).
Gourlay, M. R. (1994). Wave transformation on a coral reef. Coastal Engineering, 23(1), 17-42, doi:https://doi.org/10.1016/0378-3839(94)90013-2.
Grant, W., & Madsen, O. (1979). Combined Wave And Current Interaction With A Rough Bottom. Journal Of Geophysical Research-Oceans And Atmospheres, 84, 1797-1808, doi:10.1029/JC084iC04p01797.
Gray, J. R., Glysson, G. D., Turcios, L. M., & Schwarz, G. E. (2000). Comparability of suspended-sediment concentration and total suspended solids data. Water-Resources Investigations Report (- ed.).
Guerra, M., & Thomson, J. (2017). Turbulence Measurements from Five-Beam Acoustic Doppler Current Profilers. Journal of Atmospheric and Oceanic Technology, 34(6), 1267-1284, doi:10.1175/JTECH-D-16-0148.1.
Harris, D. L., Vila-Concejo, A., & Webster, J. M. (2014). Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef. Geomorphology, 222, 132-142, doi:https://doi.org/10.1016/j.geomorph.2014.03.015.
Hashim, A., Catherine, S., & Takaijudin, H. (2013). Effectiveness of Mangrove Forests in Surface Wave Attenuation: A Review. Research Journal of Applied Sciences, Engineering and Technology, 5, 4483-4488, doi:10.19026/rjaset.5.4361.
Hoegh-Guldberg, O., Poloczanska, E., Skirving, W., & Dove, S. (2017). Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science, 4, doi:10.3389/fmars.2017.00158.
Hoitink, A. J. F., & Hoekstra, P. (2005). Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering, 52(2), 103-118, doi:https://doi.org/10.1016/j.coastaleng.2004.09.005.
Horstman, E. M., Dohmen-Janssen, C. M., Narra, P. M. F., van den Berg, N. J. F., Siemerink, M., & Hulscher, S. J. M. H. (2014). Wave attenuation in mangroves: A quantitative approach to field observations. Coastal Engineering, 94, 47-62, doi:https://doi.org/10.1016/j.coastaleng.2014.08.005.
Hsu, W.-Y., Huang, Z.-C., Na, B., Chang, K.-A., Chuang, W.-L., & Yang, R.-Y. (2019). Laboratory Observation of Turbulence and Wave Shear Stresses Under Large Scale Breaking Waves Over a Mild Slope. Journal of Geophysical Research: Oceans, 124(11), 7486-7512, doi:10.1029/2019JC015033.
Huang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., et al. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research: Oceans, 117(C3), doi:https://doi.org/10.1029/2011JC007202.
Huang, Z.-C., Yeh, C.-Y., Tseng, K.-H., & Hsu, W.-Y. (2018). A UAV–RTK Lidar System for Wave and Tide Measurements in Coastal Zones. Journal of Atmospheric and Oceanic Technology, 35(8), 1557-1570, doi:10.1175/JTECH-D-17-0199.1.
Hubbard, D. K. (1986). Sedimentation as a control of reef development: St. Croix, U.S.V.I. Coral Reefs, 5(3), 117-125, doi:10.1007/BF00298179.
Hurley, A., Hill, P., Milligan, T., & Law, B. (2016). Optical methods for estimating apparent density of sediment in suspension. Methods in Oceanography, 17, doi:10.1016/j.mio.2016.09.001.
Ivar, G. J. (1966). WAVE BOUNDARY LAYERS AMD FRICTION FACTORS. Coastal Engineering Proceedings, 1(10), doi:10.9753/icce.v10.9.
Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1), 23-30, doi:10.1007/s00114-001-0283-x.
Jia, L., Ren, J., Nie, D., Chen, B., & Lv, X. (2014). Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season. Acta Oceanologica Sinica, 33(7), 107-115, doi:10.1007/s13131-014-0510-x.
Jing, L., & Ridd, P. V. (1996). Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. J Coastal Engineering, 29(1-2), 169-186.
Jokiel, P., Rodgers, K. u., Storlazzi, C., Field, M., Lager, C., & Lager, D. (2014). Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka′i, Hawai′i. PeerJ, 2, e699, doi:10.7717/peerj.699.
