參考文獻 |
吳俊傑, & 盧妙玲. (1997). 颱風最大潛在強度理論之探討及檢驗. 大氣科學, 25(1), 79-97.
李清勝, & 簡國基. (1997). 颱風環流維持機制之數值模擬. 大氣科學, 25(2), 147-172.
陳冠呈. (2022). 1999~2018年期間南海沿岸淺水區對颱風登陸時強度變化之影響. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/hxmx5h
Bender, M. A., & Ginis, I. (2000). Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly weather review, 128(4), 917-946. doi:https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2
Betts, A. K. (1982). Saturation point analysis of moist convective overturning. Journal of the Atmospheric Sciences, 39(7), 1484-1505.
Bhatia, K. T., & Nolan, D. S. (2013). Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961-980.
Biswas, M. K., Bernardet, L., & Dudhia, J. (2014). Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model. Geophysical Research Letters, 41(24), 9113-9119.
Brand, S., Buenafe, C. A., & Hamilton, H. D. (1981). Comparison of Tropical Cyclone Motion and Environmental Steering. Monthly weather review, 109(4), 908-909. doi:https://doi.org/10.1175/1520-0493(1981)109<0908:COTCMA>2.0.CO;2
Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20(19), 4819-4834. doi:https://doi.org/10.1175/JCLI4282.1
Cangialosi, J. P., & Franklin, J. L. (2012). 2010 National hurricane center forecast verification report. National Hurricane Center.
Carrasco, C. A., Landsea, C. W., & Lin, Y.-L. (2014). The Influence of Tropical Cyclone Size on Its Intensification. Weather and Forecasting, 29(3), 582-590. doi:https://doi.org/10.1175/WAF-D-13-00092.1
Cha, D. H., Jin, C. S., Lee, D. K., & Kuo, Y. H. (2011). Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. Journal of Geophysical Research: Atmospheres, 116(D10).
Chan, J. C. (2005). The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99-128.
Chang, C.-C., & Wu, C.-C. (2017). On the Processes Leading to the Rapid Intensification of Typhoon Megi (2010). Journal of the Atmospheric Sciences, 74(4), 1169-1200. doi:https://doi.org/10.1175/JAS-D-16-0075.1
Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. Journal of Atmospheric Sciences, 21(1), 68-75.
Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly weather review, 129(4), 569-585. doi:https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, H., & Zhang, D.-L. (2013). On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. Journal of the Atmospheric Sciences, 70(1), 146-162.
Chiang, T.-L., Wu, C.-R., & Oey, L.-Y. (2011). Typhoon Kai-Tak: An Ocean’s Perfect Storm. Journal of Physical Oceanography, 41(1), 221-233. doi:https://doi.org/10.1175/2010JPO4518.1
Chu, J.-H., Sampson, C. R., Levine, A. S., & Fukada, E. (2002). The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. In.
Cione, J. J., Black, P. G., & Houston, S. H. (2000). Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550-1561.
Cione, J. J., Kalina, E. A., Zhang, J. A., & Uhlhorn, E. W. (2013). Observations of Air–Sea Interaction and Intensity Change in Hurricanes. Monthly weather review, 141(7), 2368-2382. doi:https://doi.org/10.1175/MWR-D-12-00070.1
Corbosiero, K. L., & Molinari, J. (2002). The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones, Monthly Weather Review, 130(8), 2110-2123. doi: https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2
DeMaria, M. (1996). The Effect of Vertical Shear on Tropical Cyclone Intensity Change. Journal of Atmospheric Sciences, 53(14), 2076-2088. doi:https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
Demaria, M., & Kaplan, J. (1994). Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. Journal of Climate, 7(9), 1324-1334. doi:https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
DeMaria, M., & Kaplan, J. (1999). An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Weather and Forecasting, 14(3), 326-337. doi:https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
DeMaria, M., Sampson, C. R., Knaff, J. A., & Musgrave, K. D. (2014). Is tropical cyclone intensity guidance improving? Bulletin of the American Meteorological Society, 95(3), 387-398.
Divins, D., & Metzger, D. (2003). Coastal relief model. National Geophysical Data Center, Boulder, CO http://www. ngdc. noaa. gov/mgg/coastal/coastal. html.
Durden, S. L. (2013). Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Monthly weather review, 141(12), 4256-4268.
Elsberry, R. L., Weniger, E. L., & Meanor, D. H. (1988). A Statistical Tropical Cyclone Intensity Forecast Technique Incorporating Environmental Wind and Vertical Wind Shear Information. Monthly weather review, 116(11), 2142-2154. doi:https://doi.org/10.1175/1520-0493(1988)116<2142:ASTCIF>2.0.CO;2
Emanuel, K. (2004). Tropical cyclone energetics and structure. Atmospheric turbulence and mesoscale meteorology, 165, 192.
Emanuel, K. (2005). Divine wind: the history and science of hurricanes: Oxford university press.
Emanuel, K. (2017). Will Global Warming Make Hurricane Forecasting More Difficult? Bulletin of the American Meteorological Society, 98(3), 495-501. doi:https://doi.org/10.1175/BAMS-D-16-0134.1
Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental Control of Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 61(7), 843-858. doi:https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), 585-605.
Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci, 45(7), 1143-1155.
Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48(21), 2313-2329.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665-669.
Emanuel, K. A., & Nolan, D. S. (2004). Tropical cyclone activity and the global climate system. Paper presented at the Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc. A.
Frank, W. M., & Ritchie, E. A. (2001). Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Monthly weather review, 129(9), 2249-2269. doi:https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
Glenn, S., Aragon, D., Bowers, L., Crowley, M., Dunk, R., Evans, C., . . . Kerfoot, J. (2013). Process-driven improvements to hurricane intensity and storm surge forecasts in the mid-atlantic bight: Lessons learned from hurricanes irene and sandy. Paper presented at the 2013 MTS/IEEE OCEANS-Bergen.
Glenn, S., Miles, T., Seroka, G., Xu, Y., Forney, R., Yu, F., . . . Kohut, J. (2016). Stratified coastal ocean interactions with tropical cyclones. Nature communications, 7(1), 10887.
Gramer, L. J., Zhang, J. A., Alaka, G., Hazelton, A., & Gopalakrishnan, S. (2022). Coastal downwelling intensifies landfalling hurricanes. Geophysical Research Letters, 49(13), e2021GL096630.
Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly weather review, 96(10), 669-700.
Gray, W. M. (1998). The formation of tropical cyclones. Meteorology and Atmospheric Physics, 67, 37-69.
Green, B. W., & Zhang, F. (2013). Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Monthly weather review, 141(7), 2308-2324. doi:https://doi.org/10.1175/MWR-D-12-00274.1
Halliwell, G. R., Srinivasan, A., Kourafalou, V., Yang, H., Willey, D., Le Hénaff, M., & Atlas, R. (2014). Rigorous Evaluation of a Fraternal Twin Ocean OSSE System for the Open Gulf of Mexico. Journal of Atmospheric and Oceanic Technology, 31(1), 105-130. doi:https://doi.org/10.1175/JTECH-D-13-00011.1
Hastings, D. A., & Dunbar, P. (1998). Development & assessment of the global land one-km base elevation digital elevation model (GLOBE). Group, 4(6), 218-221.
Hawkins, H. F., & Imbembo, S. M. (1976). The structure of a small, intense hurricane—Inez 1966. Monthly weather review, 104(4), 418-442.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., . . . Schepers, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54(21), 2519-2541.
Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151.
Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly weather review, 134(9), 2318-2341. doi:https://doi.org/10.1175/MWR3199.1
Houghton, R. W., Schlitz, R., Beardsley, R. C., Butman, B., & Chamberlin, J. L. (1982). The Middle Atlantic Bight Cold Pool: Evolution of the Temperature Structure During Summer 1979. Journal of Physical Oceanography, 12(10), 1019-1029. doi:https://doi.org/10.1175/1520-0485(1982)012<1019:TMABCP>2.0.CO;2
Hu, C., & Muller‐Karger, F. E. (2007). Response of sea surface properties to Hurricane Dennis in the eastern Gulf of Mexico. Geophysical Research Letters, 34(7).