Jones, R., Bessell-Browne, P., Fisher, R., Klonowski, W., & Slivkoff, M. (2016). Assessing the impacts of sediments from dredging on corals. Marine Pollution Bulletin, 102(1), 9-29, doi:https://doi.org/10.1016/j.marpolbul.2015.10.049.
Jones, R., Giofre, N., Luter, H. M., Neoh, T. L., Fisher, R., & Duckworth, A. (2020). Responses of corals to chronic turbidity. Scientific reports, 10(1), 4762, doi:10.1038/s41598-020-61712-w.
Kim, S. C., Friedrichs, C. T., Maa, J. P. Y., & Wright, L. D. (2000). Estimating Bottom Stress in Tidal Boundary Layer from Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 126(6), 399-406, doi:10.1061/(ASCE)0733-9429(2000)126:6(399).
Kjelland, M. E., Woodley, C. M., Swannack, T. M., & Smith, D. L. (2015). A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environment Systems and Decisions, 35(3), 334-350, doi:10.1007/s10669-015-9557-2.
Kuo, C.-y., Keshavmurthy, S., Chung, A., Huang, Y.-Y., Yang, S.-Y., Chen, Y.-C., et al. (2020). Demographic census confirms a stable population of the critically-endangered caryophyllid coral Polycyathus chaishanensis (Scleractinia; Caryophyllidae) in the Datan Algal Reef, Taiwan. Scientific reports, 10, doi:10.1038/s41598-020-67653-8.
Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H., & van der Vegt, M. (2016). Tidal sand bar dimensions and shapes in estuaries. Earth-Science Reviews, 161, 204-223, doi:https://doi.org/10.1016/j.earscirev.2016.08.004.
Li, Z., & Davies Alan, G. (1996). Towards Predicting Sediment Transport in Combined Wave-Current Flow. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(4), 157-164, doi:10.1061/(ASCE)0733-950X(1996)122:4(157).
Lin, H., Hsu, H., Liao, W., Lee, C., Liu, P., & Lin, S. J. J. W. (2013). Biodiversity of the algal reefs in Taoyuan. 2, 1-24.
Liou, C.-Y., Yang, S.-Y., & Chen, C. A. (2017). Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority. Coral Reefs, 36(4), 1253-1253, doi:10.1007/s00338-017-1619-0.
Liu, C., Fu, S., Li, Z., Zhang, Z., & Zeng, J. (2023). Effects of sediment characteristics on the sediment transport capacity of overland flow. International Soil and Water Conservation Research, 11(1), 75-85, doi:https://doi.org/10.1016/j.iswcr.2022.06.003.
Longuet-Higgins, M. S. (1952). On the statisticaldistribution of the height of sea waves. 11, 245-266.
Lowe, R. J., Falter, J. L., Bandet, M. D., Pawlak, G., Atkinson, M. J., Monismith, S. G., et al. (2005). Spectral wave dissipation over a barrier reef. Journal of Geophysical Research: Oceans, 110(C4), doi:https://doi.org/10.1029/2004JC002711.
Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114(C6), doi:https://doi.org/10.1029/2008JC005081.
Lu, J., Wang, X. H., Babanin, A. V., Aijaz, S., Sun, Y., Teng, Y., et al. (2017). Modeling of suspended sediment concentrations under combined wave-current flow over rippled bed. Estuarine, Coastal and Shelf Science, 199, 59-73, doi:https://doi.org/10.1016/j.ecss.2017.09.020.
Lueck, R. G., & Lu, Y. (1997). The logarithmic layer in a tidal channel. Continental Shelf Research, 17(14), 1785-1801, doi:https://doi.org/10.1016/S0278-4343(97)00049-6.
Ly, T. N., & Huang, Z.-C. (2022). Real-time and long-term monitoring of waves and suspended sediment concentrations over an intertidal algal reef. Environmental Monitoring and Assessment, 194(11), 839, doi:10.1007/s10661-022-10491-0.
Lynch, J. F., Irish, J. D., Sherwood, C. R., & Agrawal, Y. C. (1994). Determining suspended sediment particle size information from acoustical and optical backscatter measurements. 14, 1139, doi:10.1016/0278-4343(94)90032-9.
Mathew, R., & Winterwerp, J. C. (2017). Surficial sediment erodibility from time-series measurements of suspended sediment concentrations: development and validation. Ocean Dynamics, 67(6), 691-712, doi:10.1007/s10236-017-1055-2.
Mathisen, P. P., & Madsen, O. S. (1999). Waves and currents over a fixed rippled bed: 3. Bottom and apparent roughness for spectral waves and currents. Journal of Geophysical Research: Oceans, 104(C8), 18447-18461, doi:10.1029/1999JC900114.
McLean, S. R., & Nikora, V. I. (2006). Characteristics of turbulent unidirectional flow over rough beds: Double-averaging perspective with particular focus on sand dunes and gravel beds. Water Resources Research, 42(10), doi:https://doi.org/10.1029/2005WR004708.
Meadows, D., & Birkeland, C. (1997). Life and Death of Coral Reefs. Ecology, 78, doi:10.2307/2265925.
Mikkelsen, O., Hill, P., Milligan, T., & Chant, R. (2005). In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera. Continental Shelf Research, 25, 1959-1978, doi:10.1016/j.csr.2005.07.001.
Mikkelsen, O., & Pejrup, M. (2001). The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Marine Letters, 20(4), 187-195, doi:10.1007/s003670100064.
Miller, R. L., & Cruise, J. F. (1995). Effects of suspended sediments on coral growth: evidence from remote sensing and hydrologic modeling. 53(3), 177-187.
Morgan, K. M., & Kench, P. S. (2014). A detrital sediment budget of a Maldivian reef platform. Geomorphology, 222, 122-131, doi:https://doi.org/10.1016/j.geomorph.2014.02.013.
Nda, M., Adnan, M. S., Yosuff, M., & Abdullahi Ahmad, K. (2019). A review of field methods for suspended and bedload sediment measurement. World Journal of Engineering, 16, doi:10.1108/WJE-07-2018-0226.
Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport: Singapore ; River Edge.
Ochi, M. K. (1998). Ocean waves-ocean technology series. Cambridge University Press, doi:https://doi.org/10.1017/CBO9780511529559.
Ogston, A. S., Storlazzi, C. D., Field, M. E., & Presto, M. K. (2004). Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs, 23(4), 559-569, doi:10.1007/s00338-004-0415-9.
Ole Secher, M. (1994). SPECTRAL WAVE-CURRENT BOTTOM BOUNDARY LAYER FLOWS. Coastal Engineering Proceedings, 1(24), doi:10.9753/icce.v24.%p.
Ouillon, S. (2018). Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods. Water, 10(4), doi:10.3390/w10040390.
Pang, W., Dai, Z., Ma, B., Wang, J., Huang, H., & Li, S. (2020). Linkage between turbulent kinetic energy, waves and suspended sediment concentrations in the nearshore zone. Marine Geology, 425, 106190, doi:https://doi.org/10.1016/j.margeo.2020.106190.
Pearson, S. G., Verney, R., van Prooijen, B. C., Tran, D., Hendriks, E. C. M., Jacquet, M., et al. (2021). Characterizing the Composition of Sand and Mud Suspensions in Coastal and Estuarine Environments Using Combined Optical and Acoustic Measurements. Journal of Geophysical Research: Oceans, 126(7), e2021JC017354, doi:https://doi.org/10.1029/2021JC017354.
Pomeroy, A. W. M., Lowe, R. J., Ghisalberti, M., Storlazzi, C., Symonds, G., & Roelvink, D. (2017). Sediment transport in the presence of large reef bottom roughness. Journal of Geophysical Research: Oceans, 122(2), 1347-1368, doi:10.1002/2016jc011755.
Pomeroy, A. W. M., Lowe, R. J., Ghisalberti, M., Winter, G., Storlazzi, C., & Cuttler, M. (2018). Spatial Variability of Sediment Transport Processes Over Intratidal and Subtidal Timescales Within a Fringing Coral Reef System. Journal of Geophysical Research: Earth Surface, 123(5), 1013-1034, doi:10.1002/2017jf004468.
Pomeroy, A. W. M., Storlazzi, C. D., Rosenberger, K. J., Lowe, R. J., Hansen, J. E., & Buckley, M. L. (2021). The Contribution of Currents, Sea-Swell Waves, and Infragravity Waves to Suspended-Sediment Transport Across a Coral Reef-Lagoon System. Journal of Geophysical Research: Oceans, 126(3), e2020JC017010, doi:https://doi.org/10.1029/2020JC017010.