Huang, H. C., Boucharel, J., Lin, I. I., Jin, F. F., Lien, C. C., & Pun, I. F. (2017). Air‐sea fluxes for H urricane P atricia (2015): Comparison with supertyphoon H aiyan (2013) and under different ENSO conditions. Journal of Geophysical Research: Oceans, 122(8), 6076-6089.
Huang, P., Lin, I.-I., Chou, C., & Huang, R.-H. (2015). Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature communications, 6(1), 7188.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).
Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R., & Coakley, B. (2000). New grid of Arctic bathymetry aids scientists and mapmakers. EOS, Transactions American Geophysical Union, 81(9), 89-96.
Jarvinen, B. R., & Neumann, C. J. (1979). Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. In.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., & García-Bustamante, E. (2012). A Revised Scheme for the WRF Surface Layer Formulation. Monthly weather review, 140(3), 898-918. doi:https://doi.org/10.1175/MWR-D-11-00056.1
Kieu, C., Tallapragada, V., & Hogsett, W. (2014). Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model. Geophysical Research Letters, 41(9), 3298-3306.
Kurihara, Y., Tuleya, R. E., & Bender, M. A. (1998). The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Monthly weather review, 126(5), 1306-1322.
Lee, C.-Y., & Chen, S. S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576-3594.
Lee, C.-Y., & Chen, S. S. (2014). Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Monthly weather review, 142(5), 1927-1944. doi:https://doi.org/10.1175/MWR-D-13-00122.1
Leslie, L., Hess, G., Holland, G., Morison, R., & Fraedrich, K. (1992). Predicting changes in intensity of tropical cyclones using a Markov chain. Australian Meteorological Magazine, 40(1).
Li, X. (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Science China Earth Sciences, 56, 270-281.
Lin, I.-I., Pun, I.-F., & Wu, C.-C. (2009). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Monthly weather review, 137(11), 3744-3757. doi:https://doi.org/10.1175/2009MWR2713.1
Lin, I.-I., Wu, C.-C., Pun, I.-F., & Ko, D.-S. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly weather review, 136(9), 3288-3306. doi:https://doi.org/10.1175/2008MWR2277.1
Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical Research Letters, 30(3).
Lin, I. I., Pun, I. F., & Lien, C. C. (2014). “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23), 8547-8553.
Lin, J., & Qian, T. (2019). Rapid intensification of tropical cyclones observed by AMSU satellites. Geophysical Research Letters, 46(12), 7054-7062.
Liu, K. S., & Chan, J. C. (2020). Recent increase in extreme intensity of tropical cyclones making landfall in South China. Climate Dynamics, 55(5-6), 1059-1074.
Liu, X., Wei, J., Zhang, D. L., & Miller, W. (2019). Parameterizing sea surface temperature cooling induced by tropical cyclones: 1. Theory and an application to Typhoon Matsa (2005). Journal of Geophysical Research: Oceans, 124(2), 1215-1231.
Mei, W., Pasquero, C., & Primeau, F. (2012). The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophysical Research Letters, 39(7).
Merrill, R. T. (1988). Environmental influences on hurricane intensification. In (Vol. 45, pp. 1678-1687).
Montgomery, M. T., Sang, N. V., Smith, R. K., & Persing, J. (2009). Do tropical cyclones intensify by WISHE? Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 135(644), 1697-1714.
Moon, J., Park, J., Cha, D.-H., & Moon, Y. (2021). Five-Day Track Forecast Skills of WRF Model for the Western North Pacific Tropical Cyclones. Weather and Forecasting, 36(4), 1491-1503. doi:https://doi.org/10.1175/WAF-D-20-0092.1
Murakami, H., & Wang, B. (2010). Future Change of North Atlantic Tropical Cyclone Tracks: Projection by a 20-km-Mesh Global Atmospheric Model. Journal of Climate, 23(10), 2699-2721. doi:https://doi.org/10.1175/2010JCLI3338.1
Nguyen, L. T., & Molinari, J. (2015). Simulation of the Downshear Reformation of a Tropical Cyclone, Journal of the Atmospheric Sciences, 72(12), 4529-4551. doi: https://doi.org/10.1175/JAS-D-15-0036.1
Oey, L.-Y., Ezer, T., Wang, D.-P., Yin, X.-Q., & Fan, S.-J. (2007). Hurricane-induced motions and interaction with ocean currents. Continental Shelf Research, 27(9), 1249-1263.
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3-40.
Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3(1), 26-38.
Park, J. H., Yeo, D. E., Lee, K., Lee, H., Lee, S. W., Noh, S., . . . Nam, S. (2019). Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophysical Research Letters, 46(24), 14595-14603.
Park, M.-S., Elsberry, R. L., & Harr, P. A. (2012). Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Tropical Cyclone Research and Review, 1(4), 448-457.
Pasch, R. J., Berg, R., Roberts, D. P., & Papin, P. P. (2021). National Hurricane Center Tropical Cyclone Report. Hurricane Laura, 1-14.
Paterson, L. A., Hanstrum, B. N., Davidson, N. E., & Weber, H. C. (2005). Influence of Environmental Vertical Wind Shear on the Intensity of Hurricane-Strength Tropical Cyclones in the Australian Region. Monthly weather review, 133(12), 3644-3660. doi:https://doi.org/10.1175/MWR3041.1
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., . . . Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature climate change, 2(4), 289-294.
Potter, H., DiMarco, S. F., & Knap, A. H. (2019). Tropical cyclone heat potential and the rapid intensification of Hurricane Harvey in the Texas Bight. Journal of Geophysical Research: Oceans, 124(4), 2440-2451.
Price, J. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Science, 5(3), 351-368.
Price, J. F. (1981). Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, 11(2), 153-175. doi:https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
Pun, I.-F., Chan, J. C. L., Lin, I.-I., Chan, K. T. F., Price, J. F., Ko, D. S., . . . Huang, H.-C. (2019). Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11(13), 3709. Retrieved from https://www.mdpi.com/2071-1050/11/13/3709
Rogers, R., Reasor, P. D., & Lorsolo, S. (2013). Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970-2991.
Schubert, W. H., & Hack, J. J. (1982). Inertial stability and tropical cyclone development. Journal of the Atmospheric Sciences, 39(8), 1687-1697.
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., & Glenn, S. (2016). Hurricane Irene Sensitivity to Stratified Coastal Ocean Cooling. Monthly weather review, 144(9), 3507-3530. doi:https://doi.org/10.1175/MWR-D-15-0452.1
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., & Glenn, S. (2017). Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes. Journal of Geophysical Research: Oceans, 122(6), 4845-4867.
Shay, L. (2009). Upper ocean structure: Responses to strong atmospheric forcing events. In Encyclopedia of ocean sciences (pp. 192-210): Elsevier Ltd.
Shen, W., & Ginis, I. (2003). Effects of surface heat flux‐induced sea surface temperature changes on tropical cyclone intensity. Geophysical Research Letters, 30(18).
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., . . . Barker, D. M. (2019). A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145(145), 550.
Slocum, C. J., Razin, M. N., Knaff, J. A., & Stow, J. P. (2022). Does ERA5 Mark a New Era for Resolving the Tropical Cyclone Environment? Journal of Climate, 35(21), 7147-7164. doi:https://doi.org/10.1175/JCLI-D-22-0127.1
Smith, W. H., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956-1962.
Stern, D. P., & Nolan, D. S. (2012). On the height of the warm core in tropical cyclones. Journal of the Atmospheric Sciences, 69(5), 1657-1680.