Pope, N. D., Widdows, J., & Brinsley, M. D. (2006). Estimation of bed shear stress using the turbulent kinetic energy approach—A comparison of annular flume and field data. Continental Shelf Research, 26(8), 959-970, doi:https://doi.org/10.1016/j.csr.2006.02.010.
Presto, M. K., Ogston, A. S., Storlazzi, C. D., & Field, M. E. (2006). Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii. Estuarine, Coastal and Shelf Science, 67(1), 67-81, doi:https://doi.org/10.1016/j.ecss.2005.10.015.
Rai, A. K., & Kumar, A. (2015). Continuous measurement of suspended sediment concentration: Technological advancement and future outlook. Measurement, 76, 209-227, doi:https://doi.org/10.1016/j.measurement.2015.08.013.
Reidenbach, M. A., Monismith, S. G., Koseff, J. R., Yahel, G., & Genin, A. (2006). Boundary layer turbulence and flow structure over a fringing coral reef. Limnology and Oceanography, 51(5), 1956-1968, doi:https://doi.org/10.4319/lo.2006.51.5.1956.
Reimers, C. E., & Fogaren, K. E. (2021). Bottom Boundary Layer Oxygen Fluxes During Winter on the Oregon Shelf. Journal of Geophysical Research: Oceans, 126(3), e2020JC016828, doi:https://doi.org/10.1029/2020JC016828.
Renzi, M., Provenza, F., Pignattelli, S., Cilenti, L., Specchiulli, A., & Pepi, M. (2019). Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. International Journal of Environmental Research and Public Health, 16(18), doi:10.3390/ijerph16183466.
Ribberink, J. S., & Al-Salem, A. (1995). Sheet flow and suspension of sand in oscillatory boundary layers. J Coastal Engineering, 25(3-4), 205-225.
Riegl, B., Heine, C., & Branch, G. M. (1996). Function of funnel-shaped coral growth in a high-sedimentation environment. 145, 87-93.
Rijn, L. C. v. (1984). Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Engineering, 110(11), 1613-1641, doi:doi:10.1061/(ASCE)0733-9429(1984)110:11(1613).
Risk, M., & Edinger, E. (2011). Impacts of Sediment on Coral Reefs. In (pp. 575-586).
Roeber, V., & Cheung, K. F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 70, 1-20, doi:https://doi.org/10.1016/j.coastaleng.2012.06.001.
Ruhl, C., & Schoellhamer, D. (2004). Spatial and Temporal Variability of Suspended-Sediment Concentrations in a Shallow Estuarine Environment. San Francisco Estuary and Watershed Science, 2, doi:10.15447/sfews.2004v2iss2art1.
Sahin, C., Safak, I., Hsu, T.-J., & Sheremet, A. (2013). Observations of suspended sediment stratification from acoustic backscatter in muddy environments. Marine Geology, 336, 24-32, doi:https://doi.org/10.1016/j.margeo.2012.12.001.
Schleyer, M., & Celliers, L. (2003). Coral dominance at the reef–sediment interface in marginal coral communities at Sodwana Bay, South Africa. J Marine Freshwater Research, 54(8), 967-972.
Schoellhamer, D. H. (2002). Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Continental Shelf Research, 22(11-13), 1857-1866, doi:Doi 10.1016/S0278-4343(02)00042-0.
Schoellhamer, D. H., & Wright, S. A. (2003). Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors. IAHS-AISH Publication, 28-36.
Shahmohammadi, R., Afzalimehr, H., & Sui, J. (2022). Estimation of Bed Shear Stress in Shallow Transitional Flows under Condition of Incipient Motion of Sand Particles Using Turbulence Characteristics. Water, 14(16), doi:10.3390/w14162515.
Shao, Y., & Maa, J. (2017). Comparisons of Different Instruments for Measuring Suspended Cohesive Sediment Concentrations. Water, 9, 968, doi:10.3390/w9120968.
Shaw, W. J., & Trowbridge, J. H. (2001). The Direct Estimation of Near-Bottom Turbulent Fluxes in the Presence of Energetic Wave Motions. Journal of Atmospheric and Oceanic Technology, 18(9), 1540-1557, doi:10.1175/1520-0426(2001)018<1540:Tdeonb>2.0.Co;2.
Shekhar, S., Kumaresan, S., Chakraborty, S., Arumugam, S., & Balachandar, K. (2019). Total organic carbon profile in water and sediment in coral reef ecosystem of Agatti Island, Lakshadweep Sea. Indian Journal of Geo-Marine Sciences, 48, 936-942.
Shi, N. C., Larsen, L. H., & Downing, J. P. (1985). Predicting suspended sediment concentration on continental shelves. Marine Geology, 62(3), 255-275, doi:https://doi.org/10.1016/0025-3227(85)90119-7.
Smyth, C., & Hay, A. E. (2002). Wave Friction Factors in Nearshore Sands. Journal of Physical Oceanography, 32(12), 3490-3498, doi:10.1175/1520-0485(2002)032<3490:WFFINS>2.0.CO;2.
Soulsby, R. (1997). Dynamics of marine sands.
Stafford-Smith, M. Mortality of the hard coral Leptoria phrygia under persistent sediment influx. In Proceedings Seventh International Coral Reef Symposium, Guam, 1992 (Vol. 1, pp. 289-299)
Storlazzi, C., Norris, B., & Rosenberger, K. (2015). The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs, 34, 967-975, doi:10.1007/s00338-015-1268-0.
Styles, R., & Glenn, S. M. (2000). Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research: Oceans, 105(C10), 24119-24139, doi:https://doi.org/10.1029/2000JC900115.
Swart, D. H. (1974). Offshore sediment transport and equilibrium beach profiles.
Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., Symonds, G., & Brinkman, R. (2011). Nearshore circulation in a tropical fringing reef system. Journal of Geophysical Research: Oceans, 116(C2), doi:https://doi.org/10.1029/2010JC006439.
Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence: MIT press.
Vila-Concejo, A., Harris, D. L., Power, H. E., Shannon, A. M., & Webster, J. M. (2014). Sediment transport and mixing depth on a coral reef sand apron. Geomorphology, 222, 143-150, doi:https://doi.org/10.1016/j.geomorph.2013.09.034.
Vo Luong, P., & Massel, S. (2006). Experiments on wave motion and suspended sediment concentration at Nang Hai, Can Gio mangrove forest, Southern Vietnam. Oceanologia, 48.
Voulgaris, G., & Meyers, S. T. (2004). Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research, 24(15), 1659-1683, doi:https://doi.org/10.1016/j.csr.2004.05.006.
Wang, F., Shen, Y., Chen, Q., & Li, W. (2019). A heuristic singular spectrum analysis method for suspended sediment concentration time series contaminated with multiplicative noise. Acta Geodaetica et Geophysica, 54(4), 483-497, doi:10.1007/s40328-019-00269-1.
Wiberg, P. L., Taube, S. R., Ferguson, A. E., Kremer, M. R., & Reidenbach, M. A. (2019). Wave Attenuation by Oyster Reefs in Shallow Coastal Bays. Estuaries and Coasts, 42(2), 331-347, doi:10.1007/s12237-018-0463-y.
Young, I. R. (1999). Wind generated ocean waves: Elsevier.
Yu, H.-Y., Huang, S.-C., & Lin, H.-J. (2020). Factors structuring the macrobenthos community in tidal algal reefs. Marine Environmental Research, 161, 105119, doi:https://doi.org/10.1016/j.marenvres.2020.105119.
Zhang, Q., Gong, Z., Zhang, C., Lacy, J., Jaffe, B., & Xu, B. (2018). Bed Shear Stress Estimation Under Wave Conditions Using near-bottom Measurements: Comparison of Methods. Journal of Coastal Research, 85, 241-245, doi:10.2112/SI85-049.1.
Zhou, Y., Ma, N., Wang, Q., Wang, Z., Chen, C., Tao, J., et al. (2022). Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmos. Chem. Phys., 22(3), 2029-2047, doi:10.5194/acp-22-2029-2022.
Zhu, Q., van Prooijen, B. C., Wang, Z. B., Ma, Y. X., & Yang, S. L. (2016). Bed shear stress estimation on an open intertidal flat using in situ measurements. 182, 190-201, doi:10.1016/j.ecss.2016.08.028. |