Stern, D. P., & Zhang, F. (2013). How Does the Eye Warm? Part I: A Potential Temperature Budget Analysis of an Idealized Tropical Cyclone. Journal of the Atmospheric Sciences, 70(1), 73-90. doi:https://doi.org/10.1175/JAS-D-11-0329.1
Stern, D. P., & Zhang, F. (2016). The Warm-Core Structure of Hurricane Earl (2010). Journal of the Atmospheric Sciences, 73(8), 3305-3328. doi:https://doi.org/10.1175/JAS-D-15-0328.1
Sun, J., & Oey, L.-Y. (2015). The Influence of the Ocean on Typhoon Nuri (2008). Monthly weather review, 143(11), 4493-4513. doi:https://doi.org/10.1175/MWR-D-15-0029.1
Tang, J., Zhang, J. A., Kieu, C., & Marks, F. D. (2018). Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations. Tropical Cyclone Research and Review, 7(4), 201-211.
Tu, S., Chan, J. C., Xu, J., Zhong, Q., Zhou, W., & Zhang, Y. (2022). Increase in tropical cyclone rain rate with translation speed. Nature communications, 13(1), 7325.
Wallace, J. M., Mitchell, T. P., & Deser, C. (1989). The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. Journal of Climate, 2(12), 1492-1499. doi:https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
Wang, Y.-q., & Wu, C.-C. (2004). Current understanding of tropical cyclone structure and intensity changes–a review. Meteorology and Atmospheric Physics, 87(4), 257-278.
Wang, Y., Montgomery, M., & Wang, B. (2004). How much vertical shear can a tropical cyclone resist? Paper presented at the Bulletin of the American Meteorological Society.
Wu, C. C., Tu, W. T., Pun, I. F., Lin, I. I., & Peng, M. S. (2016). Tropical cyclone‐ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere‐ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1), 153-167.
Xu, J., & Wang, Y. (2015). A Statistical Analysis on the Dependence of Tropical Cyclone Intensification Rate on the Storm Intensity and Size in the North Atlantic. Weather and Forecasting, 30(3), 692-701. doi:https://doi.org/10.1175/WAF-D-14-00141.1
Xu, J., & Wang, Y. (2018). Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the Western North Pacific. Weather and Forecasting, 33(2), 523-537. doi:https://doi.org/10.1175/WAF-D-17-0095.1
Yablonsky, R. M., & Ginis, I. (2009). Limitation of One-Dimensional Ocean Models for Coupled Hurricane–Ocean Model Forecasts. Monthly weather review, 137(12), 4410-4419. doi:https://doi.org/10.1175/2009MWR2863.1
Zambon, J. B., He, R., & Warner, J. C. (2014). Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dynamics, 64, 1535-1554.
Zeng, Z., Wang, Y., & Wu, C.-C. (2007). Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study. Monthly weather review, 135(1), 38-59. doi:https://doi.org/10.1175/MWR3278.1
Zhang, C., Wang, Y., & Hamilton, K. (2011). Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly weather review, 139(11), 3489-3513. doi:https://doi.org/10.1175/MWR-D-10-05091.1
Zhang, D. L., & Chen, H. (2012). Importance of the upper‐level warm core in the rapid intensification of a tropical cyclone. Geophysical Research Letters, 39(2).
Zhang, F., & Tao, D. (2013). Effects of Vertical Wind Shear on the Predictability of Tropical Cyclones. Journal of the Atmospheric Sciences, 70(3), 975-983. doi:https://doi.org/10.1175/JAS-D-12-0133.1
Zhang, J. A., Nolan, D. S., Rogers, R. F., & Tallapragada, V. (2015). Evaluating the Impact of Improvements in the Boundary Layer Parameterization on Hurricane Intensity and Structure Forecasts in HWRF. Monthly weather review, 143(8), 3136-3155. doi:https://doi.org/10.1175/MWR-D-14-00339.1
Zhang, Z., Wang, Y., Zhang, W., & Xu, J. (2019). Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: A numerical study. Journal of Geophysical Research: Atmospheres, 124(24), 13731-13749. |